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This paper analyses the factors underlying the victories
and defeats of the Spanish basketball teams Real Madrid
and Barcelona in the national league, ACB. The following
research questions were addressed: (a) Is it possible to iden-
tify the factors underlying these results? (b) Can knowledge
of these factors increase the probability of winning and thus
help coaches take better decisions? We analysed 80 and
79 games played in the 2013–2014 season by Real Madrid
and Barcelona, respectively. Logistic regression analysis
was performed to predict the probability of the team win-
ning. The models were estimated by standard (frequentist)
and Bayesian methods, taking into account the asymme-
try of the data, that is, the fact that the database contained
many more wins than losses. Thus, the analysis consisted
of an asymmetric logistic regression. From the Bayesian
standpoint, this model was considered the most appropri-
ate, as it highlighted relevant factors that might remain
undetected by standard logistic regression. The prediction
quality of the models obtained was tested by application to
the results produced in the following season (2014–2015).
Again, asymmetric logistic regression achieved the best
results. In view of the study findings, we make various prac-
tical recommendations to improve decision making in this
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field. In short, asymmetric logistic regression is a valuable
tool that can help coaches improve their game strategies.
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1 INTRODUCTION

In sports clubs, as in all organisations, decisions must be taken in order to maintain and, if pos-
sible, improve performance. Quantitative methods can be used to assist in the decision-making
process and thus avoid excessive subjectivity. In the context of professional sports, the emergence
of the “Moneyball phenomenon” (Lewis, 2004) has produced many changes in the use of infor-
mation sources. The main focus of this approach is to measure the contributions made by each
player, from the data generated during a game, in order to optimise available resources and thus
improve the team's performance.

Sports decisions, regarding the team design, transfers, or new signings (of players or coaches),
are restricted by the economic limitations facing the organisation. Clearly, wealthier clubs have
greater possibilities of signing elite athletes and thus of buying better performance. Clubs with
fewer resources, however, might counter this imbalanced situation by analysing quantitative
information in order to sign the best human resources possible in accordance with the available
budget or to detect and exploit their opponents' weaknesses. However, the “Moneyball philos-
ophy” cannot readily be extrapolated to basketball, due to the great complexity of this sport.
Innumerable factors may influence the performance of a player and his team, such as the oppo-
nent (defence tactics, types of players, pace, etc.), teammates' abilities, the team's playing style,
the coach's philosophy, and the stage of the match. Certainly, it is very complicated to measure all
these aspects using only the traditional box score. In response, much has been done to improve
the quality and quantity of available information, and a key reference study in this respect was
presented by Oliver (2004). In the United States, changes in this field are exemplified by the
National Basketball Association (NBA), which has adopted advanced systems to measure the per-
formance of teams and players, considering many more elements than the traditional statistics
referring to scoring, shooting percentages, and rebounds (see http://stats.nba.com/). Many stud-
ies have been conducted of basketball from a quantitative standpoint. Some of these are based on
descriptive statistics, probability and inference (Bar–Eli & Tractinsky, 2000; Csapo, Avugos, Raab
& Bar-Eli, 2015; Del Corral, Maroto & Gallardo, 2017; Gómez et al., 2015; Martínez & Martínez,
2010; Padulo et al., 2015a, 2015b; Stoszkowski & Collins, 2016; Viggiano et al., 2014), discriminant
analysis (García, Ibáñez, Martínez De Santos, Leite & Sampaio, 2013; García, Ibáñez, Gómez &
Sampaio, 2014; Gómez, Lorenzo, Sampaio & Ibáñez, 2006; Gómez, Lorenzo, Ortega, Sampaio &
Ibáñez, 2009; Ibáñez et al., 2008; Lorenzo, Gómez, Ortega, Ibáñez & Sampaio, 2010; Sampaio &
Janeira, 2003), multiple regression models (Casals & Martínez, 2013; Gómez & Salmerón, 2016;
Martínez & Caudill, 2013; Mikolajec, Maszczyk & Zajac, 2013), binary regression models (Del
Corral, García–Unanue & Herencia, 2016; Gómez, Lorenzo, Ibáñez & Sampaio, 2013; Sánchez,
Castellanos & Dopicoa, 2007; Stekler & Klein, 2012), panel data models (De La Torre–Ruiz,
& Aragón–Correa, 2012; Giambatista, 2004; Gómez & Salmerón, 2015), linear programming
techniques (Fizel & D'itri, 1996; McGoldrick & Voeks, 2004), or structural equation modelling
(Baghal, 2012).

http://stats.nba.com/
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The main goal of this paper is to contribute to the empirical literature in this field by address-
ing the following research questions. First, is it possible to identify the factors that determine
whether a basketball team will win or lose? Second, can this information be used to increase the
probability of winning? This study, based on an analysis of the victories and defeats of the Real
Madrid and Barcelona teams in the Spanish ACB, is expected to be of special interest to basket-
ball team managers, but our findings may also provide useful information to team managers in
other sports and help improve their strategic decision making. In this context, Karipidis, Foti-
nakis, Taxildaris, and Fatouros (2001) analysed the basketball matches that took place during the
1997 and 1999 Eurobasket tournament, the 1996 Olympic Games and the 1998 World Basketball
Championship. In the same regard, Sampaio, Janeira, Ibáñez, and Lorenzo (2006) examined the
differences in game-related statistics between basketball players playing in professional leagues
in the United States, Spain, and Portugal and conducted a performance analysis. According to
Sampaio, Lago–Peñas, and Drinkwater (2008), whose study aim was to identify such factors, the
success of the U.S.A. team in the 2008 Olympic Games was related to its speed of play. Sánchez
Castellanos & Dopicoa (2007) derived a logistic model, using a database of Spanish basketball
statistics to make an empirical evaluation of the relative importance of various factors in team
performance. Ibáñez et al. (2008) later identified game-related statistics highlighting the differ-
ences, over the season, between successful and unsuccessful ACB teams, and concluded that
the key factors were passing skills and defensive preparation. Sampaio, Drinkwater, and Leitea
(2010) created individual performance profiles based on team quality and playing time (each of
the four periods, or quarters, into which the playing time is divided) and concluded that the peri-
ods are not related to these performance profiles. De La Torre–Ruiz and Aragón–Correa (2012)
focused on the performance of newcomers in NBA teams. Gómez Lorenzo, Ibáñez & Sampaio
(2013) identified various performance indicators as predictors of the effectiveness of ball posses-
sion in men's and women's basketball, in an analysis of matches in the Spanish ACB. Mikolajec,
Maszczyk, & Zajac (2013) attempted to identify the team factors associated with success in the
NBA league. Teramoto and Cross (2010) used multiple linear regression and logistic regression
analysis to determine which factors may increase the probability of winning games in the NBA,
distinguishing between the first (“regular”) phase of the season and the playoffs. Summers (2013)
studied factors related to success in the NBA playoffs. Both of the latter studies, as well as those
by Baghal (2012) and Kubatko, Oliver, Pelton, and Rosenbaum (2007), include in their analysis
the four factors identified by Oliver (2004): shooting efficiency, number of turnovers, offensive
rebounds, and free throws made.

However, to our knowledge, no previous publications have considered the situation in which
one basketball team has many more wins than losses. A standard logit model can be used to anal-
yse the factors that determine sporting performance, but sometimes, the individual results are
clearly related more to one category than to another. This is the case in the present context, in
which the database is unbalanced, containing many more wins than losses. In this situation, the
use of an asymmetric or skewed logit model can improve the estimation results. In this respect,
Chen, Dey, and Shao (1999) applied a Bayesian approach, using an asymmetric link in their anal-
ysis of binary response data when one response is much more frequent than the other. Similarly,
Bermúdez, Pérez, Ayuso, Gómez, and Vázquez (2008) applied asymmetric logistic regression to
model the fraudulent behaviour reflected in a database of insurance claims in Spain. In the area
of health care, Sáez–Castillo et al. (2010) used an asymmetric logistic approach to analyse infec-
tion rates in a general and digestive surgery hospital department. More recently, Pérez–Sánchez,
Negrín–Hernández, García–García, and Gómez–Déniz (2014) analysed the risk factors under-
lying automobile insurance claims by considering the skewed link function in a logistic
regression model.
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In our study, the data set presented nearmulticollinearity, a problem that was addressed by
means of orthogonal regression (Novales, Salmerón, García, García & López, 2015). This tech-
nique not only alleviates multicollinearity but also allows the results to be interpreted from a
different point of view. On the basis of this analysis, basketball team managers can obtain greater
knowledge about the relevant factors and thus take better decisions.

The rest of this paper is structured as follows: Section 2 presents the theoretical aspects of
the logistic and orthogonal regressions considered. The variables selected for the econometric
models are derived from the analysis shown in Section 3. In the following section, the results
obtained are described and compared. Finally, Section 5 summarises the main conclusions drawn
and highlights the contributions of this paper.

2 LOGISTIC REGRESSION

In this section, we propose two alternative logit models to fit the probability of a win. First, fre-
quentist and Bayesian approaches are used to estimate a standard logistic model; then we assume
an asymmetric link from the Bayesian point of view.

2.1 Frequentist estimation of logit models
Let y = (y1, y2, … , yn)

′ denote an n × 1 vector of a dependent dichotomous variable, and let
xi = (xi1, … , xik)

′ denote the k× 1 vector of covariates for the match i. The problem of estimating
the probability of belonging to a group included in yi is then addressed by fitting a regression
model. In this study, if yi = 1, the ith team wins a match, and yi = 0 otherwise. We assume that
yi = 1 with probability pi and yi = 0 with probability 1 − pi. The regression model is given by
𝑝i = F(x′i𝛽), where F is the inverse of the standard logistic cumulative function (link function)
and 𝛽 = (𝛽1, … , 𝛽k)

′ is a k×1 vector of regression coefficients, which represents the effect of each
variable xi in the model. Thus, the likelihood is given by

l(𝑦|x, 𝛽) = n∏
i=1

[F(x′i𝛽)]
𝑦i [1 − F(x′i𝛽)]

1−𝑦i , (1)

where F(s) = 1∕(1+e−s),−∞ < s < ∞ is a symmetric function with respect to zero. The regression
coefficients are usually estimated by numerical evaluation of the likelihood function. In this way,
the model provides the probability of each team winning a basketball game. The next step is to
consider a cutoff in this probability in order to determine whether a team will win or not. The
standard logistic model was evaluated using STATA econometric software (2015).

2.2 Bayesian estimation of logit models
In this case, the regression coefficients are considered to be random variables. We propose two
different models, both of which are considered using Bayesian estimators, that is, symmetric and
asymmetric link functions are used, in both cases assuming noninformative and centred normal
prior distributions for the 𝛽 coefficients in order to facilitate comparison with frequentist estima-
tions. The use of an asymmetric link function is recommended for binary response data when
one response is much more frequent than the other, see Stukel (1988) and Chen, Dey and Shao
(1999). From the asymmetric standpoint, an approach based on data augmentation, as considered
by Albert and Chib (1993), can be used. In this way, it is easily shown that the skewed logit link
is equivalent to considering that
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𝑦i =
{

1, wi ≥ 0;
0, wi < 0, (2)

where wi = xi′𝛽 + 𝛿zi + 𝜖i, zi ∼ G, 𝜖i ∼ F. We assume that zi and 𝜖i are independent and that F is
the standard logistic cumulative distribution function. Moreover, G is the cumulative distribution
function of the half-standard normal distribution given by

g(z) = 2√
2𝜋

e−z2∕2, z > 0.

In this model, 𝛿 ∈ (−∞,∞) is the skewness parameter. Thus, the skewness of the regression
model is measured by 𝛿zi. If 𝛿 > 0, the probability of pi = 1, that is, of the ith team winning,
increases. On the other hand, if 𝛿 < 0, there is a greater probability of a loss. The symmetric logit
model can be considered as a particular case of the previous model when 𝛿 = 0. In this case, the
likelihood function is obtained as

l(𝑦|x, 𝛽, 𝛿) = n∏
i=1

∫
∞

0
[F(x′i𝛽 + 𝛿zi)]𝑦i [1 − F(x′i𝛽 + 𝛿zi)]1−𝑦i g(zi)dzi. (3)

We assume that the prior distribution of the coefficients is normal and noninformative, that
is, 𝛽𝑗 ∼ N(0, 𝜎2

𝑗
),∀𝑗 = 1, … , k, and 𝛿 ∼ N(0, 𝜎2

𝛿
), considering 𝜎j > 0,∀j = 1, … , k, and 𝜎𝛿 > 0

sufficiently large, and noting the absence of prior knowledge about the parameters of interest,
which facilitates comparison with the frequentist model. The values of the variances considered
are 𝜎2

𝑗
= 108,∀𝑗 = 1, … , k, and 𝜎2

𝛿
= 108.

By combining these prior assumptions with the likelihood shown in (3), we obtain the
posterior distribution for the parameters 𝛽 and 𝛿:

𝜋(𝛽, 𝛿|𝑦, x) ∝ l(𝑦|x, 𝛽, 𝛿)𝜋(𝛽, 𝛿)
=

{ n∏
i=1

∫
∞

0
[F(x′i𝛽 + 𝛿zi)]𝑦i [1 − F(x′i𝛽 + 𝛿zi)]1−𝑦i g(zi)dzi

}
𝜋(𝛽, 𝛿),

where 𝜋(𝛽, 𝛿) is the prior distribution of (𝛽, 𝛿).
(𝛽, 𝛿) can be sampled from this posterior distribution using the WinBUGS package,1 based

on Gibbs sampling applying Markov Chain Monte Carlo (MCMC) methods (see Carlin & Polson,
1992, and Gilks, Richardson, & Spiegelhalter, 1995, for further details).

2.3 Orthogonal regression
Econometric methods provide a basis for modifying, refining, or refuting theoretical conclusions,
by obtaining signs and magnitudes of the variables to be related. For this purpose, the coefficients
of the model are obtaiden in the following way. The model for k independent variables and n

1Windows Bayesian inference using Gibbs Sampling, developed jointly by the MRC Biostatistics Unit (University of Cam-
bridge, Cambridge, UK) and the Imperial College School of Medicine at St. Mary's, London (Lunn, Thomas, Best, &
Spiegelhalter, 2000).
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𝑦 = x′𝑗𝛽 + u, (4)

observations, and assuming that the random disturbance, u = (u1,u2, … ,un)
′ , is centred,

homoscedastic, and uncorrelated. In the usual method of estimation, by ordinary least squares
(OLS), x′

𝑗
must be linearly independent (i.e., none of the regressors can be written as exact

linear combinations of the remaining regressors in the model) because otherwise nonunique
(perfect multicollinearity) or highly unstable (near multicollinearity) solutions may be obtained.
Other problems caused by the presence of near multicollinearity among the independent vari-
ables include inflated variances and covariances, inflated correlations, and inflated prediction
variance. In practice, it is almost impossible to find two or more variables that may not be cor-
related. Therefore, when this problem occurs, as in the present analysis, various solutions must
be considered, such as using prior information, combining cross-sectional and time series data,
transforming the variables, increasing the size of the sample (with additional data) or eliminat-
ing one or more variables. Usually, the last option is the only one applicable, and so alternative
estimation methods must be applied. Macedo (2017) proposed a list of methods with which to
estimate (4) when the degree of multicollinearity is severe, including ridge regression, princi-
pal component regression, partial least squares regression, continuum regression, lasso, elastic
net, least angle regression, and generalised maximum entropy. However, in this paper, we apply
orthogonal regression, a methodology that was introduced by Novales, Salmerón, García, Gar-
cía & López (2015) for the regression model (4) with three independent variables and which was
later expanded by Salmerón, García, García, and García (2016) for four variables. This approach is
based on replacing one of the exogenous variables in the regression model by the components that
are not explained by the remaining exogenous variables. That is, instead of analysing the model

𝑦 = 𝑓 (x1, x2, … , x𝑗 , … , xk) + u, (5)

we work with the model

𝑦 = 𝑓 (x1, x2, … , e𝑗 , … , xk) + v, (6)

where v is a vector of random disturbances and ej are the residuals obtained after estimating the
following model by OLS:

x𝑗 = x′−𝑗𝛼 + w,

where x′−𝑗 coincides with x′
𝑗

after eliminating xj and w is a vector of random disturbances. Note
that ej is orthogonal to the variables in x′−𝑗 , and therefore, the degree of collinearity in (6) is less
than in (5). Accordingly, the multicollinearity problem may be alleviated or even eliminated (if
the process is repeated k − 2 times) by repeating this process as many times as necessary. The
following interesting questions arise concerning the orthogonal regression:

• The residuals of models (5) and (6) are the same, and so the joint significance and estimation
of the variance of the random disturbance will coincide.

• The estimation and inference with the orthogonal variable is the same in both models. In
other words, the estimation of the coefficient of the orthogonalised variable and its experi-
mental value in the test of individual significance, in the initial model and in the model with
orthogonal variables, will coincide.2 Nevertheless, its interpretation in model (6) is modified:
Changes are produced in y due to the variation of xj, unrelated to other exogenous variables.

2For example, if y = a + bx + u and y = c + dxx + v, where xx is the orthogonalisation of x, then the estimation of b and d
by OLS is the same as the experimental value of the individual significance.
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• Estimations of the coefficients of other exogenous variables in x′−𝑗 coincide with those
obtained from the model 𝑦 = x′−𝑗𝛾 + 𝜀.

Finally, the orthogonal variable can be chosen according to the following criteria:

• Because the interpretation of the orthogonal variable changes, choose a variable considered
less important.

• Because the interpretation of the orthogonal variable changes, choose a variable that
facilitates interpretation with the original model and which is of interest to the researcher.

• Choose the variable with the highest variance inflation factor (VIF).3
• Because the inference of the orthogonal variable does not change, choose a variable whose

coefficient is statistically significant.

3 DATABASE AND SELECTION OF THE VARIABLES

This section describes the process used to select the variables that are part of the econometric
model analysed in Section 4. The original database (the variables shown in Tables A1 and A2)4

was downloaded from http://www.acb.com/. The glossary of all the variables considered in this
paper can be consulted at http://www.basketball-reference.com/about/glossary.html. In accor-
dance with the indications shown in this website and the recommendations of Kubatko, Oliver,
Pelton and Rosenbaum (2007), we computed a set of statistical variables related to the perfor-
mance of the ACB teams Real Madrid and Barcelona F.C. (see Tables A3 and A4). Finally, from the
variables that presented significantly different coefficients for wins and losses, we selected those
that best reflected the characteristics of each team, and which therefore enabled us to develop a
model with good fit. In this process, a very important role was played by the careful monitoring
of each team during the season.

3.1 Real Madrid
In this section, we analyse the information generated in the 80 games played by the Real Madrid
basketball team (RMCF) in the 2013–2014 season in official competitions. Tables A7 and A8
show the ratings for all these games, according to the final result (win or lose), match site (local
or visitor) and competition. Significantly, there were only 12 losses and only two of these were at
home. The chi-square test of independence shows that winning or losing and playing at home or
away are dependent variables (p = .026). Moreover, the same test shows that win–lose and type
of competition are independent variables (p = .704).

Tables A1 and A3 show the average values obtained (total, win and lose) for a set of variables
computed for RMCF and its opponents. The values that are statistically different at 5% significance
(equality of the means test) are highlighted. The following variables were selected, according to
predictability, for the econometric model:

Q1: points scored by RMCF in the first quarter.
T1I: free throws for the opponent.

3The VIF is one of the most commonly used methods to detect multicollinearity. For more details, see, for example, García,
García, López, and Salmerón (2015).
4The tables referenced in this section are in Appendix A. In addition, the meanings of the acronyms are presented in
Tables A5 and A6.

http://www.acb.com/
http://www.basketball-reference.com/about/glossary.html
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PR: points received by RMCF.
RT: total rebounds (%) captured by RMCF.
Another factor taken into account was a variable describing whether a particular RMCF

player, Mirotic, played well on a given occasion. This player was chosen because he was the sec-
ond highest points scorer, captured the highest number of rebounds, and was the highest rated
player (on average, per game). Thus, he was of crucial importance to RMCF during the season
in question.5 For the purposes of our study, this player was considered to have achieved a high
level of performance when in a game, he exceeded his seasons' average score (average of 0.25
points/possession).

3.2 F.C. Barcelona
The Barcelona basketball team (FCB) played 79 official games in the 2013–2014 season. Tables A9
and A10 show the ratings for all games according to the final result (win or lose), match site
(local or visitor), and competition. In this case, the chi-square test of independence shows that
win–lose, playing at home or away, and the type of competition are all independent variables
(p = .109 and p = .774, respectively). In relation to the team performance, Tables A2 and A4
show the average values (total, win and lose) for several variables for FCB and its opponents.
The values that are statistically different at 5% significance (according to the equality of means
test) are highlighted. The very large set of variables obtained related to the percentage of throws
that are significant, highlighting the importance of the three-point line in basketball today, are
summarised by means of a dummy variable, T3, which takes the value 1 if FCB achieved 30%
or more of its score in three-point throws, and 0 otherwise). The quarter-by-quarter statistical
analysis revealed a significant situation in the fourth quarter. As can be seen in Table A11, if the
team is winning at the start of this quarter, there is a statistically significant association with the
result (p < .0001). In accordance with the information derived from these tables, the following
variables in the econometric model predict the probability of a win:

Q4W: dummy variable that takes the value 1 if FCB is winning at the start of the fourth
quarter, and 0 otherwise.

PR: points received by FCB.
T3: dummy variable that takes the value 1 if FCB achieves 30% or more of its score from

three-point throws, and 0 otherwise.
PACE: number of offensive plays by the opponent.
RO: percentage of offensive rebounds captured.
Finally, the performance of the FCB player Tomic was analysed, taking into account that this

player is highly important to the team. This player in particular was chosen for analysis because he
heads several of the team's statistical categories, despite being only fourth in the ranking of min-
utes played. He is the team's most highly rated player and the highest scorer. In addition, he takes
the most field throws and free throws, makes most blocks, captures most rebounds (defensive and
offensive), and receives most fouls. Furthermore, his scoring performance (a dichotomous vari-
able distinguishing whether the player exceeds his average scoring rate per minute of play) shows

5Mirotic's statistics for 2013/14: 24.2 minutes played per game, 13.09 points scored per game, 5.3 rebounds captured per
game, and player rating of 15.62 per game.
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indications of association with the team's score (p = .26).6 In this case, his average score for the
season was 0.26 points/possession.

4 ESTIMATING THE MODELS

In this section, we compare the noninformative Bayesian estimation of a logit model and the
frequentist estimation of the logit model, for RMCF and FCB, seeking to show that the two
models provide similar results in terms of parameter estimates and fit. These results are then
compared with the Bayesian skewed estimate of the logit model, and we show that this new
approximation considerably improves the overall fit and prediction. To assess the quality of fit and
prediction for the standard logit model and for the Bayesian models analysed, we propose three
different measures: (a) the percentage of correct fits obtained considering the estimation sample,
that is, the 2013–2014 season; (b) the percentage of correct predictions obtained considering the
2014–2015 season; (c) a statistical fit measure such as the Akaike information criterion (AIC) or
the deviance information criterion (DIC). The posterior distributions for Bayesian models were
simulated using WinBUGS. In total, 500,000 iterations were carried out (after a burn-in period of
100,000 simulations) for each of the teams. Three different chains were performed, and the con-
vergence was evaluated for all parameters using tests provided within the WinBUGS Convergence
Diagnostics and Output Analysis software.

4.1 Frequentist and standard Bayesian estimation of the logistic
regression model
4.1.1 RMCF
The results obtained by estimating the logistic model from the frequentist and noninformative
Bayesian standpoints are given in Table 1. As expected, because the prior information is nonin-
formative, the Bayesian estimations were similar to those obtained by the standard frequentist
model. The variables ePR and eRT were obtained by considering the multicollinearity correction
procedure developed in Section 2.3, and its interpretation provides more detailed results.7 As can
be seen in this table, the coefficient of ePR is significant at 1%, whereas those of Mirotic and T1I
are significant at 5% and those of eRT and Q1, at 10%. T1I and ePR are both inversely related to a
high probability of winning. If the opposing team attempts one additional free throw, the proba-
bility of winning (relative to losing) decreases by 58.8 % (odds ratio of 0.412). The more two- and
three-point goals received during the second, third, and fourth quarters and the absence of Mirotic
(the interpretation of ePR) decrease the relative probability of winning by 35.9 % (odds ratio of
0.641). If Mirotic plays a good game, the probability of winning (with respect to losing) is greatly
increased. A higher number of points scored by RMCF in the first quarter increases the relative
probability of winning. Finally, the total number of rebounds obtained without Mirotic (or when
Mirotic plays a “bad” game) during the second, third, and fourth quarters (the interpretation of
eRT) increases the relative probability of winning.

For the RMCF database, we obtained an AIC of 24.56 for the frequentist logit model and a DIC
of 24.23 for the Bayesian logit model. The two models produced the same percentages of correct

6Tomic's statistics for the 2013–2014 season were, on average, 20.8 min played, 10.9 points scored, and 8 rebounds captured,
for a player rating of 15.42 per game.
7PR and RT variables were chosen because they presented the highest VIFs: VIF(PR) = 41.29 and VIF(RT) = 39.50.
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TABLE 1 Frequentist and noninformative Bayesian estimations (RMCF)

Frequentist Noninformative Bayesian
Variables 𝛽 SD p value 𝛽 MC error SD

Intercept –3.481 4.500 0.439 –3.846 0.087 3.832
Q1 1.173 0.638 0.066∗ 1.552 0.022 0.549∗∗∗

T1I –0.886 0.389 0.023∗∗ –1.196 0.017 0.432∗∗∗

Mirotic 8.130 3.563 0.023∗∗ 10.65 0.136 3.85∗∗∗

ePR –0.445 0.154 0.004∗∗∗ –0.619 0.008 0.228∗∗∗

eRT 0.429 0.228 0.060∗ 0.549 0.008 0.243∗∗∗

AIC = 24.56 DIC = 24.23
% correct fit 96.25 96.25.
% correct prediction 65.38 65.38.

Note. SD = standard deviation; MC Error = Markov Chain Error. ∗ This indicates 10% significance
level. ∗∗ This indicates 5% significance level. ∗∗∗ This indicates 1% significance level.

fits and predictions. Table 1 shows that the accuracy, that is, the proportions of wins that were
correctly classified by the models, is around 96.25% for the fit (2013–2014 season) and 65.38%
for the prediction (2014–2015 season). The threshold probabilities used to fit and predict a win
corresponded to the sample frequencies of wins, that is, 0.85 and 0.82, respectively.

4.1.2 FCB
Table 2 shows the estimation results for FCB obtained using frequentist and noninformative
Bayesian estimation methods. Again, the results are similar for both procedures. When Tomic
plays, when the team is winning at the start of the fourth quarter and when the team scores over
30% of its total points as three-point goals are all significant, positive factors in the probability of
winning. On the other hand, the more points received significantly decreases the probability of
winning. In both cases, the coefficients of the two variables representing the orthogonal residues
(ePACE and eRO) are not statistically significant.8 An AIC of 43.14 was obtained for the frequentist
logit model, and a DIC of 42.59 for the Bayesian logit model. Again, the two models produced
the same percentages of correct fits and predictions. The proportion of wins that were correctly
classified by the models was around 92.11% for fits and 82.89% for predictions. The threshold
probabilities again corresponded to the sample frequencies of winning, that is, 0.77 and 0.70,
respectively.

4.2 Asymmetric Bayesian estimation of the logistic regression model
4.2.1 RMCF
Table 3 summarises the results of the Bayesian estimation for RMCF, including a variable to mea-
sure the possible asymmetry of the model. This model obtains the same results as the frequentist
and uninformative Bayesian ones in terms of significant factors. However, the estimated coeffi-
cients differ considerably from those of the previous two RMCF models, although the signs remain
the same. For example, in this case, if the opposing team attempts more free throws, the probabil-
ity of winning (relative to losing) decreases by 95.5% (odds ratio of 0.05). Moreover, the coefficient

8In this case, PACE and RO variables were those that presented the highest VIFs: VIF(PACE)= 99.26 and VIF(RO)= 10.86.
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TABLE 2 Frequentist and noninformative Bayesian estimations (FCB)

Frequentist Noninformative Bayesian
Variables 𝛽 SD p value 𝛽 MC error SD

Intercept 9.179 4.867 0.059∗ 9.158 0.171 4.794∗∗∗

Q4W 3.618 1.317 0.006∗∗∗ 4.836 0.015 1.48∗∗∗

PR –0.172 0.065 0.008∗∗∗ –0.187 0.002 0.067∗∗∗

T3 3.260 1.489 0.029∗∗ 3.99 0.019 1.409∗∗∗

Tomic 2.892 1.175 0.014∗∗ 3.571 0.029 1.456∗∗∗

ePACE –0.076 0.148 0.609 –0.105 0.0008 0.159
eRO 0.058 0.476 0.223 0.074 0.0004 0.082

AIC = 43.14 DIC = 42.59
% correct fit 92.11 92.11.
% correct prediction 82.89 82.89.

Note. SD= standard deviation; MC Error=Markov Chain Error. ∗ This indicates 10% significance
level. ∗∗ This indicates 5% significance level. ∗∗∗ This indicates 1% significance level.

TABLE 3 Asymmetric Bayesian logit estimation results (RMCF)

Variables 𝛽 MC error SD

Intercept –0.204 0.22 8.187
Q1 3.717 0.068 1.398∗∗∗

T1I –2.897 0.049 1.046∗∗∗

Mirotic 18.79 0.168 6.313∗∗∗

ePR –1.541 0.025 0.596∗∗∗

eRT 1.388 0.024 0.759∗∗∗

𝛿 –6.076 0.691 13.03

Note. SD = standard deviation; MC Error = Markov Chain Error. Dependent
variable: Win. N = 79. DIC = –7.23. % correct fit = 96.25. % correct pre-
diction = 70.51. ∗ This indicates 10% significance level. ∗∗ This indicates 5%
significance level. ∗∗∗ This indicates 1% significance level.

of variable 𝛿, which measures the asymmetry of the data, is statistically irrelevant, indicating that
the marked skewness of the data is well captured by the previous frequentist and uninformative
Bayesian estimation models. The DIC measure is equal to –7.23 for the skewed link model, that
is, it is notably lower than the values obtained by the nonskewed models. This major reduction
in the DIC measure indicates a significant increase in the level of fit. Furthermore, improved pre-
diction results are obtained by the skewed model. The percentage of correct predictions is 70.51%,
which means that the prediction leverage of this model is much better than with the symmetric
models. The percentage of correct fitting is again 96.25%. Thus, even though the variable measur-
ing the asymmetry is not significant, the Bayesian estimation of the asymmetric model achieves
better results, both for fit and for prediction.

4.2.2 FCB
Table 4 shows the results of the asymmetric Bayesian estimation for FCB. In this case, in compar-
ison with the two previous symmetric models, we obtain the same positive and negative relevant
factors, that is, the presence of Tomic, starting the fourth quarter ahead on the scoreboard, scor-
ing a high proportion of three-point goals and receiving less points are all relevant factors to the
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TABLE 4 Asymmetric Bayesian logit estimation results (FCB)

Variables 𝛽 MC error SD

Intercept 28.61 1.209 26.71
Q4W 46.64 0.513 15.77∗∗∗

PR –1.399 0.021 0.447∗∗∗

T3 26.13 0.319 12.19∗∗∗

Tomic 30.39 0.353 13.01∗∗∗

ePACE 0.645 0.016 1.303
eRO 0.479 0.009 0.847
𝛿 47.27 0.469 15.8∗∗∗

Note. SD= standard deviation. Dependent variable: Win. N = 76. DIC= 6.12.
% correct fit = 100. % correct prediction = 82.89. ∗ This indicates 10% sig-
nificance level. ∗∗ This indicates 5% significance level. ∗∗∗ This indicates 1%
significance level.

probability of a win by FCB. However, the 𝛿 coefficient is significant and positive at 1% of sig-
nificance. This variable, therefore, adjusts the estimated probability of a win, that is, it increases
the probability of a win and, perhaps, counteracts the evident asymmetry in the data. Again, the
estimated coefficients differ considerably from those of the previous two FCB models. This dif-
ference is further accentuated in the estimation of the intercept. We believe that in the first two
models, the estimated intercept may contain part of the asymmetry effect made apparent in the
asymmetric model. The DIC measure is equal to 6.12, which improves upon the results obtained
from the uninformative symmetric Bayesian estimation (DIC = 42.59). This model provides a fit
of 100% and a prediction value of 82.89%. Thus, it greatly improves on the fit and equals the predic-
tion results with respect to the results obtained by the frequentist and uninformative symmetric
Bayesian models. Obviously, these outcomes are explained by the increase in the probability of
fitting the cases in which yi = 1, induced by the skewed model, because 𝛿 was positive.

5 CONCLUSIONS

In this paper, a novel statistical method, that of asymmetric logistic regression, is presented to
extend the range of quantitative tools available to the analyst. The advantage of this regression
model over the standard version is that the skewed link in the dependent variable is taken into
account. This case is presented in the study, in which two basketball teams have a very unbalanced
number of wins and losses. We apply asymmetric logistic regression to analyse the influence of
certain factors on the probability of the team winning its games. To our knowledge, this tool has
not been previously applied in the analysis of sports performance. With this new method, the
model detects higher levels of significance in the factors relevant to the team's wins and losses.
Furthermore, the method improves the percentage of correct fits and predictions obtained even
when the asymmetry coefficient is not significant (RMCF). Thus, application of this approach
could enable coaches to simulate games more efficiently, taking relevant factors into account and
estimating/predicting the probability of sporting success.

In view of the results obtained, various practical observations can be made to assist coaches
in their decision, for RMCF, regarding the importance of the first quarter, the number of
rebounds captured, and the number of personal fouls committed, and for FCB, the importance of
three-point goals and of being ahead on the scoreboard at the start of the fourth quarter. Clearly,
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if coaches wish to improve their teams' performance, they should manage the resources available
in such a way as to maximise the probability of a win, by paying special attention to the key fac-
tors identified. The findings of this study may be profitably employed not only by the coaches of
RMCF and FCB but also by those of their opponents, who may thus design better training pro-
grammes and strategies. In conclusion, the approach shown in this study and the results obtained
provide coaches with valuable data for the efficient management of their teams.
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TABLE A1 Boxscore stats means for RMCF and its opponent depending on game result

RMCF RMCF opponent
Variable Lose Win Total Lose Win Total

Points 80.500 88.265 87.100 88.583 71.309 73.900
T2C 18.833 21.691 21.263 21.417 19.941 20.163
T2I 39.583 38.294 38.488 38.333 40.500 40.175
T2 % 47.433 56.864 55.450 56.798 49.430 50.535
T3C 8.083 9.559 9.338 9.333 6.912 7.275
T3I 23.667 24.662 24.513 23.167 22.015 22.188
T3 % 34.204 38.570 37.915 40.436 31.373 32.733
TCC 26.917 31.250 30.600 30.750 26.853 27.438
TCI 63.250 62.956 63.000 61.500 62.515 62.363
TC % 42.505 49.604 48.540 50.343 43.118 44.202
T1C 18.583 16.206 16.563 17.750 10.691 11.750
T1I 24.167 20.147 20.750 22.500 14.971 16.100
T1 % 77.273 81.000 80.441 77.590 72.443 73.215
RT 32.833 35.574 35.163 37.083 32.603 33.275
RD 22.250 25.632 25.125 27.167 21.926 22.713
RO 10.583 9.941 10.038 9.917 10.676 10.563
Asis 14.000 18.603 17.913 17.917 14.485 15.000
BR 6.417 9.206 8.788 4.917 5.500 5.413
BP 10.750 10.956 10.925 10.083 14.515 13.850
FPC 22.500 18.294 18.925 24.250 21.956 22.300
FPR 24.000 21.853 22.175 22.083 18.206 18.788
PQ 48.833 50.397 50.163 56.167 43.853 45.700
PI 31.333 35.574 34.938 37.167 30.044 31.113
Val 83.500 110.132 106.138 98.167 64.147 69.250
Q1 17.583 21.559 20.963 22.000 17.529 18.200
Q2 20.583 22.588 22.288 21.167 18.250 18.688
Q3 20.000 21.765 21.500 22.417 16.662 17.525
Q4 21.250 21.897 21.800 20.667 18.603 18.913
Q1 - Q1 (R) −4.417 4.029 2.763
Q2 - Q2 (R) −0.583 4.338 3.600
Q3 - Q3 (R) −2.417 5.103 3.975
Q4 - Q4 (R) 0.583 3.294 2.888

APPENDIX A
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TABLE A2 Boxscore stats means for FCB and its opponent depending on game result

FCB FCB opponent
Variable Lose Win Total Lose Win Total

Points 72.176 83.533 81.026 83.353 68.750 71.974
T2C 19.294 23.000 22.182 21.882 18.533 19.273
T2I 38.176 40.217 39.766 42.824 41.233 41.584
T2 % 50.652 57.222 55.771 51.787 44.842 46.375
T3C 6.470 8.702 8.207 8.294 6.566 6.948
T3I 22.471 22.267 22.312 20.941 20.133 20.312
T3 % 28.405 38.442 36.226 38.973 33.278 34.535
TCC 25.765 31.700 30.39 30.176 25.100 26.221
TCI 60.647 62.483 62.078 63.765 61.367 61.896
TC % 42.530 50.830 48.997 47.390 40.941 42.364
T1C 14.176 11.433 12.039 14.706 11.983 12.584
T1I 20.765 16.117 17.143 18.765 15.85 16.494
T1 % 69.728 70.142 70.051 77.695 75.749 76.179
RT 35.176 36.750 36.403 35.235 31.401 32.247
RD 24.882 26.317 26.000 26.353 21.333 22.442
RO 10.294 10.433 10.403 8.882 10.067 9.805
Asis 15.118 18.233 17.545 16.176 12.650 13.429
BR 4.588 6.416 6.013 6.882 6.433 6.532
BP 12.412 11.600 11.779 9.588 12.117 11.558
FPC 21.471 19.317 19.792 21.941 19.517 20.052
FPR 21.824 19.633 20.117 21.294 19.766 20.103
PQ 46.353 46.467 46.442 48.176 45.600 46.169
PI 30.294 36.217 34.909 35.471 30.467 31.571
Val 73.412 99.183 93.494 93.882 65.950 72.117
Q1 19.941 20.933 20.714 20.059 17.233 17.857
Q2 16.647 20.600 19.727 19.647 17.150 17.701
Q3 17.529 20.533 19.870 21.824 16.767 17.883
Q4 18.118 21.400 20.675 21.824 17.750 18.649
Q1 - Q1 (R) −0.118 3.700 2.763
Q2 - Q2 (R) −3.000 3.450 2.026
Q3 - Q3 (R) −4.294 3.767 1.987
Q4 - Q4 (R) −3.706 3.650 2.026
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TABLE A3 Advanced stats: Mean values for RMCF and its opponent depending on game result

RMCF RMCF opponent
Variable Lose Win Total Lose Win Total

Difference −8.083 16.956 13.200
% RT 46.712 52.238 51.409
% RD 69.650 71.056 70.845 72.097 69.086 69.538
% RO 27.903 30.914 30.462 30.350 28.944 29.155
Pace 73.083 72.029 72.188 70.667 72.341 72.090
POS 83.667 81.971 82.225 80.583 83.018 82.653
Seg × POS 14.553 14.753 14.723 15.154 14.563 14.652
% BP × POS 12.765 13.334 13.249 12.569 17.402 16.677
OER 0.962 1.078 1.061 1.101 0.862 0.898
OER pot 1.103 1.244 1.223 1.265 1.044 1.077
Eficacy 46.174 51.724 50.891 52.797 44.144 45.442
% PQ 61.094 57.313 57.880 63.965 61.345 61.738
% PI 39.230 40.354 40.185 41.975 42.349 42.293
% T2I/TCI 62.581 60.640 60.931 62.132 64.876 64.465
BR/BP 0.629 0.949 0.901 0.581 0.411 0.437
Asis/BP 1.352 1.959 1.868 2.080 1.174 1.310
T1I/FPR 1.001 0.907 0.921 1.007 0.799 0.830
% T1 Ptos 23.236 18.540 19.245 19.866 14.830 15.585
% Asis × Pos 16.694 22.715 21.812 22.382 17.584 18.304
T2I × T3I 1.727 1.625 1.640 1.695 1.958 1.919
TCI × T1I 2.775 3.524 3.411 3.043 5.394 5.042
% BPnoF 0.537 0.494 0.500 0.118 0.370 0.332
eFG % 48.885 57.231 55.979 58.008 48.671 50.071
% TS 54.428 61.519 60.456 62.436 51.718 53.326
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TABLE A4 Advanced stats : Mean values FCB and its opponent depending on game result

FCB FCB opponent
Variable Lose Win Total Lose Win Total

Difference −11.176 14.783 9.052
% RT 46.712 52.238 51.409
% RD 74.199 72.603 72.955 72.147 67.204 68.295
% RO 27.853 32.796 31.705 25.801 27.397 27.045
Pace 71.071 70.097 70.312 71.976 69.757 70.247
POS 81.365 80.530 80.714 80.859 79.823 80.052
Seg × POS 14.783 14.992 14.945 14.882 15.153 15.093
% BP × POS 15.267 14.380 14.576 11.867 15.321 14.558
OER 0.888 1.038 1.004 1.031 0.861 0.899
OER pot 1.052 1.214 1.178 1.172 1.017 1.052
Eficacy 44.079 51.245 49.662 49.883 43.433 44.857
% PQ 64.322 56.058 57.882 57.226 66.655 64.684
% PI 38.845 43.317 42.297 42.603 44.787 44.305
% T2I/TCI 63.024 64.400 64.096 67.106 67.259 67.225
BR/BP 0.429 0.617 0.576 0.760 0.586 0.624
Asis/BP 1.357 1.795 1.698 1.792 1.161 1.301
T1I/FPR 0.940 0.810 0.839 0.878 0.791 0.810
% T1 Points 20.048 13.611 15.032 17.846 17.317 17.434
% T3 Points 26.419 30.954 29.952 29.406 28.675 28.836
% Asis × Pos 18.593 22.661 21.763 20.049 15.958 16.861
T2I × T3I 1.872 1.955 1.937 2.172 2.234 2.220
TCI × T1I 3.313 4.446 4.196 3.706 4.735 4.508
% BPnoF 0.426 0.442 0.438 0.532 0.477 0.489
eFG % 47.893 57.807 55.618 53.881 46.348 48.011
% TS 51.961 60.118 58.317 57.988 50.393 52.070
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TABLE A5 Acronyms used in Tables A1 and A2

Variable Description

Points Points scored
T2C 2-point field goals
T2I 2-point field goal attempts
T2 % 2-point field goal percentage
T3C 3-point field goals
T3I 3-point field goal attempts
T3 % 3-point field goal percentage
TCC Field foals
TCI Field goal attempts (includes both 2-point field goal attempts

and 3-point field goal attempts)
TC % Field goal percentage
T1C Free throws
T1I Free throw attempts
T1 % Free throw percentage
RT Total rebounds
RD Defensive rebounds
RO Offensive rebounds
Asis Assists
BR Steals
BP Turnovers
FPC Personal fouls
FPR Personal fouls received
PQ Points scored by the initial team
PI Points scored by the centres
Val Team evaluation
Q1 Points scored in the first quarter
Q2 Points scored in the second quarter
Q3 Points scored in the third quarter
Q4 Points scored in the fourth quarter
Q1 - Q1 (R) Difference between points scored

and received in the first quarter
Q2 - Q2 (R) Difference between points scored

and received in the second quarter
Q3 - Q3 (R) Difference between points scored

and received in the third quarter
Q4 - Q4 (R) Difference between points scored

and received in the fourth quarter
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TABLE A6 Acronyms used in A3 and A4

Variable Description

Difference Final game difference
% RT Rebound percentage
% RD Defensive rebound percentage
% RO Offensive rebound percentage
Pace Estimated number of paces
POS Estimated number of possessions
Seg × POS Duration of each possession in seconds
% BP × POS Percentage of possessions where the ball is lost
OER Points scored per possession
OER pot Points scored per possession ignoring lost balls
Eficacy Points percentage
% PQ Points percentage scored by the initial team
% PI Points percentage scored by the centres
% T2I/TCI Percentage of field goal attempts that are 2-point field goal attempts
BR/BP Number of balls recovered for each lost ball
Asis/BP Number of assists given for each lost ball
T1I/FPR Number of free throw attempts for each personal foul received
% T1 Points Percentage of points due to free throws
% T3 Points Percentage of points due to 3-point throws
% Asis × Pos Percentage of possessions where an assist is given
T2I × T3I Number of 2-point field goal attempts for each 3-point field goal attempt
TCI × T1I Number of field goal attempts for each free throw attempt
% BPnoF Percentage of unforced lost balls
eFG % Effective field goal percentage
% TS True shooting percentage

TABLE A7 Classification of RMCF games by result and game site

Result Visitor Local Total

Lose 10 2 12
Win 33 35 68
Total 43 37 80

TABLE A8 Classification of RMCF games by result and competition

Result ACB Cup Euroleague Super Cup Total

Lose 6 0 6 0 12
Win 38 3 25 2 68
Total 44 3 31 2 80

TABLE A9 Classification of FCB games
by result and game site

Result Visitor Local Total

Lose 13 5 18
Win 30 31 61
Total 43 36 79
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TABLE A10 Classification of FCB games by result and competition

Result ACB Cup Euroleague Super Cup Total

Lose 10 1 6 1 18
Win 35 2 23 1 61
Total 45 3 29 2 79

TABLE A11 Classification of FCB games
according to starting Q4 winning or losing

Result Defeat Win Total

Start Q4 losing 14 7 21
Start Q4 winning 4 54 58
Total 18 61 79
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