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Abstract

The Principal Component Regression model of multiple responses is extended to
forecast a continuous-time stochastic process. Orthogonal projection on a subspace
of trigonometric functions is applied in order to estimate the principal components
using discrete-time observations from a sample of regular curves. The forecasts
provided by the this approach are compared with classical principal component
regression on simulated data.
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linear prediction, Orthogonal projection.

AMS subject classification: 60G25, 60G12, 65F15.

1 Introduction

There has been a good deal of discussion, in probabilistic and statistical
literature, on the pure prediction problem of a continuous-time stochastic
process in the future in terms of its recent past. In this line of study, Bosq
(1991) has introduced the autoregressive Hilbert (ARH) processes as a gen-
eralization of the classical AR processes to random variables with values in
a functional Hilbert space. In this paper, taking into account that there are
many applications not verifying the hypothesis of these particular models,
Functional Principal Component Analysis (FPCA) is applied to reduce the
infinite number of predictor and response variables, and to simplify the
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solution. An interesting perspective on the analysis of functional data by
PCA can be seen in the recent book by Ramsay and Silverman (1997).

Since Deville (1974), who set up the basic theory on PCA of continu-
ous processes, a large number of papers have focused on the approximation
of the FPCA from a set of independent sample paths, particularly in the
case of discrete-time observations of these curves as it is usual in practice.
An alternative approach is to perform a conventional PCA of the observed
data. Castro et al. (1986) were concerned with the effect on the PCA re-
sults of unequally spaced sampling points on the sample paths. They used
quadrature rules to approximate the FPCA and gave some rather dramatic
examples to demonstrate that this functional approach produces stable and
consistent estimates of the lead terms of the Karhunen-Loève expansion,
contrary to classical PCA that provides unstable estimate of process vari-
ability. Besse and Ramsay (1986) and Besse (1991) used interpolating and
approximating splines with either Green’s functions or reproducing kernels
and established a class of eigenfunction models of which conventional PCA
is a special case. Based on these works, Besse and Cardot (1994) have de-
veloped a forecasting model for ARH(1) processes. Aguilera et al. (1996)
have performed a simulation study to show that natural cubic spline in-
terpolation of the sample paths between equally spaced observations gives
an optimum PCA approximation and corrects the failings of the classical
PCA.

The forecasting technique proposed in this article is based on linear
regression of the principal components (p.c.’s) associated to the process in
the future against the principal components in the past. It can be seen as
an extension of the topic of Principal Component Regression of multiple
responses (MPCR, see e.g., Jolliffe (1985)) to predict an infinite set of
responses from an infinite set of predictors.

Section 2 presents a brief summary of the MPCR technique. In Sec-
tion 3 we propose a forecasting model for a continuous-time stochastic
process based on its PCA. Section 3 describes the estimation of such fore-
casting model from a set of independent sample paths. In Section 4, the
approximation of the FPCA of the process from discrete-time observations
is performed by projection on a finite subspace of trigonometric functions
(Aguilera et al., 1995). Finally, in Section 5, model fitting and forecast-
ing results by using this FPCA approach will be analyzed on simulated
discrete-time data of the harmonic oscillator stochastic process.
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2 Multivariate principal component regression

The MPCR technique solves the problem of predicting a set of response
variables, denoted by the random vector Y = (Y1, . . . , Ys)′, from a set of
predictors, denoted by X = (X1, . . . , Xm)′ (m, s ∈ Z+).

The principal feature of this technique is that a double-PCA is per-
formed. That is, a classical PCA is carried out for each set of variables.

Let {ξ1, . . . , ξm} denote the principal components associated to the ran-
dom vector X, given by

ξi =
m∑

j=1

φji(Xj − µXj ) = φi
′ (X − µ

X
), (2.1)

where φi is the ith eigenvector of the covariance matrix of X, and µ
X

is the
mean vector of X.

Similarly, let {η1, . . . , ηs} denote the p.c.’s associated to the random
vector Y , defined as

ηk =
s∑

j=1

δjk(Yj − µYj ) = δk
′ (Y − µ

Y
), (2.2)

where δk is the kth eigenvector of the covariance matrix of Y and µ
Y

is the
mean vector of Y .

Then, a MPCR model for predicting each response variable Yj (j =
1, . . . , s) is given by

Ỹj = µYj +
q∑

k=1

η̂kδjk, q ≤ s, (2.3)

where η̂k (k = 1, . . . , s) is the least-squares linear estimate for the p.c. ηk

on a subset of the set of p.c.’s {ξi}m
i=1, and µYj is the mean of the variable

Yj .

If in equation (2.3) q equals s, and all the p.c.’s {ξi}m
i=1 are used for

estimating ηk, then MPCR will produce the same results as Multivariate
Least-Squares Regression (MLSR) but with possibly more accuracy if the
original covariance matrix of X has inversion problems.
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3 Linear prediction based on PCA of continuous time ran-
dom processes

Let [T1, T2] and [T3, T4] (T3 ≥ T2) denote the past and the future inter-
vals, respectively. Let us now consider a second order and quadratic mean
continuous random process, {X(t)}, whose sample functions have squares
integrable over the intervals [T1, T2] and [T3, T4].

The problem is to find a linear estimate of the random variable X(s)
(s ∈ [T3, T4]) given the variables {X(t) : t ∈ [T1, T2]}. As the estimate
proposed in this article will be a function of the principal components of
{X(t)}, we will begin by setting the basic theory about PCA of random
processes.

3.1 Basic theory on functional PCA

By analogy with the finite case, the ith principal component associated to
the process {X(t)} in the interval [T1, T2] is defined as (Deville (1974))

ξi =
∫ T2

T1

(X(t)− µ(t))fi(t)dt, (3.1)

where fi, called the ith principal factor (p.f.), is the normalized eigenfunc-
tion corresponding to the ith largest eigenvalue λi of the covariance operator
C defined as

C(f)(t) =
∫ T2

T1

C(t, s)f(s)ds ∀f ∈ L2[T1, T2], (3.2)

whose kernel is the covariance function C(t, s), and denoting by µ(t) the
mean function of the process.

The p.c.’s defined above have indeed the same optimal properties that in
the finite case. That is, ξi is the normalized generalized linear combination
of the process variables having maximum variance, λi, out of all general-
ized linear combinations which are uncorrelated with {ξj}i−1

j=1. Thus, the
variance explained by the ith principal component is V P

i = λi/V P , with
V P =

∑
i λi being the total variance of the process in the past interval

[T1, T2].
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Then the Karhunen-Loève orthogonal expansion (see, for example, Todor-
ovic (1992)) provides the following principal component decomposition for
the process in the past interval:

X(t) = µ(t) +
∞∑
i=1

ξifi(t) t ∈ [T1, T2], (3.3)

where the infinite series in (3.3) converges in quadratic mean to X(t) uni-
formly in t.

Moreover, the series (3.3) truncated in the qth term is the best linear
approximation of the process X(t) − µ(t), in the least-squares sense, by a
sum of q quasi-deterministic terms (see, for example, Fukunaga (1990)),
with (

∑q
i=1 λi)/V P being the variance explained by this linear model and∑∞

i=q+1 λi being the minimum mean-square error.

Similarly, PCA gives the following orthogonal representation for the
process in the future interval:

X(s) = µ(s) +
∞∑

j=1

ηjgj(s) s ∈ [T3, T4] (3.4)

where gj and ηj denote the principal factors and components in the interval
[T3, T4], respectively.

Finally, the total variance of the process in the future is given by V F =∑
j αj , where αj denotes the variance of the p.c. ηj . Therefore, the variance

explained by the jth p.c. ηj is given by the ratio V F
j = αj/V F .

3.2 Principal component prediction models

Let us assume without loss of generality that the process {X(t)} is centred
and defined on the probabilistic space (Ω, A, P ). Let L2

X be the closed
linear manifold spanned by the r.v.’s {X(t) : T1 ≤ t ≤ T2}, that is

L2
X = Lin{X(t) : t ∈ [T1, T2]}.

Clearly, L2
X is a Hilbert subspace of the Hilbert space L2(Ω) of the second

order r.v.’s on (Ω, A, P ).

Let us remember that we are concerned with the linear prediction of
X(s) (s ∈ [T3, T4]) given the values of the process in the period [T1, T2].
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The best linear predictor would be the element in L2
X closest (in the least-

squares sense) to X(s). Therefore, the linear mean-square estimate for
X(s) is defined as the random variable X̃(s) verifying

E[| X̃(s)−X(s) |2] = inf{E[| Z −X(s) |2] : Z ∈ L2
X}.

In Hilbert space terminology, X̃(s) is the orthogonal projection of X(s) on
L2

X , characterized as the element of L2
X such that(

X̃(s)−X(s)
)
⊥ L2

X ,

which particularly implies that

E[X(s)X(t)] = E[X̃(s)X(t)] ∀t ∈ [T1, T2].

The quantity
ε2(s) = E[| X̃(s)−X(s) |2]

is called the mean-square error of the linear prediction for every s ∈ [T3, T4].

It is known (see, for example, Todorovic (1992)) that the p.c.’s {ξi},
associated to the process in the past, make up a complete orthogonal family
in L2

X , verifying E[ξ2
i ] = λi. Therefore, the set {Zi} of normalized p.c.’s

defined as Zi = λ
−1/2
i ξi is an orthonormal complete system in this Hilbert

space. As a consequence, the orthogonal projection P : L2(Ω) → L2
X

admits the following expansion, convergent in quadratic mean, in terms of
the p.c.’s in the past:

P (X) =
∞∑
i=1

E[Xξi]
λi

ξi ∀X ∈ L2(Ω). (3.5)

Due to the fact that P is a bounded linear operator on L2(Ω) it is
easy to prove, from equations (3.4) and (3.5), that the least-squares linear
estimate X̃ can be expanded as

X̃(s) = P (X(s)) =
∞∑

j=1

η̃jgj(s), s ∈ [T3, T4], (3.6)

where η̃j is given by

η̃j = P (ηj) =
∞∑
i=1

E[ηjξi]
λi

ξi =
∞∑
i=1

βj
i ξi j = 1, . . . . (3.7)
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Let us observe that η̃j represents the least-squares linear estimate for the
p.c. ηj against the process variables {X(t) : T1 ≤ t ≤ T2}.

By truncating off each of the infinite series in equation (3.7), the fol-
lowing approximated linear prediction for each of the p.c.’s in the future is
obtained

η̃
pj

j =
pj∑

i=1

βj
i ξi. (3.8)

Finally, we can construct the following Principal Component Prediction
model for the process in the future:

X̃q(s) = µ(s) +
q∑

j=1

η̃
pj

j gj(s), s ∈ [T3, T4], (3.9)

where equation (3.4) has been restricted to the first q p.c.’s in the future
whose cumulative variance CV F

j =
∑q

j=1 αj is as close to one as one desires.
This model will be denoted by PCP(q, p1, . . . , pq).

Summarizing, from equations (3.8) and (3.9), it is clearly observed that
the problem has been reduced to least-squares linear regression for some of
the first p.c.’s in the future on some of the first p.c.’s in the past. Let us
also observe the similarity between the PCP model (3.9) and the MPCR
model (2.3).

Finally, the total mean-square prediction error of the PCP(q, p1, . . . , pq)
model is obtained as

ε2 =
∫ T4

T3

E
[(

X(s) − X̃q(s)
)2
]

ds =
∞∑

j=1

αj −
q∑

j=1

pj∑
i=1

λi(β
j
i )

2

=
q∑

j=1

Υ2
j +

∞∑
l=q+1

αl, (3.10)

where Υ2
j is the mean-square regression error associated to the linear model

for η̃
pj

j and given by

Υ2
j = E

[(
ηj − η̃

pj

j

)2
]

= αj

(
1 −

pj∑
i=1

r2(ηj , ξi)

)
∈ [0, 1] .
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Remark 1: As with the MPCR model, the main problem is to choose the
optimum pj p.c.’s ξi to be introduced in the PCP model as predictors for
each of the first q p.c.’s ηj in the future. Although the usual practice
consists in automatically dropping, as predictors, those p.c.’s associated
to the smallest eigenvalues, some authors, as Hötelling and Jolliffe among
others (see, for example, Jackson (1992)), pointed out that there is no
reason for the p.c.’s with the largest variance to be the best predictors and
gave examples where some of the smallest p.c.’s were highly correlated with
the response variable. Because of this we will choose those p.c.’s in the past
having the highest correlations as the best predictors for each p.c. in the
future.

4 Fitting PCP models

Having defined the PCP model, we are now going to estimate it from N
independent sample functions of the process in each interval, denoted as

{Xw(t) : t ∈ [T1, T2]} and {Xw(s) : s ∈ [T3, T4]}; (w = 1, . . . , N).

Then, the identification, estimation and diagnostic of the PCP models
are summarized in the following steps:

1. We have to estimate the principal factors of the process in each in-
terval. It is known that the natural estimators of the p.f.’s from a
set of independent sample paths are the eigenfunctions of the sample
covariance operator Ĉ whose kernel is the sample covariance function
defined as

Ĉ(t, s) =
1

N − 1

N∑
w=1

(
Xw(t)− X̄(t)

) (
Xw(s)− X̄(s)

)
, (4.1)

where X̄(t) is the usual unbiased estimate of the mean µ(t).

Then, the sample principal values and factors associated to the pro-
cess {X(t)} in the past and denoted by λ̂i and f̂i, respectively, are
the solutions to the second kind integral equation∫ T2

T1

Ĉ(t, s)f̂i(s)ds = λ̂if̂i(t), t ∈ [T1, T2]. (4.2)
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The most important sampling properties of these estimates that have
been studied in detail by Deville (1973), can be summarized as follows:

(a) Ĉ is an unbiased estimate of C.

(b) Ĉ is convergent in quadratic mean to C.

(c) For each i, the eigenvalue-eigenfunction pair (λ̂i, f̂i) of Ĉ is con-
vergent in quadratic mean to the corresponding eigenvalue-eigen-
function pair (λi, fi) of C once the eigenvalues λiÿ have been set
up in decreasing order.

For simplicity we will suppose that all eigenvalues λiÿ are simple.
However, the estimator of any multiple eigenvalue is obtained by av-
eraging the corresponding eigenvalues of Ĉ. A detailed study about
the asymptotic distributions of these estimators can be seen in Daux-
ois et al. (1982).

There are various ways of tackling the problem of solving the eigenequa-
tion (4.2). Some numerical techniques involve discrete approxima-
tions for which an adequate convergence theory exists. The simplest
form involves choosing a sufficiently large number of equally spaced
points in [T1, T2] and approximating the integrals in (4.2) by the cor-
responding sums divided by the number of points. This way, the
problem becomes identical to that of the classical multivariate PCA.
However, more sophisticated quadrature procedures will generally re-
quire fewer points as shown in the simulation study using trapezoid
quadrature performed by Aguilera et al. (1992). In the next section
we are going to summarize briefly the orthogonal projection method
for approximating the sample principal factors when the sample paths
are only observed at a finite set of knots.

Once the principal factors have been estimated, the ith sample p.c.
associated to the process in the past [T1, T2] is given by

ξ̂wi =
∫ T2

T1

(
Xw(t)− X̄(t)

)
f̂i(t)dt, w = 1, . . . , N. (4.3)

Similarly, α̂j , ĝj and η̂j will denote the sample principal values, factors
and components in the future [T3, T4], respectively.

2. To choose the number q of p.c.’s η̂j to be introduced in the PCP
model as response variables, we will fix a cut-off (somewhere between
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80 and 99 percent) and retain the first q p.c.’s whose percentage of
cumulative variance is greater or equal to this cut-off.

3. To select the best predictors for each p.c. in the future, we will
compute the sample linear correlation between each p.c. in the past
and each p.c. in the future. Then, for each p.c. η̂j (j = 1, . . . , p)
the p.c.’s ξ̂i will be entered in the regression model (3.8) in the order
of magnitude of the square of their correlations with the response
variable η̂j by following a stepwise regression procedure.

4. Once the response and predictor p.c.’s have been identified, we will
estimate, in the usual way, the linear regression model for each p.c.
η̂j (j = 1, . . . , q) against its predictors ξ̂i (i = 1, . . . , pj)

˜̂
jη
pj =

pj∑
i=1

β̂j
i ξ̂i

where the vector of regression coefficients β̂
j

is given by

β̂
j

=
[
Ξ′Ξ

]−1 Ξ′η̂
j

(4.4)

and

• Ξ =
(
ξ̂
1
, . . . , ξ̂

pj

)
is the N × pj dimension regression matrix

whose columns are the vectors

ξ̂
i
=
(
ξ̂1i, . . . , ξ̂Ni

)′
(i = 1, . . . , pj).

• η̂
j

is the N ×1 column vector whose components are the sample
values of the p.c. η̂j . That is,

η̂
j

= (η̂1j , . . . , η̂Nj)
′ .

Let us observe that the matrix Ξ′Ξ is diagonal, so the elements of its
inverse are merely the reciprocals of its diagonal elements.

5. We will estimate the identified PCP model as

X̃q(s) = X̄(s) +
q∑

j=1

˜̂
jη
pj ĝj(s) s ∈ [T3, T4]. (4.5)
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For every new individual w observed only in the past interval [T1, T2],
we obtain a forecasting X̃q

w(s) for every s ∈ [T3, T4], after estimating
its principal components in the past and replacing in equation (4.5).

6. Finally, to evaluate the adequacy of the estimated PCP model we
estimate the mean-square error as

ε̂2(s) =
1

N − 1

N∑
w=1

(
Xw(s)− X̃q(s)

)2
s ∈ [T3, T4]. (4.6)

5 Approximation from discrete data

In many applied contexts we have a data set corresponding to unequally
spaced discrete-time observations, denoted by

{Xw(tj) : w = 1, . . . , N ; j = 0, 1, ...,m} ,

from a collection of continuous functions, {Xw(t) : w = 1, . . . , N}, which
can be modelled as independent sample paths of a continuous-time stochas-
tic process {X(t)}.

To forecast the process for s ∈ [tk+1, tm], (k : 1, . . . ,m − 2), we will
consider in the observed period [t0, tm] two intervals, [t0, tk] and [tk+1, tm],
representing the past and the future, respectively, and denoting T1 = t0,
T2 = tk, T3 = tk+1 and T4 = tm.

As we have already discussed in the introduction, the sample principal
factors have to be approximated in each interval by using efficient numer-
ical techniques. In the simulation study performed in the next section the
orthogonal projection method (OPM) proposed by Aguilera et al. (1995)
is going to be applied. This numerical procedure approximates the prin-
cipal factors by those of a stochastic process whose sample paths are the
orthogonal projections of the original ones on a finite-dimension subspace
En of L2[T1, T2].

Let {ej}j∈N be an orthonormal basis in the separable Hilbert space
L2[T1, T2] and let En the subspace spanned by the first n functions ej . The
orthogonal projection method approximates the eigensystem of the sample
covariance operator Ĉ by means of the eigensystem of the sample covariance
operator associated with the projected process and defined by

Ĉn = PnĈPn,
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where Pn denotes the orthogonal projection on En.

Then the ith approximated principal factor denoted as f̂
(n)
i is given by

f̂
(n)
i =

n∑
j=1

γjiej (5.1)

where the vector γ
i
, whose components are γji, is a solution to the matrix

eigenequation
Rγ

i
= λ̂

(n)
i γ

i
,

with R being the n× n matrix whose elements are given by

Rij =
∫ T2

T1

∫ T2

T1

Ĉ(t, s)ei(t)ej(s)dtds =
1

N − 1

N∑
w=1

(Ywi − Ȳi)(Ywj − Ȳj)

and defining,

Ywj =
∫ T2

T1

Xw(s)ej(s)ds, ∀j = 1 . . . n, (5.2)

Ȳj =
1
N

N∑
w=1

Ywj =
∫ T2

T1

X̄(s)ej(s)ds.

Finally, the approximated principal components are given by

ξ̂
(n)
wi =

n∑
j=1

γji

(
Ywj − Ȳj

)
w = 1, . . . , N. (5.3)

Let us observe that the approximated p.c.’s ξ̂(n) are exactly those of the
data matrix of integrals Y whose elements are defined in equation (5.2).

Remark 2: The properties of the sample covariance operator Ĉ guarantee
the convergence of the approximations given by the OPM approach. As
{En}n∈N approximates L2[T1, T2] in the sense of limn→∞Pn(f) = f for all
f ∈ L2[T1, T2], and Ĉ is a compact, hermitian, and positive operator, then
it is verified that for each i, there exists an eigenvalue-eigenfunction pair
(λ̂(n)

i , f̂
(n)
i ) of Ĉn such that the sequence {λ̂(n)

i } converges to λ̂i, and the
sequence {f̂ (n)

i } converges to f̂i in norm (Riesz and Sz-Nagy, 1990).

Remark 3: The approximating subspace En has to be selected according to
the nature of the process sample paths. For point processes, for example,
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En will be the subspace of piecewise constant functions on a fixed partition
in [T1, T2]. In the next section we are going to use a subspace of normalized
trigonometrics functions for a stochastic process with regular sample paths.

Remark 4: The computations in the next section have been performed by
using the SMCP2 program coded in Turbo Pascal and developed by the
authors. Let us observe that in order to apply the orthogonal projection
method it is necessary to approximate the inner products given by expresion
(5.2). SMCP2 approximates these integrals by Romberg’s integration after
using natural cubic splines interpolating the original sample paths on the
observed time points in order to compute their values at the knots of dis-
cretization. The cubic splines are computed by using a recursive definition
of cubic B-splines which is numerically stable.

6 Comparing predictions on simulated data

In this section, we are going to test the accuracy of the proposed principal
component forecasting approach on unequally spaced simulated data from
the Gaussian harmonic oscillator stochastic process defined by

O(t) = Rcos[2πt + θ] (6.1)

where R and θ are independent random variables, R has Rayleigh distri-
bution with parameter σ, and θ is uniformly distributed on the interval
[0,2π].

The covariance kernel of this process in an interval [T1, T2] has a unique
eigenvalue with multiplicity two, given by λ = (T2 − T1)σ/2.

In addition, if T1 and T2 are integers then the following functions

f1(t) =
(

2
T2 − T1

)1/2

sin(2πt)

f2(t) =
(

2
T2 − T1

)1/2

cos(2πt) (6.2)

make up an orthonormal basis of the eigensubspace associated to λ.

In this paper our objective is to forecast the process O(t) in the inter-
val [3,5] from its evolution in the interval [0,3]. In order to build a PCP
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model we have simulated thirty sample paths of this process at discrete-
time points, twenty two have been used to fit the model and the final eight
have been held back for post-sample forecasting comparison. These simula-
tions have been performed from thirty observations randomly generated of
a Rayleigh distribution with parameter 0.5 and an uniform distribution on
[0,2π]. The thirty sample paths have been simulated at thirteen time points
in the past interval [0,3] and nine time points in the future interval [3,5].
Two different sets of observation points have been considered: unequally
spaced time points generated by an uniform distribution in each interval
(case I) and unequally spaced knots obtained by adding a Gaussian noise,
with mean cero and standard deviation 0.25, to equally spaced time points
in each interval (case II).

PCP models are not directly comparable with MPCR due to the fol-
lowing reasons among others:

1. From a theoretic point of view, a MPCR model approximates the
least-squares linear estimate for O(s) on a finite set of variables (the
discrete-time simulated observations in the past) whereas a PCP
model approximates the least-squares linear estimate for O(s) on an
infinite set of variables (the continuous-time process values in the
past).

2. The OPM approach projects the original sample paths on a subspace
of trigonometric functions and performs a FPCA of the smoothed
sample curves whereas classic PCA analyzes directly the crude ob-
served data.

3. The goodness of fit of the linear regression models for the p.c.’s in the
future against the p.c.’s in the past depends on the linear correlations
between p.c.’s that could be very different for the two forecasting
approaches as it is shown in the examples provided in this section.

However we are going to compare the predictions at the discretization time
knots in the interval [3,5].

Firstly, we have approximated the sample principal factors and compo-
nents, in each interval, by using OPM on a subspace of ten trigonometric
functions for each case. We have also performed a classic PCA of the dis-
crete data in each interval for each case. The exact and approximated
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principal values in each period appear in Table 1. As the harmonic oscilla-
tor process has a double eigenvalue, its estimation is obtained by averaging
the first two sample principal values. As each of the two principal compo-
nents of the process {O(t)} explains a 50% of its total variance, the PCP
model must be constructed with the two principal components in the future
as response variables.

Past Interval: [0,3]

Exact Case OPM Classical PCA

λ̂1 I 0.72918 3.72522
II 0.84012 5.08570

λ̂2 I 0.57407 3.32059
II 0.55287 2.32550

λ̂ 0.75 I 0.65163 3.52291
II 0.69650 3.70560

Future Interval: [3,5]

Exact Case OPM Classical PCA

λ̂1 I 0.48660 2.98035
II 0.51378 2.56250

λ̂2 I 0.44596 1.82405
II 0.36600 2.30790

λ̂ 0.5 I 0.46628 2.40220
II 0.43989 2.43520

Table 1: Exact and approximated principal values for the past and the
future intervals.

Secondly, we have estimated the linear correlations between the prin-
cipal components in the two periods. The squares of these correlations
appear in Table 2 for the OPM and classic PCA approaches. Let us ob-
serve that the first and the second p.c.’s in the future are highly correlated
with the first and the second p.c.’s in the past, respectively, for the OPM
approach in the two cases whereas the correlations between p.c.’s for the
classic PCA are very different.


