
In the previous article in this series,1 we introduced the concept
of sampling variability, and showed how it underlies the cal-
culation and interpretation of standard errors and confidence
intervals (CIs). An example that was used to illustrate these
ideas was the comparison of verbal IQ at age 5 years between a
group of children who were born with extremely low birth-
weight (< 1000 g) and another group of children of birthweight
1000–1500 g (see Fig. 3 of the previous article). Although
there was a mean difference of 5.5 IQ points (94.7 vs 100.2,
more than one-third of a standard deviation) between the two
groups, 95% CIs for the two mean values overlapped quite
substantially. A natural question is whether the observed dif-
ference reflects a real underlying difference or not. The over-
lapping CIs perhaps suggest that the answer is ‘no’, but the
reader should be warned that examining overlap of CIs is not
equivalent to formal hypothesis testing of differences between
groups, which is the traditional approach to this sort of
question. (We shall return later to the relationship between
hypothesis testing and confidence intervals.)

This article explains the basic logic of hypothesis tests and
in particular discusses the t-test, one of the more common
statistical tests, encountered in about one-third of original
articles in the Journal of Paediatrics and Child Health.2

HYPOTHESIS TESTS AS SIGNAL DETECTION

Those who like to listen to their stereo will be familiar with the
concept of a signal-to-noise ratio – the stereo sounds clearer
the louder the signal and the lower the noise in the generated
signal. The basic structure of the statistical test is similar to 
a signal-to-noise ratio. The ‘signal’ corresponds to a measure
of the difference between the groups. The ‘noise’ is essentially
the standard error (of the difference), which quantifies the
sampling variability and thereby the statistical uncertainty of
the comparison measure. The standard error of a difference
measure is directly related to the inherent variation within the
groups, and inversely to the square root of the sample size (n).
The formula for many test statistics can then be expressed
informally as:

(where the symbol ‘α’ means ‘proportional to’).

The larger the value of this signal-to-noise ratio, the more
likely it is that the observed difference reflects a true under-
lying difference. Large values correspond to what is termed
‘statistical significance’ (more on this below). It is easy to see
that statistical significance can arise with any combination of 
a large difference between the groups, or with less inherent
variation within the groups, or with a larger sample size. For
the t-test, the signal is the size of the difference between the
two group means, and the ‘noise’ denominator is the standard
error of the difference.

To illustrate some of these points graphically, the simulated
data in Fig. 1 (panels A–D) compare two groups on a contin-
uous scale of measurement (remember, it is always useful to
plot your data when comparing groups). The data within the
panels vary in (i) the size of the difference between the two
groups, and (ii) the variation within the groups. In panel A, it is
hard to tell if the difference between the two groups is statisti-
cally significant, because there is a small average difference
between them and large variation within each group, with the
result that the 95% CI for each group overlap substantially.
However, as either the difference between the groups increases
(panel B), or the variation within the groups diminishes (panel
C), or both (panel D), the overlap between the 95% CIs reduces
(panels B,C) or disappears (panel D) and the two groups look
more clearly different. We will use these data later to calculate
t-tests for the respective panels to confirm our visual impres-
sion of statistical significance or non-significance.

HYPOTHESIS TESTS AND P VALUES: BASIC
PRINCIPLES

In statistical terms, we make sense of the question ‘Is this
difference real?’ by using the concept of sampling variability
and comparing the size of difference observed with the range
of values that might have been expected if there were no 
true difference. What do we mean by ‘no true difference’? This
refers to the underlying population parameters, as distinct
from our sample statistics, which are based on the observed
data. As always, statistical inference is meaningful only when
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we keep a clear distinction between the underlying (unobserv-
able) true reality (for example, the mean difference in 5-year
verbal IQ between the populations of all children in the two
birthweight groups to whom we might wish to generalize our
findings) and the ‘noisy’ results that we find in our current
study. So, loosely speaking, hypothesis tests create a proba-
bilistic index (the P value) that provides a measure of the
‘suspicion’ with which we may view the conservative hypoth-
esis that there is no true difference.

More specifically, the method of hypothesis testing starts
with an assumption that the groups that are being compared
come from the same population, or at least from populations
with the same mean. This is called the ‘null’ hypothesis;
sometimes written as ‘H0’. For comparison, there is the alter-
native hypothesis, H1 say, that the two groups come from
populations with different means. Referring back to the
signal-to-noise ratio analogy, H0 can be identified as the case
where the data contain only noise and no signal, and H1 is the
case where there is an important signal amongst the noise.
The statistician then calculates a test statistic, which gives a
measure of the observed difference in the sample data, in a
standardized form whose sampling distribution may be calcu-
lated under the null hypothesis. In particular, using a
computer package or a set of statistical tables, one may obtain
the P value, defined as:

If the P value is low, the researcher must logically conclude
either that something rather surprising has happened (under the
null hypothesis), or that the null hypothesis is not true.
Formally, when the P value is low enough, we decide to reject
the null hypothesis, i.e. the notion that the groups came from
the same population, and conclude that the groups are ‘statisti-
cally significantly different’. Traditionally, P < 0.05, or < 5%,
has been recommended as a threshold at which one may reject
the null hypothesis, but there is nothing magical (or indeed
particularly scientific) about 0.05. Sometimes a lower threshold
is used, reflecting a greater desire for conservatism; in other
words only to claim a difference is real when the sample data
are especially strong. The use of formal levels at which the null
hypothesis is rejected or accepted has diminished in recent
years with a greater emphasis placed on the interpretation of
findings in their scientific context, and in particular on the
clinical or substantive importance of the findings.

COMPARING TWO MEANS: THE t-TEST

Before considering further issues in the interpretation of
hypothesis tests, we describe and illustrate the t-test for
comparing two means, using the data shown in Fig. 1. The
computations required are reasonably straightforward, as
shown in Table 1.

The data from Panel A in Fig. 1, shown in Table 1, produce
a t-statistic of –0.69 with a corresponding P value of 0.50. This
means that a result on this test could be expected to be as
extreme as this on 50% of occasions when there was no true

Fig. 1 Comparison of variable Y between two groups, with raw data, mean and 95% confidence interval shown for each group within each panel
(based on sample of size 15 within each group). Panel A: Mean difference small, variation large. Panel B: Mean difference large, variation large. Panel
C: Mean difference small, variation small. Panel D: Mean difference large, variation small.

P = Probability

we would observe a test statistic at
least as extreme as the value found in
our data, assuming the null hypothesis
is true

( )



difference. Because the P value is greater than 0.05, we cannot
claim statistical significance, and would conclude that the data
provide no evidence for a real difference in scores between
these two groups. In contrast, the data from the other three
panels all produce higher t-statistics and lower P values, which
are all statistically significant at the usual level of 0.05. Note
that the difference between means in Panel B is highly signifi-
cant despite the fact that the values in the two groups overlap
substantially. It is important to remember that the hypotheses
being tested relate to the population means and not to the indi-
vidual values themselves. Finally, as an aside, the data in all
four panels were simulated from distributions for all of which
there was a true difference between the two groups. The reason
that the data and corresponding t-test for Panel A show no
evidence of this is that the sample size was relatively small,
given that the true mean difference (five units) was small
relative to the variability (true SD = 15).

With modern computers, we usually do not have to calculate
a t-test for our own data, since statistical packages are far
quicker and more accurate. However, occasionally we do not
have the raw data, and we only have the means and SD them-
selves, and perhaps we need to check the accuracy of someone
else’s computations. Another reason for looking at least briefly
at the computational formulae for the t-test is that they provide
some insight into what is being done. In particular, it can be
seen (Table 1) that the test is based on calculating a test

statistic, called the t-statistic, which has the signal-to-noise
ratio form of difference between means divided by the standard
error of that difference.

INTERPRETATION OF HYPOTHESIS TESTS

It is important to remember that the P value from a t-test used 
to compare two groups only tells us if the mean difference
between the groups is statistically significant or not. We still
have the problem of assessing if any difference is clinically
significant (or important). One way to compare the means of
two groups, to convey both statistical and clinical significance,
is to present the mean difference between the groups along with
its 95% CI, and we will discuss this further in a subsequent
article. As previously discussed, the P value is determined not
only by the actual size of the observed difference but also by the
sample size: small differences become statistically significant as
sample size increases. This is a general feature of all hypothesis
tests. Beware the very large study that reports an unimportant
clinical difference as statistically significant, and, equally, the
very small study that reports a potentially important clinical
difference as not statistically significant.

More generally, the reader may observe that the logic of
hypothesis testing is somewhat convoluted, and indeed it has
long been the subject of controversy in the statistical literature.
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Panel A Panel B Panel C Panel D
Summary statistics Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

Mean y–1, y–2 103.0 106.7 103.0 119.7 103.0 106.7 103.0 119.7

SD s1, s2 15.7 14.1 15.7 14.1 3.1 2.8 3.1 2.8

Sample size n1, n2 15 15 15 15 15 15 15 15

Two-sample t-test calculations

Mean difference y–1 – y–2 – 3.73 – 16.7 – 3.73 – 16.7

Pooled SD 14.89 14.89 2.98 2.98

SE of mean 5.44 5.44 1.09 1.09
difference

Test statistic – 0.69 – 3.08 – 3.44 – 15.4

Degrees of n1 + n2 – 2 28 28 28 28
of freedom ( d.f.)

P value
0.50 0.005 0.002 < 0.0001

SD, standard deviation; SE, standard error.

s = √ (n1 – 1)s2
1 + (n2 – 1)s2

2

n1 + n2 – 1

SE = s √ 1    +    1
n1 n2

y–1 – y–2

SE

Prob ( t ≤ –  y
–

1 – y–2   or t ≥ y–1 – y–2 )

SE                  SE 

Table 1 Summary statistics and t-test calculations for the data in Figure 1



Goodman has recently provided an excellent review for a
clinical readership.3 We do not have space here to cover all of
the issues that have been raised, but it is important to note just
a few.

A key concern is the extent to which one can interpret a 
P value as quantifying evidence for or against a research
hypothesis. Many clinicians would informally and intuitively
expect a P value to mean something like ‘the probability that
two or more groups come from the same population.’ Not only
is this an incorrect interpretation (see the earlier definition), but
it may actually lead to erroneous conclusions. It can be shown,
for example, that under most circumstances a P value of 0.05
actually represents much weaker evidence against the null
hypothesis than a naive interpretation, along the lines of ‘a 5%
chance that the two groups are the same’ would suggest.4 A key
problem in talking about evidence is that no study or P value
can be interpreted in isolation.5 The final interpretation of a
study’s findings must depend on what is known about the
subject matter from other studies, from relevant biological
understanding, and so on. Goodman shows that a result with 
P = 0.05 in fact means that the data reduce the chance that the
null hypothesis is true to no less than 15% of whatever prior
probability might be attached to it, while a P value approaching
0.01 is required to achieve a reduction to less than 5%.4

Further interpretational issues with hypothesis tests relate to
long-run error rates and the concepts of Type I and Type II
errors. We will return to these issues in a later article when we
discuss sample size and power calculations.

ONE-TAILED AND TWO-TAILED TESTS

All the P values calculated in Table 1 are two-tailed (or ‘two-
sided’), which means that their calculations included the prob-
ability of extreme values occurring in either direction (i.e.
higher or lower) from zero, the value expected under the null
hypothesis. Extremes in both tails of the distribution were
included because the alternative hypothesis, H1, specified only
that the means of the two groups were different, not that they
differed in a particular direction. If the investigator can con-
fidently rule out, on a priori grounds, that the difference
between two comparison groups could go in one direction, then
it is justified to specify a one-sided alternative hypothesis and
use a one-tailed test. Assuming the observed sample difference
is in the same direction as specified by the alternative hypo-
thesis, the one-tailed P value is exactly half the two-tailed value,
because of the symmetry of the normal and t distributions.

The question of whether and when it is legitimate to use 
a one-tailed test (thereby, in general, producing a smaller 
P value) has aroused some controversy. But given the simple
relationship between the two P values, and the move away from
automated interpretation of tests using arbitrary levels such as
0.05 or 0.01, the issue is not really a major one. We follow the
common convention of recommending that two-tailed tests be
used unless there is a very strong case for the one-tailed version.6

We illustrate this by returning to the example of verbal IQ at
age 5 years in the very low birthweight cohort. The standard
two-sample t-test calculation produces a t-statistic of –2.03
with a corresponding P value of 0.04, for comparing the mean
verbal IQ of children with birthweight < 1000 g with that of
children with birthweight 1000–1500 g. This means that there
is marginally significant evidence for a true difference using
the 0.05 significance level. If it could be confidently assumed 

a priori that the true mean verbal IQ in the lower birthweight
group could not possibly be greater than in the higher birth-
weight group, a one-tailed test would be justified, and this
would give a P value of 0.02. However, there is no reason to
think that the verbal IQ in the heavier children should neces-
sarily be higher than in the lower birthweight children, and
hence a one-tailed test could not be justified. The conventional
advice is that such a priori assumptions are usually difficult to
sustain (surprising reversals of effect do occur), and that the
implicit conservatism of the two-tailed result is to be preferred.
We will also see that this approach maintains a closer connec-
tion between the interpretation of hypothesis tests and CIs.

MORE ON THE t-TEST: RELATING THE t-STATISTIC
TO THE NORMAL DISTRIBUTION

We saw in the last article1 that when the sample size is at least
moderate, the sampling distribution of a sample mean is
normal, centred around the population mean and with standard
deviation equal to the standard error of the mean (SEM). In the
context of hypothesis testing, where the parameter of interest 
is a difference, the population mean under the null hypothesis 
is zero. These facts imply that, if the null hypothesis is true,
when we divide the sample mean by its SE we obtain a statistic
that has (approximately) a standard normal distribution (mean
0, SD 1). We can then readily determine, for example, that a
value of 3 would be surprising and give rise to a very small 
P value for the null hypothesis that the true mean is zero. The
ratio of an estimate to its SE is often referred to as a z-statistic,
since ‘Z’ is often used to refer to the standard normal distribu-
tion. This terminology is analogous to use of the z-score to refer
to the standardized version of an individual value of a variable,
such as height for age and gender, for example.

With small samples, the ratio of a mean difference to its SE
is called a t-statistic, since its distribution is not in fact normal
but the closely related t, assuming that the variable being
measured itself follows a normal distribution. The t distribution
has a very similar, symmetric, shape to the normal, but it is
more spread out. This extra spread arises for t-statistics
because of the fact that the standard deviation of the measure-
ments (used in calculating the SE) has to be estimated from the
data. The standard t-distribution (scaled like the standard
normal) has one extra parameter to define it: the so-called
degrees of freedom (d.f.). The d.f. appropriate for any t-statistic
essentially reflect the sample size and thus the uncertainty of
estimation of the standard deviation. As the sample size, and so
d.f., increases, the t-distribution quite rapidly approaches the
standard normal distribution.

The t-statistic for comparing two means is the observed
difference between the means, standardized by the (estimated)
standard error of that difference. The appropriate d.f. for the
standard two-sample (independent groups) t-test is n1 + n2–2.
Since the t-distribution is similar to the normal, as long as d.f. are
not too small, we can make informal interpretations of the statis-
tical significance of t statistics by referring them to the cut-offs
of ± 2 (P ≈ 0.05), ± 2.6 (P ≈ 0.01) and ± 3.3 (P ≈ 0.001).

THE PAIRED t-TEST

A different version of the t-test is required if the data in 
two groups are not independent, but represent paired values.
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A typical example is a before–after study in a group of patients
where an observation is made of a continuous variable, some-
thing is done to the patient (they might be given a drug, for
example), and the variable is then re-measured. It is natural to
expect that observations taken on the same patient before and
after the drug administration will be more alike than obser-
vations taken on different patients. The two-sample t-test des-
cribed above does not take any account of such pairing and so
is an inappropriate method for paired data. However, the appro-
priate paired t-test is similar in its logical structure.

As an example, we can reconsider the data in Panel A of 
Fig. 1, this time assuming they arose as paired observations in a
cross-over trial, linked as shown in Fig. 2. In most, but not all,
pairs there is an increase between Time 1 and Time 2. The calcu-
lations required for the paired t-test are shown in Table 2. These
are actually simpler than for the two-sample test and proceed
from first calculating the paired difference values, and then
calculating their mean. Note that the mean of the difference
values is the same as the difference of the two separate means,
but the SE calculation for the paired comparison is different. It is
worth noting that the t-statistic is now statistically significant 
(P = 0.03), whereas using the independent groups calculation
(Table 1; Panel A) it was not. The SE of the mean difference
(‘noise’) was substantially reduced in the paired comparison
because the large variation between individuals was removed by
focusing on the within-individual changes. Clinicians should
take advantage of situations where data can be paired so that
statistical answers to clinical questions can be achieved more
efficiently, i.e. with fewer patients.

WHEN IS THE t-TEST VALID?

For normally distributed variables, or for variables that can be
transformed into a normal distribution by taking logarithms,

for example, the difference between group means is of major
interest and the t-test is clearly applicable. If the data are not
normally distributed and cannot be made so, it may be
preferable to make comparisons using other parameters.
With positively skewed data, medians are often used. Tests
based on medians are called ‘non-parametric tests’ and these
will be discussed later in the statistics series.

One practical concern that researchers often face is 
to determine whether their data are sufficiently close to
normally distributed for the t-test to be valid. It is important
to remember the role of sample size in this: with large
samples, the distribution of the data values themselves
becomes less and less relevant to the statistical properties of
test statistics (because of the Central Limit Theorem). With
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Fig. 2 Comparison of variable Y between two time points, with
paired data.

Summary statistics

Mean difference –3.73

SD of difference sD 6.01

Sample size n 15

Paired t-test calculations

SE of mean difference 1.55

Test statistic –2.40

Degrees of freedom ( d.f.) n – 1 14

P value 0.03

(where the symbol ‘Σ’ means ‘the sum of’)

Σ differences or y–1 – y–2
n

SE =    
sD

√ n

y–1 – y–2

SE

Prob ( t ≤ –  y
–

1 – y–2   or t ≥ y–1 – y–2 )

SE                  SE 

Table 2 Summary statistics and calculations for paired t-test on the data in Figure 2
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small samples it is also important to be aware that the
assumption of normality of the data is probably less critical
than the question of whether the variances in the two groups
can be assumed to be equal. In fact the t-test is fairly robust
(statistician’s language for giving a valid answer) to moderate
departures from its underlying assumptions of normally
distributed data and equality of variance, except in the
presence of very small or unequal sample sizes. If sample
sizes differ non-trivially between the groups, it is advised to
use a ‘conservative’ variation of the standard test that does
not assume equal variances.7,8 This method, using the so-
called Satterthwaite approximation, is available in most stat-
istical packages.

In the next statistics article, we will discuss the comparison
of groups where the variable being considered is a binary
indicator (such as ‘dead/alive’, or ‘remission/no remission’), in
particular describing the Chi-squared test for comparing
proportions.
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