

4 de Diciembre de 2008 Salón de Grados. Edificio Mecenas

RED ESPAÑOLA DE ANÁLISIS GEOMÉTRICO

Programa

• 10:00-11:00 Jesse Raztkin (University College Cork, Ireland).

Lower bounds for the first Dirichlet eigenvalue in wedge domains.

The classical Faber-Krahn inequality compares the first Dirichlet eigenvalue of the Laplacian for a bounded domain to that of a ball. I will discuss similar bounds for domains contained in wedges, both in Euclidean space and the sphere. If time allows, I will also discuss an application to Brownian pursuit. This is joint work with Andrejs Treibergs.

• 11:00-11:45 Coffe Break

• 11:45-12:45 César Rosales (Universidad de Granada)

The Bernstein problem and the classification of complete stable area-stationary surfaces in the Heisenberg group

We first consider the problem of finding all the entire area-stationary graphs in the sub-Riemannian Heisenberg group H^1 . This question has been well studied for t-graphs and for intrinsic graphs. In particular, examples of unstable entire area-stationary graphs may be given in H^1 . After discussing some stability results for complete graphs we state a joint result with A. Hurtado and M. Ritoré, where we prove that a C^2 complete stable area-stationary surface in H^1 must be a Euclidean plane or congruent to the hyperbolic paraboloid t = xy.

• 12:45-13:45 Laurent Mazet (Université Paris 12, France)

Sharp length estimates for stable CMC surfaces.

In this talk, we prove that, in a stable cmc surface in R^3 , the intrinsic distance from a point to the boundary is less than $\pi/(2H)$. This estimate is sharp and can be extended to H^3 and S^3 .

• 14:00 Almuerzo / Lunch

• 16:30-17:30 Benoît Daniel (Université Paris 12, France).

Existence and uniqueness of constant mean curvature spheres in Sol(3).

We study the classification of immersed constant mean curvature spheres in the homogeneous 3-manifold Sol(3), i.e., the only Thurston 3-dimensional geometry where this problem remains open. Our main result states that, for every H>1/sqrt(3), there exists a unique (up to translations) immersed CMC H sphere $\rm S_H$ in Sol(3). Moreover, this sphere $\rm S_H$ is embedded, and is therefore the unique compact embedded CMC H surface in Sol(3). The same results are obtained for all real numbers H such that there exists a solution to the isoperimetric problem with mean curvature H.

Joint work with Pablo Mira.

17:30-18:30 Francisco J. López (Universidad de Granada).
Uniqueness of the Helicoid and Enneper's surface in R³₁.

In this talk we deal with the uniqueness of the Helicoid and Enneper's surface as maximal immersions in the Lorentz-Minkowski space R^3_1 . In both cases the surface contains a proper lightlike arc where the immersion folds back, and so the image via the immersion is a (double) surface without selfintersections with lightlike boundary of mirror symmetry.