
Complete minimal surfaces in R
3

Francisco J. López ∗
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1 Introduction

In this paper we review some topics on the theory of minimal surfaces in three
dimensional Euclidean space.

The study of minimal surfaces in R
3 started with Lagrange in 1762. He studied

the problem of determining a graph over an open set Ω in R
2, with the least possible

area among all surfaces that assume given values on ∂(Ω).
Mathematics soon realized that here was not only a problem of extraordinary

difficulty, but also of unlimited possibilities.
In 1776, Meusnier supplied a geometric interpretation of the minimal graph equa-

tion (7): the mean curvature H vanishes. On this premise it has become customary
to use the term minimal surface for any surface satisfying H = 0, notwithstanding
the fact that such surfaces often do not provide a minimum for the area.

During the nineteenth century, more discoveries and publications appeared, thanks
to the works of Catalan, Bonnet, Serret, Riemann, Weierstrass, Enneper, Schwarz,
among others. From the point of view of modern theory, Weierstrass and Enneper’s
works are specially important. They introduced the so called Enneper-Weierstrass
representation for minimal surfaces, which established a closed relationship between
this theory and Complex Analysis.

In the middle of the nineteenth century, Plateau observed that minimal surfaces
can be physically realized as soap films. So, the problem of determining a minimal
surface with fixed topology and bounded by a prescribed Jordan curve is now usually
called Plateau’s problem. In this field we place emphasis on the works of Courant,
Douglas, Morse, Rado, Schiffman, among others. However, this topic is not covered
in this survey, and [17, 26, 61, 71] can be used as good references.

This paper is devoted to some aspects of the theory of complete minimal surfaces.
As we will see, completeness has a strong influence on the topology, conformal
structure and other geometrical properties of a minimal surface.

To be more precise, we include a brief study of: the Gauss map of complete
minimal surfaces, complete minimal surfaces with bounded coordinate functions,
some of the last achievements about properly embedded minimal surfaces and what
is known about complete minimal surfaces with finite total curvature.

The aim of this work is not to carry out an exhaustive exposition of these sub-
jects. We only give a summary of the most relevant results or discuss its main
applications and related questions. However, we have tried to compile a complete
list of references that could help the interested reader to delve more deeply into
these subjects.

Section 2 is devoted to the Gauss map of minimal surfaces, where we deal with
Fujimoto’s theorem, which asserts that the plane is the only complete minimal
surface in R

3 whose Gauss map omits at least five points of the sphere. We include
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the Osserman-Mo generalization of this theorem. For further treatment on the
subject see [24].

In Section 3 we study complete minimal surfaces which are bounded as subsets
of R

3 (Naridashvili’s theorem), and some questions related with Calabi’s problem
for minimal surfaces.

In Section 4 (the most extensive) we deal with complete minimal surfaces of
finite total curvature. We look at Osserman’s classical theorems and the formula of
Jorge and Meeks, including a complete list of examples of surfaces of this kind. Our
interest lies in: existence and uniqueness theorems for surfaces with critical total
curvature (from the point of view of the Jorge-Meeks formula), minimal surfaces with
high symmetry group, and nonorientable minimal surfaces. The study of embedded
minimal surfaces with finite total curvature is included in Section 5.

Finally, in Section 5 we briefly study some of the last achievements in the theory
of properly embedded minimal surfaces in R

3. Since the discovery of Costa’s min-
imal surface, the study of this area gathered new speed. From Collin’s theorem, a
properly embedded minimal surface has finite topology if and only if it has finite
total curvature, and provided that the number of ends is greater or equal to two.
In this section, we review the families of surfaces with three or more ends, placing
the emphasis the study of the Costa-Hoffman-Meeks and Hoffman-Meeks families
of surfaces. We also include a uniqueness theorem for the Hoffman-Meeks family in
terms of its symmetry. The last part of Section 5 is devoted to Meeks’ conjecture
about properly embedded planar domains. So, we prove the López-Ros theorem and
include a summary of the Meeks-Pérez-Ros theorem.

Further results about properly embedded minimal surfaces, not included in this
survey, can be found in Meeks and Rosenberg works [65], [66], and in Meeks’ survey
[63].

Acknowledgments: We would like to thank M. Weber for allowing us to include
some of his images in this survey. We would also like to thank E. Thayer for allowing
us to include some of his pictures, which were produced by using Jim Hoffman’s
graphics programs. Finally, we are indebted to J. Pérez for helpful criticisms of the
paper.

1.1 Preliminaries

In this section, we review some basic topics about minimal surfaces in R
3, empha-

sizing the Weierstrass representation. The most part of these results can be found
in [73], although we have also included additional references for some of them.

Let (M, ds2) be a connected Riemannian surface. Let K, ∆ and dA denote
the Gauss curvature, the Laplace operator and the area element associated to ds2,
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respectively.
We can associate to (M, ds2) a conformal structure. This fact is a consequence

of the following classical result.

Theorem 1.1 Let (M, ds2) be a Riemannian surface. Then, any point P ∈M has
a neighborhood in which there exists a parametrization of M in terms of isothermal
parameters.

So, any orientable Riemannian surface has an underlying structure of Riemann sur-
face. A proof of this result for can be found in [44].

Thus, if M is orientable, it is possible to define harmonic, holomorphic and mero-
morphic functions and 1-forms on M . We also denote by d the exterior differential
on functions and 1-forms, and label � as the Hodge operator on 1-forms. For details
see [20].

Let X : M → R
3 be an orientable isometric immersion of (M, ds2) in three

dimensional Euclidean space, and call N : M → S
2 its Gauss map. DenoteH : M →

R as the mean curvature function associated to N . Recall that the mean curvature
at a point of the surface is defined as half the sum of the principal curvatures at this
point. A well-known formula says

∆X = 2H N. (1)

Definition 1 The immersion X is minimal if and only if H = 0.

1.1.1 Weierstrass representation

As a consequence of (1), X is minimal if and only if X = (X1, X2, X3) is harmonic
(this fact only depends on the complex structure associated to (M, ds2)). In that
case, dXj, j = 1, 2, 3, are harmonic 1-forms on M , and so

Φj
def
= ∂(Xj) = dXj + i(�dXj), j = 1, 2, 3,

are holomorphic 1-forms on M . Usually, we write Φ = (Φ1,Φ2,Φ3).
In what follows, we will assume that X is an orientable minimal immersion.
If z is a conformal parameter in M , then it is not hard to deduce that

3∑
j=1

(∂(Xj))
2 = 0,

i.e.,
Φ2

1 + Φ2
2 + Φ2

3 ≡ 0, (2)
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Moreover, ds2 = |Φ1|2 + |Φ2|2 + |Φ3|2, and since X is an immersion,

|Φ1|2 + |Φ2|2 + |Φ3|2 �≡ 0. (3)

On the other hand, if we consider P0, P in M and γ any differentiable curve in
M starting at P0 and ending at P , then one has

Real
(∫

γ
Φ
)

= X(P ) −X(P0).

Note that the right hand side of the last equality does not depend on the curve γ
connecting P0 and P . In other words, the 1-forms Φj , j = 1, 2, 3, verify:

Real
∫

γ
Φj = 0, j = 1, 2, 3,

for any closed curve γ in M . Usually, we say that Φ1, Φ2, and Φ3 have no real
periods.

Therefore, we write Real
∫ P
P0

Φj instead of Real
∫
γ Φj , j = 1, 2, 3.

If we define

g =
Φ3

Φ1 − iΦ2
, η = Φ1 − iΦ2,

then equation (2) becomes:

Φ1 =
1

2
(1 − g2)η,

Φ2 =
i

2
(1 + g2)η, (4)

Φ3 = gη,

and so, it is not hard to check that:

N(P ) =

(
2
Real(g(P ))

1 + |g(P )|2 , 2
Im(g(P ))

1 + |g(P )|2 ,
1 − |g(P )|2
1 + |g(P )|2

)
.

This means that the meromorphic function g is the stereographic projection,
from the point (0, 0, 1), of the Gauss map N of X. In particular, N is a conformal
map, and this property characterizes minimal surfaces (besides the sphere).

Observe that equation (3) means that η is holomorphic with zeroes precisely at
the poles of g, but with twice order.

We define (M, η, g) (or (M,Φ)) as the Weierstrass representation of the immer-
sion X.

Conversely, one can construct minimal surfaces as follows:
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Theorem 1.2 Let M be a Riemann surface, and let η, g denote a holomorphic 1-
form and a meromorphic function on M , respectively. Define Φj, j = 1, 2, 3, as in
(4), and suppose that (3) holds.

Assume also that Φj, j = 1, 2, 3, have no real periods on M , i.e., for any closed
curve γ in M ,

Real
∫

γ
Φj = 0, j = 1, 2, 3.

Fix a point P0 ∈M. Then, the map

X : M −→ R
3

X(P ) = Real
∫ P

P0

(Φ1,Φ2,Φ3),

is a well defined conformal minimal immersion.
Furthermore, (M, η, g) is the Weierstrass representation of X.

Note that the Weierstrass representation determines the minimal immersion up
to translations.

We can write in terms of the Weierstrass representation any geometrical mat-
ter. So, if we fix a conformal parameter z on M , and write η = f(z) dz, then,
straightforward computations give:

ds2 =
1

4
|f(z)|2(1 + |g(z)|2)2|dz|2, (5)

K(z) = −
(

4|g′(z)|
|f(z)|(1 + |g(z)|2)2

)2

. (6)

1.1.2 Minimal surfaces and symmetries

Now we are going to give some basic results about isometries of minimal surfaces.
Let X : M → R

3 be a minimal immersion, and label (η, g) its Weierstrass data. Let
A : M → M be a diffeomorphism. We say that A is a symmetry of M if and only
if there exists A ∈ O(3,R) and �v ∈ R

3 such that (X ◦ A)(P ) = A · t(X(P )) + �v,
where t(·) means transpose matrix. Denote Sym(M) as the group of symmetries of
M , and write Iso(M) as the isometry group of M . Then, it is clear that Sym(M)
is a subgroup of Iso(M). Calabi proved the following:

Theorem 1.3 (Calabi [49]) Let X,X ′ : M → R
3 be two conformal minimal im-

mersions inducing the same Riemannian metric on M . Label Φ,Φ′ as their Weier-
strass data, respectively.

Then, there exists A ∈ O(3,R) and θ ∈ C, |θ| = 1, such that

tΦ′ = θ (A · tΦ).
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In particular, if there exists j ∈ {1, 2, 3} such that Φj is not exact then Iso(M) =
Sym(M). Indeed, if F is an isometry ofM , thenX ′ = X◦F is a well defined minimal
immersion. Taking into account that the 1-forms Φ′

j , j = 1, 2, 3, in the Weierstrass
data of X ′ have no real periods and Theorem 1.3, it is not hard to conclude.

Define L(M) as the group of holomorphic and antiholomorphic diffeomorphisms,
α, of M satisfying: tN ◦ α = A ◦ tN , where A ∈ O(3,R) is a linear isometry of R

3.
Hoffman and Meeks have proved essentially the following theorem:

Theorem 1.4 (Hoffman, Meeks) If X : M −→ R
3 is a complete minimal im-

mersion with finite total curvature, and there exists j ∈ {1, 2, 3} such that Φj is not
exact, then:

L(M) = Iso(M) = Sym(M)

A complete discussion about this subject can be found in [32, 49].

1.1.3 Maximum principle for minimal surfaces

A minimal surface can, at least locally, be represented in the form x3 = u(x1, x2);
the function u satisfies minimal surface equation, a quasilinear elliptic second order
partial differential equation:

(1 + u2
x1

)ux1 x1 − 2ux1 ux2 ux1 x2 + (1 + u2
x2

)ux2 x2 = 0. (7)

Next, we state two theorems which summarize the well known versions of the
maximum principle which we require in this survey. These theorems are a conse-
quence of a deep analysis of the above partial differential equation (see [25]).

Theorem 1.5 (Interior maximum principle) SupposeM1, M2 are connected min-
imal surfaces in R

3. Suppose p is an interior point of both M1 and M2, and suppose
TpM1 = TpM2. Assume that TpM1 = {x3 = 0} so that both M1, M2 are given near
p as the graphs of two real analytic functions u1 and u2, respectively. If u1 ≥ u2 in
a neighborhood of p, then M1 = M2.

Theorem 1.6 (Maximum Principle at Infinity [48], [68]) Suppose N is a flat
three-dimensional manifold and M1 and M2 are disjoint, connected, properly im-
mersed surfaces in N with compact boundary (possibly empty). Then:

1. If ∂(M1) or ∂(M2) is nonempty, then, after possibly reindexing, there exists a
point x ∈ ∂(M1) and a point y ∈M2, such that dist(x, y) = dist(M1,M2).

2. If ∂(M1) and ∂(M2) are empty, then M1 and M2 are flat.
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One of the more recent and nicer applications of the maximum principle is the
following theorem by Hoffman and Meeks:

Theorem 1.7 (Strong halfspace theorem [31]) A connected, proper, possibly
branched, nonplanar minimal surface M in R

3 is not contained in a halfspace.

This theorem has been a fundamental tool in obtaining a large number of results in
this field.

1.1.4 Nonorientable minimal surfaces

We now discuss the case of nonorientable minimal surfaces. An immersion X :
M ′ → R

3 of a nonorientable surface is minimal if and only if the mean curvature of
X on any orientable piece of M is zero.

Consider now X ′ : M ′ −→ R
3 a conformal minimal immersion of a nonorientable

Riemannian surface M ′ in R
3. Let π0 : M → M ′, I : M → M denote the confor-

mal oriented two sheeted covering of M ′ and the antiholomorphic order two deck
transformation for this covering, respectively.

If (g, η) represents the Weierstrass data of X = X ′ ◦ π0, then it is not hard to
deduce that :

I∗(Φj) = Φj , j = 1, 2, 3. (8)

In particular, g ◦ I = I0 ◦ g, where I0(z) = −1/z, and so there is a unique map

G : M ′ −→ RP
2 ≡ C/〈I0〉

satisfying
G ◦ π0 = g ◦ p0,

where p0 : C → C/〈I0〉 is the natural projection. We call G the generalized Gauss
map of X ′.

Conversely, if (M, g, η) is the Weierstrass representation of a minimal immersion
X of an orientable surfaceM in R

3, and I : M → M is an antiholomorphic involution
without fixed points on M satisfying (8), then X induces a minimal immersion X ′

of M ′ = M/〈I〉 in R
3 such that X = X ′ ◦ π0.

By definition, (M, I, g, η) is the Weierstrass representation of the nonorientable
minimal immersion X ′. For more details see [62].

1.1.5 Classical examples

Finally, we present the Weierstrass representation of some classical examples.

• The helicoid. M = C, g = ez, Φ3 = i dz.
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Figure 1: The helicoid.

Figure 2: The catenoid.
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• The catenoid. M = C − {0}, g = z, Φ3 = dz
z
.

• Enneper’s surface. M = C, g = z, Φ3 = z dz.

Figure 3: Enneper’s surface.

• Scherk’s surfaces. Let M ′ = C − {1,−1, i,−i}, g′ = z, Φ′
3 =

√
(−1)j 4z dz

z4−1
,

where j ∈ {0, 1}. The map X ′ = Real
∫

Φ′ is not well defined because the
1-forms Φ′

i, i = 1, 2, 3, have real periods on M ′. To solve this, we define M
as the universal covering of M ′, and take g, Φ3 as the lifts of g′, Φ′

3 to M ,
respectively. Thus, X = Real

∫
Φ is well defined. If j = 0, we get Scherk’s

doubly periodic surface, and in case j = 1 we obtain Scherk’s singly periodic
surface.

• Henneberg’s surface. M = C−{0}, I(z) = −1/z, g = z, Φ3 = 2z(1− 1
z4 )dz.

These meromorphic data induce a minimal Möbius strip, but unfortunately the
immersion is not regular at the points {1,−1} and {i,−i} (where fails (3)).

2 Construction of minimal surfaces with polygo-

nal boundary

Although Plateau’s problem is one of the classical questions in geometry and analy-
sis, progress in solving it has been very slow. The first satisfactory solution of the
Plateau problem for a general contour was given by Douglas and Radó in 1930. The
following theorem summarizes several existence results by Douglas, Radó, Osserman,
Gulliver, Alt, among others.

Theorem 2.1 (Fundamental existence theorem) Every closed rectificable Jor-
dan curve Γ in R

3 bounds an area minimizing surface X : D → R
3 of the disc type,
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Figure 4: Scherk’s doubly periodic surface.

and all solutions of this type are regular surfaces, i.e., they are free of branch points.
If Γ is regular and real analytic, then they have no branch points on ∂D, either.

We refer to books [17, 26, 61, 71, 73] for a good setting.
A classical problem considered by Schwarz, Weierstrass and Riemann was to

determine minimal surfaces bounded by straight lines. These authors obtained ex-
istence results for minimal surfaces with boundary a given polygon, where the sides
of the polygon could be of finite or infinite length.

The works of Riemann are especially interesting. Riemann’s posthumous paper
[82] treated minimal surfaces passing through one or several straight lines. In par-
ticular, it dealt with the following special boundaries:(i) Two infinitely long, skew
straight lines. (ii) Three straight lines, two of which lie in a plane P and intersect;
the third lies in a plane P ′ parallel to P . (iii) Three intersecting straight lines. (iv)
A quadrilateral. (v) Two arbitrary circles which lie in parallel planes.

In relation to the last case, Riemann constructed doubly connected minimal
surfaces bounded by two parallel and distinct straight lines. We refer to Paragraph
6.2.2.

A comprehensive presentation of the Schwarz-Riemann-Weierstrass approach to
the solution of Plateau’s problem for polygonal boundaries can be found in Dar-
boux’s treatise [16, Vol. 1 and 3].

12



Let X : M → R
3 be a complete minimal surface, and γ0 a curve in M . If

γ = X(γ0) is a straight line, then the Schwarz reflection principle (see [17, 39])
implies that the rotation of 180o about γ is a symmetry of X(M). If γ0 is a planar
geodesic of M (i.e., γ is the orthogonal intersection of X(M) with a plane, Π), then
X(M) is symmetric under the reflection through Π.

If we label (g, η) as the Weierstrass representation of X, then g(γ) lies, in both
cases, in the great circle of C determined, up to composing with the stereographic
projection, by:

• the vector plane which is orthogonal to γ, if γ is a straight line, or

• the vector plane Π0, parallel to Π, if γ is a planar geodesic contained in Π.

Sometimes it is useful to know that the curve γ is a straight line (resp., a planar
geodesic) of X(M) if and only if X∗(γ0) is a planar geodesic (resp., a straight line)
of X∗(M), where X∗ = Re(

∫
i∂X) is the adjoint surface.

We are going to explain a classical method used to construct compact minimal
surfaces with polygonal boundary.

A Schwarzian chain is a set C = {L1, . . . , Lr, E1, . . . , Es}, where L1, . . . , Ls are
straight lines and E1, . . . , Es are planes. We say that a compact minimal surface
X : M → R

3 is a solution of the Schwarzian chain problem for chain C if and only
if:

• M is simply connected and the Gauss map of X is injective,

• X(∂M) lies in the union of the straight lines and planes in C, and along its
boundary, X is perpendicular to all planar parts of C.

Suppose that X is a solution of the Schwarzian chain problem for C, and let (g, η)
be its Weierstrass representation. Since g is a biholomorphism, we can identify M
and g(M) ⊂ C. So, up to a Möbius transformation, we can suppose that M is a
domain of C bounded by pieces of great circles, and g(z) = z. Write η = f(z) dz,
and define

q(z) =
∫ z

z0

√
−f(w)dw, z0 ∈M.

If we assume that q : M → Ω = q(M) ⊂ C is a biholomorphism, then it is not
hard to see that:

The q-images of the straight lines in ∂M lie on straight lines which in-
tersect the real axis at an angle of 45o or of 135o, whereas the planar
geodesics are mapped by q into straight lines which are parallel either to
the real axis or to the imaginary axis.
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Conversely, suppose that M ⊂ C is a simply connected domain bounded by
pieces of great circles, Ω ⊂ C is a polygonal domain bounded by lines as above, and
q : M → Ω is a biholomorphism. Then, defining g(z) = z and η(z) = −( dq

dz
)2, the

Weierstrass data (M, g, η) determine a minimal surface bounded by a Jordan curve
which consists of pieces of straight lines and planar geodesic arcs.

The above reasoning provides a handy method to solve Schwarzian chain prob-
lems, and in particular, to construct compact minimal surfaces bounded by straight
lines. It can also be used to construct complete periodic minimal surfaces by succes-
sive Schwarz reflections about straight lines and planar geodesic arcs. For details,
we refer to Karcher’s survey [39] and Dierkes et al. [17].

Regarding minimal surfaces with non compact polygonal boundary, in 1966,
Jenkins and Serrin in [35] proved an existence and uniqueness theorem for minimal
graphs bounded by straight lines. They obtained simple, necessary and sufficient
conditions to solve the Dirichlet problem in a compact convex domain bounded
by a polygon assuming values +∞, −∞ and continuous data on different straight
segments in the boundary.

To be more precise, they prove:

Theorem 2.2 (Jenkins, Serrin) Let D be a bounded convex domain whose bound-
ary contains two sets of open straight segments A1, . . . , Ak and B1, . . . , Bl, with the
property that no two segments Ai and no two segments Bi have a common endpoint.
The remaining portion of the boundary consists of endpoints of the segments Ai and
Bi, and open arcs C1, . . . , Cm. Consider the Dirichlet problem:

Determine a minimal graph in D which assumes the value +∞ on each
Ai, −∞ on each Bi and assigned continuous data on each of the open
arcs Ci.

Let P denote a simple closed polygon whose vertices are chosen from among the end
points of the segments Ai and Bj. Let α, β be, respectively, the total length of the
segments Ai and Bj which are part of P. Finally, let γ denote the perimeter of P.

Then, if the family of arcs {Ci} is not empty, the Dirichlet problem stated above
is solvable if and only if

2α < γ and 2β < γ.

Furthermore, the solution is unique if it exists.

Finally, we review some complete surfaces that can be constructed by using
the above methods. The main idea is to give a fundamental piece of the surface
bounded by straight lines or planar geodesic arcs, and so, in successive steps, to
use the Schwarz reflection principle for constructing a complete example. Those
constructions which lead to embedded examples are of special interest. For more
details about this subject, we refer to the excellent survey [39].
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Figure 5: A Jenkins-Serrin graph.

Figure 6: A fundamental piece of the Neovius surface.
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Schwarz’s surface. This triply periodic surface X : M → R
3 contains a disc-

type fundamental piece which is bounded by a nonplanar quadrilateral. Its
Weierstrass data are:

M = C, g = z, η =
dz√

1 − 14z4 + z8
.

Figure 7: Schwarz’s surface.

Jenkins-Serrin surfaces. In Figure 5, we illustrate a particular Jenkins-Serrin
graph. In this case, the polygon is a rectangle and the data on the four edges
are +∞, 0, +∞ and 0, respectively. The doubly-periodic minimal surface
obtained by successive Schwarz reflections is embedded, and its Weierstrass
data are:

M = C − {0}, g = z, ηg =
dz√

z4 + 2rz2 + 1
,

where r ∈] − 1, 1[.

Scherk’s doubly and singly periodic surfaces. These surfaces were described
in Paragraph 1.1.5.
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3 Gauss map of minimal surfaces

O. Bonnet (1860) proved that the Gauss map N : M → S
2 of a minimal surface

X : M → R
3 is conformal, and E. B. Christoffel that this property characterizes

minimal surfaces, besides the round sphere.
Furthermore, the area of the spherical image of M, counting multiplicities, can

be computed as follows

A(N(M)) = −
∫

M
KdA. (9)

The last integral is known as the total curvature C(M) of the immersion X.
One of the fundamental problems in classical theory of minimal surfaces is to

obtain Liouville type results for complete minimal surfaces. R. Osserman was who
started the systematic development of this theory, and so, in 1961 he proved that
the Gauss map of a complete nonflat orientable minimal surface misses at most a
set of logarithmic capacity zero. In 1981 F. Xavier [96] proved that the image of
the Gauss map covers the sphere except at most six values, and finally in 1988 H.
Fujimoto [22, 23] obtained the best possible theorem, and proved that the number
of exceptional values of the Gauss map is at most four. An interesting extension of
Fujimoto’s results was proved in 1990 by X. Mo and R. Osserman [69]. They showed
that if the Gauss map of a complete orientable minimal surface takes on five distinct
values only a finite number of times, then the surface has finite total curvature.

There are many kinds of complete orientable minimal surfaces whose Gauss map
omits four points of the sphere. Among these examples we emphasize the classical
Scherk’s doubly periodic surface and those described by K. Voss in [91] (see also
[73]). The first author of this paper in [53] constructs orientable examples with
nontrivial finite topology.

Under the additional hypothesis of finite total curvature, R. Osserman [72] proved
that the number of exceptional values is at most three.

In the nonorientable case, the Gauss map of the two sheeted orientable covering
surface induces, in a natural way, a generalized Gauss map from the nonorientable
surface on the projective plane. Very recently [56], the authors of this survey have
found complete nonorientable minimal surfaces in R

3 whose generalized Gauss map
omits two points of RP

2. This result proves that Fujimoto’s theorem is sharp for
this kind of surfaces.

In this section we shall give a brief outline of some of the above results.
We start with a classical theorem by Osserman. For a good understanding of

the theorem, it is advisable to read the preliminaries of Section 5.

Theorem 3.1 (Osserman [72]) The Gauss map of a complete orientable nonflat
minimal surface with finite total curvature omits at most three points of S

2.
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Proof : Let X : M → R
3 be a complete conformal nonflat minimal immersion with

finite total curvature, and label (η, g) its Weierstrass data. Recall that the mero-
morphic function g is the stereographic projection of the Gauss map N of X.

Since C(M) is finite, we may assume that M is conformally equivalent to a
compact Riemann surface M ′ minus a finite set of points {P1, . . . , Pr}, and that the
Weierstrass data extend meromorphically to M ′ (see Theorems 5.1 and 5.2).

The zeroes and poles of g correspond to points of M ′ with vertical normal vector.
As g has only a finite set of branch points, we can make a rotation of coordinates
in R

3 in such a way that:

• g has simple poles on M ′

• g assumes finite values at {P1, . . . , Pr}.
On the other hand, given P ∈M ′ and z a conformal parameter on M ′ centered

at P, we define the branching number n(P ) of g at P as the order of the zero of
dg/dz at 0. Since g is a branched covering of S

2 with a finite number deg(g) of
sheets, then there are only a finite set of points in M ′ where n(P ) �= 0. Hence, we
can define the total order of branching of g as follows:

n =
∑

P∈M ′
n(p).

If γ = genus(M ′), then by Riemann’s relation (see [20]):

n = 2(deg(g) + γ − 1). (10)

Recall that the 1-form η has double zeros exactly at the poles of g. Moreover, if z is
a conformal parameter centered at Pj on M ′, then

3∑
j=1

|Φj|2 ∼ c/|z|2mj ,

where mj ≥ 2. (see the comments previous to Theorem 5.3).
By Riemann’s relation once again

2n−
r∑

j=1

mj = 2γ − 2,

and so it is easy to deduce that

r + γ − 1 ≤ deg(g). (11)
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Suppose now that g|M omits k points q1, . . . , qk ∈ S
2. Then g−1({q1, . . . , qk}) ⊂

{P1, . . . , Pr}, and counting multiplicities, each qj has exactly deg(g) preimages.
Thus,

k deg(g) ≤
r∑

j=1

(1 + n(pj)) = r +
r∑

j=1

n(pj) ≤ r + n.

Last inequality and (10) imply that

k deg(g) − r ≤ 2(deg(g) + γ − 1).

Adding (11) gives
1 − γ ≤ (3 − k) deg(g),

and taking into account (11), we infer r ≤ (4 − k) deg(g). Since M is not compact,
r > 0, and so k < 4. �

Enneper’s surface and the catenoid are examples of finite total curvature whose
Gauss map omits one and two points of S

2, respectively.
A. Weitsman and F. Xavier in [94] and Y. Fang in [19] have obtained nonexistence

results for complete, nonflat, orientable minimal surfaces in R
3 whose Gauss map

omits three points of S
2, provided that the absolute value of the total curvature is

less than or equal to 16π and 20π, respectively.
Therefore, it left open the following questions:

1. Are there complete nonflat orientable minimal surfaces in R
3 with finite total

curvature whose Gauss map omits three points of S
2?

2. Are there complete nonorientable minimal surfaces in R
3 with finite total cur-

vature whose generalized Gauss map omits one point of RP
2?

Now, we deal with the general problem for complete, orientable, minimal sur-
faces. Mo and Osserman proved the following extension of Fujimoto’s theorem:

Theorem 3.2 (Mo, Osserman [69]) If the Gauss map of a complete orientable
minimal surface takes on five distinct values of S

2 only a finite number of times,
then the surface has finite total curvature.

Proof : We will need the following function-theoretic lemma:

Lemma 3.3 (Fujimoto [22]) Let h(w) be analytic in |w| < R and omits the points
α1, α2, α3, α4. Let ε, ε′ satisfy 0 < 4ε′ < ε < 1.

Then there is a positive constant B depending only on α1, α2, α3, α4, ε, ε
′, such

that
(1 + |h(w)|2) 3−ε

2 |h′(w)|∏4
j=1 |h(w) − αj |1−ε′ ≤ B

2R

R2 − |w|2 .
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We omit the proof of this lemma.

Let X : S → R
3 be a complete nonflat minimal surface whose Gauss map omits

the points α1, α2, α3, α4, α5. We denote (η, g) as the Weierstrass representation of
X.

Up to a rigid motion of R
3, we can assume α5 = ∞. Then the hypothesis of the

theorem implies the existence of a compact set, D, such that g|D is holomorphic and
omits the values α1, α2, α3, α4.

Define
S ′ = {P ∈ S −D / g′ �= 0 at P}, S ′′ = S ′ ∪D.

We consider the new metric

ds2
1 =

∣∣∣∣∣∣∣
f(ξ)

1
1−p
∏4

j=1(g(ξ) − αj)
p(1−ε′)

1−p

g′(ξ)
p

1−p

∣∣∣∣∣∣∣ |dξ|2,
where 0 < 4ε′ < ε < 1, p = 2/(3− ε), and η = f(ξ)dξ. Then it is easy to check that
the above expression is independent of both the choice of local parameter ξ and the
indeterminacy arising from fractional exponents. As f and g are holomorphic, then
ds1 is flat on S ′, and it extends smoothly over S ′′.

Our purpose is to prove that (S ′′, ds2
1) is complete.

We proceed by contradiction. Then, there is a divergent path γ(t) : [0, 1[→ S ′′

with finite length. Without loss of generality, we can suppose that there is a positive
distance d between γ and D. It is clear that either γ(t) is divergent on S or γ(t)
tends to a point where g′ = 0.

If we put g(ξ) ∼ c(ξ− ξ0)
m, m ≥ 1, then ds1 ∼ c′|ξ− ξ0| 2m

ε−1 > c′|ξ− ξ0|−2. Thus,
the length of γ in (S ′′, ds2

1) is infinite, which is absurd.
So, we can assume that γ is divergent in S. Choose t0 such that

∫ 1
t0
ds1 < d/3, i.e.,

the length of γ([t0, 1[) is less than d/3. Consider a small geodesic disk ∆ centered
at γ(t0). As ds2

1 is flat around ∆, then there exists r > 0 such that the exponential
map F : D(0, r) → ∆ is an isometry, where D(0, r) = {z ∈ C / |z| < r} and
F (0) = γ(t0). We can extend F in S ′ as a local isometry to the largest disk possible
D(0, R). Since γ is divergent on S and the length of γ([t0, 1[) is less than d/3, then
R ≤ d/3, and so the distance between F (D(0, R)) and D must be at least 2d/3.
As R is the largest possible and the points g′ = 0 are infinitely far away, there is a
point w0 ∈ ∂D(0, R) such that the image under F of the segment joining 0 and w0

is a divergent curve Γ on S.
To get a contradiction, it suffices to prove that Γ has finite length in the original

metric ds2 in S (recall that this metric is complete). Let h = g ◦ F be the Gauss
map pulled back to the disk D(0, R). Since F (D(0, R)) ⊂ S ′, h omits the values
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α1, . . . , α5 = ∞. As F is a local isometry, one has ds2
1 = |dw|2, i.e., ds2

1 is the
Euclidean metric in D(0, R). Using w as local parameter, then we obtain∣∣∣∣∣f(w)

∏4
j=1(h(w) − αj)

p(1−ε′)

h′(w)p

∣∣∣∣∣ = 1.

Therefore, if C is the segment in D(0, R) corresponding to the curve Γ and L is its
length, we easily deduce from Fujimoto’s Lemma that

2L =
∫

C
|f(w)|(1 + |h(w)|2)|dw| ≤ Bp

∫
C

(
2R

R2 − |w|2
)p

|dw| =
(2B)p

Rp−1

∫ 1

0

dt

(1 − t2)p
.

As p < 1, L is finite, which is absurd.
This contradiction proves that (S ′′, ds2

1) is complete. Since the metric ds2
1 is flat

outside a compact subset of S ′′, then it has finite total curvature. By Theorem
5.1, S ′′ is finitely connected. In particular, g′ has a finite number of zeros and
S is finitely connected. Furthermore, (see [73]) S is conformally equivalent to a
compact Riemann surface S punctured in a finite number of points. Since g is
holomorphic and omits four values in C, Picard’s Theorem implies that g has a
meromorphic extension to S. If we call m the degree of g as holomorphic function
between compact Riemann surfaces, one has (see equality (9))∫

S
KdA = −4πm,

and so (S, ds2) has finite total curvature. This proves the theorem. �

As a consequence of Theorems 3.1 and 3.2, we can obtain Fujimoto’s theorem:

Theorem 3.4 (Fujimoto [22, 23]) The plane is the only complete orientable min-
imal surface in R

3 whose Gauss map omits at least five points of the sphere.

As we have mentioned at the beginning of this section, Fujimoto’s theorem is
sharp for orientable complete minimal surfaces. The same holds in the nonorientable
case (i.e., for the orientable two sheeted cover of a complete nonorientable minimal
surface), as a consequence of the following result:

Theorem 3.5 ([56]) There are complete nonorientable minimal surfaces in R
3 whose

Gauss map omits two points of the projective plane.

We omit the proof.
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4 Complete minimal surfaces with bounded coor-

dinate functions

Calabi asked if it is possible to have a complete minimal surface in R
3 entirely

contained in a halfspace. Jorge and Xavier [37] showed complete nonflat minimal
surfaces contained in slabs of R

3. The proof is based in a ingenious idea of using
Runge’s theorem.

Very recently, Nadirashvili in [70] have used Runge’s theorem in a more elabo-
rate way to produce complete bounded minimal surfaces in R

3. In this section we
summarize Nadirashvili’s techniques (see also [10]) to obtain a complete minimal
disc inside a ball in R

3.
As consequence of the strong halfspace theorem (Theorem 1.7), none of these

examples is properly immersed.
Let D and |dz|2 be the unit disc in C and the Euclidean metric on the disc,

respectively. The space of harmonic maps from D in R
3 is denoted by Har(D,R3).

Moreover, for r ∈ R
+, denote: Dr = {z ∈ C / |z| < r} and Br = {x ∈ R

3 / ‖x‖ <
r}.

Given X : D → R
3 a conformal immersion and U, V ⊂ D, we write:

• ds2
X = λ2

X · |dz|2 as the metric in D induced by X,

• KX as the Gauss curvature of X,

• distX(U, V ) instead of distds2
X
(U, V ).

Next lemma will be very important during the proof of the Main Theorem of
this section.

Lemma 4.1 Let X : D −→ R
3 be a complete minimal immersion satisfying:

(i) (D, ds2
X) is a geodesic disc of radius d > 0,

(ii) X(D) ⊂ Br, r > 0

(iii) X(0) = (0, 0, 0) and KX(z) > 0, ∀z ∈ D.

Then, ∀s, ε > 0, there exists a complete minimal immersion Y : D → R
3 such that:

1. (D, ds2
Y ) is a geodesic disc of radius d+ s,

2. ‖X(z) − Y (z)‖ < ε, ∀z ∈ D1−ε,

3. Y (D) ⊂ BR, where R =
√
r2 + s2 + ε,
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4. Y (0) = (0, 0, 0) and KY (z) > 0, ∀z ∈ D.

The original proof of this lemma can be found in [70]. For a more detailed
exposition, see [10].

Theorem 4.2 (Nadirashvili [70]) There exists a complete minimal immersion
X : D → R

3 satisfying:

1. X(D) is bounded,

2. KX(z) < 0, ∀z ∈ D.

Proof : We consider the sequence:

α1 =
1

2
e

1
2 , αn = e−

1
2n , n ≥ 2.

It is straightforward to check that 1
2
< αn < 1 and

∞∏
n=1

αn =
1

2
.

The first step in the proof of this theorem is to construct a sequence {Xn}n∈N of
minimal immersions from D in R

3 and a sequence of real numbers {an}n∈N, an ∈]0, 1[,
∀n ∈ N, satisfying:

(i) an < an+1 < 1, and an ≥ 1 − 1
n
,

(ii) distXn(0, ∂(Dan)) ≥ 2
3
dn, where dn =

n∑
k=1

1

k
,

(iii) ‖Xn+1(z) −Xn(z)‖ ≤ 1
(n+1)2

, ∀z ∈ Dan ,

(iv) λXn+1(z) ≥ αn λXn(z), ∀z ∈ Dan ,

(v) KXn+1(z) ≤ αnKXn(z), ∀z ∈ Dan ,

We choose as the first term (X1, a1), where X1 : D → R
3 is a minimal immersion

verifying:

• (D, ds2
X1

) is a geodesic disc of radius 1,

• X1(D) ⊂ B1,

• X1(0) = (0, 0, 0) and KX1 < 0;
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and a1 is a real number, 0 < a1 < 1 such that

distX1 (0, ∂(Da1)) ≥
2

3
=

2

3
d1.

Assume that we have constructed (X1, a1), . . . , (Xn, an). Let sn+1 = 1/(n + 1)
and consider {εk}k∈N a sequence in R

+ which converges to 0. We apply Lemma
4.1 to (Xn, sn+1, εk), k ∈ N, and so we obtain a sequence of minimal immersions
{Yk}k∈N satisfying Statements 1–4 in the lemma. From Statement 2 it is obvious
that {Yk}k∈N → Xn uniformly on Dan . Even more, as Yk ∈ Har(D,R3), then for any
multi-index, α, the sequence {Dα Yk}k∈N → DαXn uniformly onDan . So, taking into
account the above assertion, it is clear that {λYk

}k∈N → λXn and {KYk
}k∈N → KXn .

These facts imply the existence of k0 ∈ N, large enough, such that:

• ‖Yk0(z) −Xn(z)‖ ≤ 1
(n+1)2

, ∀z ∈ Dan ,

• λYk0
(z) ≥ αn λXn(z), ∀z ∈ Dan ,

• KYk0
(z) ≤ αnKXn(z), ∀z ∈ Dan .

Hence, we take Xn+1
def
= Yk0. On the other hand, from Lemma 4.1 we obtain

distXn+1(0, ∂(Dan)) = dn + 1
n+1

= dn+1. Thus, we can choose an+1 satisfying:

an < an+1 < 1, distXn+1(0, ∂(Dan+1)) ≥ 2
3
dn+1, and an+1 ≥ 1 − 1

n+1
. So, the pair

(Xn+1, an+1) satisfies conditions (i)–(v).
Observe that the choice of {an}n∈N guarantees that⋃

n∈N

Dan = D. (12)

If K ⊂ D is a compact set, then, using (12), there exists n0 ∈ N such that K ⊂ Dan ,
∀n ≥ n0. Thus, from (ii), {Xn}n∈N is a Cauchy sequence on K.

Using Harnack’s theorem (see [11]) we deduce that {Xn}n∈N converges in the
space Har(D,R3) to an harmonic map X. We are going to see that X is the minimal
immersion that we are looking for.

Claim 1 X : D −→ R
3 is an immersion and KX < 0.

Indeed, it is easy from (12) to see that for any z ∈ D, there exists nz ∈ N such that
z ∈ Dan , ∀n ≥ nz. So, taking (iii) and (iv) into account we have

λXn(z) ≥ αn−1 · · ·αnz λXnz
(z) ≥ 1

2
λXnz

(z), ∀n ≥ nz, (13)

KXn(z) ≤ αn−1 · · ·αnz KXnz
(z) ≤ 1

2
KXnz

(z), ∀n ≥ nz, (14)
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where we are using that
∞∏

n=1

αn =
1

2
. Taking limits in (13) and (14) we obtain

λX(z) ≥ 1
2
λXnz

(z) > 0, and KX(z) ≤ 1
2
KXnz

(z) < 0, for any z ∈ D. This concludes
the proof of this claim.

Claim 2 X(D) ⊂ B3.

From Lemma 4.1, one has Xn(D) ⊂ BRn, where R1 = 1 and Rn =
√
R2

n−1 + s2
n + εn.

Hence, it is straightforward to check that

Rn ≤
√
R2

n−1 +
1

n2
+

1

n2
≤ Rn−1 +

2

n2
.

Applying successively the above inequality we obtain

Rn ≤ 1 +
n∑

k=2

2

k2
≤ 1 +

+∞∑
k=2

2

k2
< 3.

Therefore, Xn(D) ⊂ B3 ∀n ∈ N, and so the statement of the claim holds.

Claim 3 The disc (D, ds2
X) is complete.

Reasoning as in (13), it is possible to prove that

distX(0, ∂(Dan)) ≥ 1

2
distXn(0, ∂(Dan)) ≥ 1

3
dn, ∀n ∈ N.

Therefore, distX(0, ∂(D)) ≥ 1
3
dn, ∀n ∈ N. As limn→+∞ dn = +∞, then we conclude

the proof. �

One of the most interesting open questions as regards to complete bounded
minimal surfaces in R

3 is to construct, if possible, complete minimal surfaces inside
a ball of R

3 with arbitrary genus. This problem has been solved in [53] for minimal
surfaces in a slab.

5 Complete minimal surfaces with finite total cur-

vature

The study of complete minimal surfaces of finite total curvature began with Huber
and Osserman’s theorems (Theorems 5.1 and 5.2). Minimal surfaces of this kind have
some special properties that are not shared by general minimal surfaces. For being
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more precise, complete minimal surfaces with finite total curvature have a quite
controlled asymptotic behavior at infinity. Furthermore, this asymptotic behavior
is surprisingly related with the topology of the surface (Theorem 5.3).

Let X : M −→ R
3 be an isometric minimal immersion of an orientable Rie-

mannian surface (M, ds2) in three dimensional Euclidean space. Write C(M) the

total curvature of X:
∫

M
K dA. As mentioned in Subsection 1.1 M has a conformal

structure in a natural way, and we label (g, η) the Weierstrass data of X. In the
remaining part of this section we suppose M is complete and C(M) > −∞. Under
these assumptions, A. Huber proved:

Theorem 5.1 (Huber [34]) The Riemann surface M is conformally diffeomor-
phic to a compact Riemann surface M punctured in a finite number of points.

Hence, we can write M = M −{P1, . . . , Pn}, and we refer to the points {P1, . . . , Pn}
as the ends of M . We define genus(M)

def
= genus(M).

By using Huber’s theorem, Osserman showed:

Theorem 5.2 (Osserman [72, 73]) The Weierstrass data g and η extend mero-
morphically to M .

Therefore, g has well defined degree and, from (9), it is not hard to prove that
C(M) = −4π deg(g). Furthermore, we can define the normal vector of X at an end
Pi, i ∈ {1, . . . , n}, as the unique vector in S

2 whose stereographic projection is equal
to g(Pi).

The geometry of the ends {P1, . . . , Pn} is strongly controlled by the order of the
poles of Φ at these points.

W. H. Meeks and L. P. Jorge showed how these singularities determine the as-
ymptotic behavior of the minimal surface around each end, giving geometric meaning
to the numbers:

νi = (Maximum{ord(Φj , Pi), j = 1, 2, 3})− 1

where ord(Φj , Pi) is the order of the pole of Φj at Pi, i = 1, . . . n, j = 1, 2, 3. We call
νi as the weight of the end Pi. Since Φ has no real periods, then Residue(Φ, Pi) ∈ R

3,
and so νi ≥ 1.

Theorem 5.3 (Jorge, Meeks [36]) If X : M → R
3 is minimal, complete and of

finite total curvature, then the immersion X is proper.
Moreover, if Υr

def
= X(M)∩S

2(r), then Υr/r consists of n closed curves Γ1, . . . ,Γn

in S
2(1) which converge C1 to closed geodesics γ1, . . . , γn of S

2(1), with multiplicities
ν1, . . . νn, as r goes to infinity. Moreover,

2deg(g) = −χ(M ) +
r∑

i=1

(νi + 1) ≥ n− χ(M),
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and equality holds if and only if each end is embedded.

The last expression in theorem 5.3 is called in mathematical literature the formula
of Jorge and Meeks.

We say that the end Pi, i ∈ {1, . . . , n} is embedded if and only if there exists
a neighborhood Di ⊂ M of this point such that X|Di−{Pi} : Di − {Pi} → R

3 is an
embedding. This is equivalent to the fact νi = 1. In this case we have the following
result:

Theorem 5.4 (Schoen [87]) Suppose that Pi, i ∈ {1, . . . , n} is embedded, and
assume N(Pi) = (0, 0,±1). Then, outside of a compact set, X(Di−{Pi}) is a graph
over the exterior of a bounded domain in the (x1, x2)-plane with the following series
expansion:

x3(x1, x2) = ai log(r) + bi +
cix1 + dix2

r2
+O

(
1

r2

)
, (15)

where r =
√
x2

1 + x2
2. Furthermore, Φ1, Φ2 have poles of order two at Pi and have

no residues, while Φ3 is either regular (⇔ ai = 0) or has a simple pole at this point.

Remark 1 There are no complete minimal surfaces with finite total curvature con-
tained in a halfspace (see also Theorem 1.7). Indeed, from Theorem 5.4 such a
surface has a coordinate function bounded either from above or from below. Since
M is parabolic (see Theorem 5.1), this coordinate function is constant, and so, the
surface is a plane. Then, it is clear that the only complete minimal surface with
finite total curvature and one embedded end is the plane.

From (15), it is clear that ai �= 0 if and only if X(Di − {Pi}) is asymptotic to a
half catenoid, and ai = 0 if and only if X(Di − {Pi}) is asymptotic to a plane.

Definition 2 We say that an embedded end Pi, i ∈ {1, . . . , n}, is:

• A catenoid end iff ai �= 0.

• A planar end iff ai = 0.

If Pi, i ∈ {1, . . . , n} is a catenoid end, then we call ai the logarithmic growth
associated to Pi.

If the number νi is equal to 3 and the Gauss map is regular at Pi (i.e., Pi is not
a ramification point of g) then it is not hard to prove that X(M) is asymptotic to
the Enneper’s surface around Pi. In general, we say that Pi is an Enneper end iff
νi = 3. Other values for νi and the ramification number of g at Pi yield different
asymptotic behaviors of X around the end Pi.

Any properly immersed minimal surface satisfies the monotonicity formula (see
[45]):
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Theorem 5.5 (Monotonicity formula) Let X : M → R
3 be a properly immersed

connected minimal surface. Consider A(r) the area of the part of X(M) inside a
ball of radius r > 0 centered at p ∈ R

3. Then,

A(r)

πr2

is a nondecreasing function of r.

In case of finite total curvature, we can obtain the following easy consequence of the
preceding result and Theorem 5.3:

Theorem 5.6 Let X : M → R
3 be a connected complete minimal immersion with

finite total curvature. Following Theorem 5.3, define

n(M) =
n∑

i=1

νi.

Then, for any p ∈ R
3, the cardinal number of X−1(p) is at most n(M)− 1, with the

sole exception of the case X(M) is a plane.

During the last century or more, the only known complete orientable minimal
surfaces with finite total curvature were the plane, the catenoid and Enneper’s sur-
face, and Henneberg’s example the only nonorientable one. At the beginning of
the 80’s a large quantity of new examples started to appear thanks to the works of
Chen, Gackstatter, Costa, Hoffman, Meeks and Karcher, among others. In the next
three subsections we give a brief description of the most remarkable ones. All the
examples will be constructed by using the Weierstrass representation, i.e., Theorem
1.2.

5.1 Existence of minimal surfaces of least total curvature

Let X : M → R
3 be a complete minimal surface with finite total curvature. We

say that X has critical total curvature iff |C(M)| ≤ |C(M ′)|, where X ′ : M ′ → R
3 is

any complete minimal surface with the same genus as M . Looking at the formula of
Jorge and Meeks, this means that the degree of the Gauss map is the least possible
among the surfaces with the same genus.

Using Theorem 5.1, write M = M − {P1, . . . , Pn} , and recall that Theorem
5.3 implies νi ≥ 1, i = 1, . . . , n. Taking into account Remark 1 and the formula
of Jorge and Meeks, it is not hard to deduce that |C(M)| is critical if and only if
C(M) = −4π(genus(M) + 1) (i.e., degree(g) = genus(M) + 1), and so either n = 1
and ν1 = 3 or n = 2 and ν1 = ν2 = 1. If the genus of M is not zero, the second case
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cannot occur (see Theorem 5.16 in Subsection 5.4), and so only the first one holds.
Thus, surfaces of this kind have only one end of Enneper type.

All these facts were observed by D. Hoffman, who conjectured that there should
be such examples of every genus. In the following paragraphs, we summarize some
results that give an affirmative answer to the question.

5.1.1 Chen and Gackstatter’s surface of genus one

The following is an example given by Chen and Gackstatter in [8]. Let M be the
algebraic curve of genus one

M =
{
(z, w) ∈ C

2
: w2 = z(z2 − 1)

}
,

with the natural complex structure (see [88]). Define

M = M − {(∞,∞)}, g = A
w

z
, η = B

z

w
dz,

where A ∈ R−{0} and B ∈ C, |B| = 1. If we define Φj as in (4), then equation (3)
holds on M .

Following Theorem 1.2, we have to prove that it is possible to find A and B in
such a way that the 1-forms

Φ1 =
B

2A

(
z

w
− A2w

z

)
dz,

Φ2 =
B i

2A

(
z

w
+ A2w

z

)
dz,

Φ3 = AB dz,

have no real periods.
The existence of real periods must be searched among the cycles that generate

the first homology group of M . This group is generated by the curves γ1, γ2 and β
defined as follows:

• γi is a lift to M of the simple closed curve ci in the z-plane illustrated in Figure
8, i = 1, 2.

• β is the boundary of a conformal disc around the point (∞,∞).

The period problem is equivalent to solve the following system of equations:

Real
∫

γj

Φk = 0, j = 1, 2, k = 1, 2, 3
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Figure 8: The curves c1 and c2.

Real
∫

β
Φk = 0, k = 1, 2, 3.

The 1-form Φ3 is exact, and so all its periods vanish. Moreover, since the 1-forms Φk

are meromorphic on M and their only pole is the end (∞,∞), then their residues
at this point vanish too. This means that

∫
β Φk = 0, k = 1, 2, 3.

Therefore, it suffices to solve

Real
∫

γj

Φk = 0, j = 1, 2, k = 1, 2. (16)

If we label fj =
∫
γj

z
w
dz, and gj =

∫
γj

w
z
dz, j = 1, 2, then elementary algebraic

arguments imply that (16) is equivalent to:

f1g2 − f2g1 = 0, and A2 = B2f1/g1. (17)

Note that we have to solve only the first equation of (17), and then choose A and
B satisfying the second one.

To do this, consider the holomorphic automorphism J((z, w)) = (−z, iw). With-
out loss of generality, we can suppose that γ2 = J∗(γ1). Observe also that J∗( z

w
dz) =

−i z
w
dz and J∗(w

z
dz) = iw

z
dz. Therefore, f2 = −if1 and g2 = ig1, and so the first

equation in (17) holds.

In fact, it is not hard to see that fj/gj ∈ R
+, and so B = ±1, A = ±

√
fj/gj.

The different choices of the sign produce, up to a rigid motion, the same surface.
The arising surface has the following properties:

• deg(g) = 2, and so C(M) = −8π.

• M has only one end of Enneper type (i.e., its weight is 3), and M is asymptotic
to Enneper’s surface.
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• The conformal transformations on M : J((z, w)) = (−z, iw) and S((z, w)) =
(z, w), induce on X(M) a rotation about the x3-axis by angle π

2
followed by

a symmetry with respect to the plane x3 = 0 and a symmetry with respect
to the plane x2 = 0, respectively. Following Theorem 1.4, these transforma-
tions generate the symmetry group of the surface, which contains 8 elements.
Therefore, Chen-Gackstatter’s surface of genus one has the same symmetries
as Enneper’s surface.

5.1.2 Chen and Gackstatter’s surface of genus two

The example that will be described is also due to Chen and Gackstatter [8].
Let Ma, a ∈]1,+∞[, be the compact Riemann surface:

Ma =

{
(t, w) ∈ C

2
: w2 =

t(t2 − a2)

t2 − 1

}

and label ∞ = (∞,∞), 0 = (0, 0), ±1 = (±1,∞), ±a = (±a, 0).
Consider the following Weierstrass data:

Ma = Ma − {∞}, g = A w , ηg = Bdt , A ∈ R, B ∈ C, |B| = 1

on Ma. Then, defining Φj , j = 1, 2, 3 as in (4), the inequality (3) holds. Therefore,
from Theorem 1.2, if Φj , j = 1, 2, 3, have no real periods, we get a minimal immersion
X : Ma → R

3.
The main achievement of this paragraph is to show that there exists a0 ∈]1,+∞[

such that X : Ma0 → R
3 is well-defined for a suitable choice of the constants A, B.

First, define the following mappings:

J, S : Ma −→Ma

J(t, w) = (−t, iw) S(t, w) = (t, w)

Note that J is holomorphic and has order 4, and S is an antiholomorphic involution.
So, they generate a group with 8 elements which is isomorphic to D(4). Moreover,
J and S fix 0, ∞, and J2 fixes 1, −1, a and −a.

To write the period problem easily, we need to do a complete description of the
first homology group of the surface. Let αj(s), βj(s), j = 1, 2, be the oriented simple
closed curves in the t-plane illustrated in Figure 9. We assume that α1(0) ∈ R,
α1(0) > a, α2(0) ∈ R, 1 > α2(0) > 0, β1(0) ∈ R, 0 > β1(0) > −1, β2(0) ∈ R,
a > β2(0) > 1. Let aj(s) be the unique lift of αj(s) to Mk a satisfying w(aj(0)) ∈ R+,
j = 1, 2. Denote in the same way as bj(s), the corresponding lifts of βj(s) with initial
conditions w(bj(0)) ∈ iR+, j = 1, 2.
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Figure 9: The curves αi and βi, i = 1, 2.

Then observe that
J∗(bi) = ai, i = 1, 2 (18)

Elementary topological arguments give that the set B = {ai, bi i = 1, 2} is a
homology basis on Ma. To solve the period problem, we have to prove that Φ has
no real periods on the curves in B.

Let τ1, τ2 be the following 1-forms on Ma

τ1 =
dt

w
, τ2 = w dt.

Observe

Φ1 =
B

2A
(τ1 − A2τ2)

Φ2 =
i B

2A
(τ1 + A2τ2)

and Φ3 is exact.
So the period problem associated to (Φ1,Φ2,Φ3) deals with the following func-

tions on ]1,+∞[

f1(a) =
1

2

∫
b1
τ1, f2(a) =

1

2

∫
b2
τ1, g1(a) =

1

2

∫
b1
τ2, g2(a) =

1

2

∫
b2
τ2.

It is not hard to see that

J∗(τ1) = iτ1, J
∗(τ2) = −iτ2, (19)

Observe that fi(a), gi(a) > 0 i = 1, 2. From (18)∫
ai

τ1 = 2ifi(a),
∫

ai

τ2 = −2igi(a), i = 1, 2.

We need the following technical lemma.
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Lemma 5.7 The asymptotic behavior of fi, gi, i = 1, 2 at 1, ∞ is given as follows:

(i)

lim
a→1

f1(a)

a− 1
=
π

2
, lim

a→∞ f1(a)a
− 1

2 =
1

2
B

(
1

2
,
3

4

)
.

lim
a→1

f2(a) = 2, lim
a→∞ f2(a)a =

1

2
B

(
3

2
,
1

4

)
.

(ii)

lim
a→1

g1(a)

a− 1
=
π

2
, lim

a→∞ g1(a)a
− 3

2 =
1

2
B

(
3

2
,
1

4

)
.

lim
a→1

g2(a) =
2

3
, lim

a→∞ g2(a)a
−1 =

1

2
B

(
1

2
,
3

4

)
.

where B is the classical Beta function.

Recall that the Beta function is defined for m,n ∈ C, Re(m) > 0, Re(n) > 0, as
follows:

B (m,n) =
∫ 1

0
tm−1(1 − t)n−1dt

This is related to the Gamma function according to

B (m,n) =
Γ(m)Γ(n)

Γ(m+ n)
.

Proof : From the definition of f1 it follows that

f1(a) =
∫ a

1

√√√√ t2 − 1

t(a2 − t2)
dt

Several changes of variables give

f1(a) =
∫ a

1

√√√√ t2 − 1

t(a2 − t2)
dt =

1

2

∫ a2

1
u−

3
4

√
u− 1

a2 − u
du =

1

k
(a2−1)

∫ 1

0

((a2 − 1)s+ 1)−
3
4
√
s√

1 − s
ds

Hence,

lim
a→1

f1(a)

a− 1
=
∫ 1

0

√
s

1 − s
ds =

π

2
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Using that lim
a→∞ f1(a) = lim

b→0
f1

(
1

b

)
we obtain

lim
a→∞ f1(a)a

−1
2 = lim

b→0

1 − b2

2

∫ 1

0

((1 − b2)s+ b2)−
3
4
√
s√

1 − s
ds =

1

2

∫ 1

0
s−

1
4 (1−s)− 1

2ds =
1

2
B

(
1

2
,
3

4

)

Similar arguments and changes of variables complete the above assertions for gi,
i = 1, 2. �

Let us define ϕ : R+ − {1} −→ R,

ϕ(a) =
f2(a)

f1(a)
− g2(a)

g1(a)
.

As a consequence of the preceeding analysis we can state the following lemma:

Lemma 5.8 The function ϕ vanishes at a point a0 ∈]1,+∞[.

Proof : From Lemma 5.7 we deduce that:

lim
a→1+

ϕ(a) =
8

3π
lim

a→1+

1

a− 1
= +∞

lim
a→+∞ϕ(a)a

1
2 = lim

a→+∞

(
1

a

f2(a)a

f1(a)a
− 1

2

− g2(a)a
−1

g1(a)a
− 3

2

)
= −B

(
1
2
, 3

4

)
B

(
3
2
, 1

4

) < 0

An intermediate value argument completes the proof. �

Now, we are able to solve the period problem. The immersion X is well defined

if and only if Real
(∫

d
Φj

)
= 0, for every closed curve d in Ma and j ∈ {1, 2, 3}.

As Φj has only one singularity at ∞, then Residue(Φj ,∞) = 0, j = 1, 2, 3. So, it
suffices to prove:

Real
(∫

d
Φj

)
= 0, j = 1, 2, 3

for any closed curve, d, lying in the homology basis B ofMk a defined at the beginning
of this section.

It is clear that J∗ (tΦ) = R · (tΦ), where R ∈ O(3,R) is the matrix

R =

 0 1 0
−1 0 0
0 0 −1
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Hence using the last equality and (18), Real
(∫

d
Φ
)

= �0, ∀d ∈ B if and only if:

Real
(∫

b1
Φ
)

= Real
(∫

b2
Φ
)

= �0.

Using the definitions of fi, i = 1, 2, the last equations hold if and only if B2 = 1 and

f1(a) = A2g1(a)

f2(a) = A2g2(a)

for some A ∈ R, a ∈]1,+∞[. As fi(a), gi(a) ∈ R
∗, ∀a ∈]1,+∞[, then the existence

of a, A satisfying the former is equivalent to solving the following equation

f1(a)g2(a) − f2(a)g1(a) = 0 (20)

and putting A2 =
f1(a)

g1(a)
> 0. Recalling the definition of the function ϕ, this means

that ϕ(a) = 0. Using Lemma 5.8 we conclude the period problem.

Figure 10: (a) Chen and Gackstatter’s surface of genus one. (b) Chen and Gack-
statter’s surface of genus two.

The arising surface has the following properties:

• deg(g) = 3, and so C(M) = −12π.

• M has only one end of Enneper type (i.e., its weight is 3), asymptotic to
Enneper’s surface.
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• The conformal transformations on M : J((t, w)) = (−t, iw) and S((t, w)) =
(t, w), induce on X(M) a rotation about the x3-axis by angle π

2
followed by a

symmetry with respect to the plane x3 = 0 and a symmetry with respect to
the plane x2 = 0, respectively. Following Theorem 1.4, these transformations
generate the symmetry group of the surface, which contains 8 elements. There-
fore, Chen-Gackstatter genus two minimal surface has the same symmetries
as Enneper’s surface.

5.1.3 The surfaces of Espirito-Santo, Thayer and Sato

These examples are due to Espirito-Santo [18] (genus three), Thayer [89] (genus less
than or equal to 35) and Sato [86] (arbitrary genus).

The first two authors solved the period problem by giving numerical arguments.
However, Sato used a homotopy argument, which can be thought of as an interme-
diate value theorem of several variables.

Figure 11: The surface of Espirito-Santo.

We need to introduce the following notation.
Let

Fj(z, a2, . . . , aj) = zΠ
j/2
m=1(z

2 − a2
2m)Π

(j+1)/2
n=1 (z2 − a2

2n−1)
−1,

where j, k,m, n ∈ N, j ≥ 3, a1, . . . , aj ∈ R, 1 = a1 < a2 < . . . < aj. Then, put

M = {(z, w) ∈ C
2

: w2 = Fj(z, a1, . . . , aj)},
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with the natural complex structure, and observe that this surface has genus j. Write

Mj = M j − {(∞,∞)}, even j,

Mj = M j − {(∞, 0)}, odd j.

Finally, define the following meromorphic data on Mj :

g = cjw, Φ3 = ηg = dz,

where cj ∈ R. Note that g has degree j + 1.
As above, the existence of real periods must be searched among the cycles that

generate the first homology group of Mj . Hence, we need a homology basis of Mj .
A natural homology basis consists of the curves β1, . . . , β2j obtained, respectively,
as the lifts to Mj of the segments

[−aj ,−aj−1], [−aj−1,−aj−2], . . . , [−a1, 0], [0, a1], . . . , [aj−2, aj−1], [aj−1, aj]

in the z-plane, together with a Jordan curve γ lying in a conformal disc centered at
the only end of Mj (and containing no points in {z−1(±ai), i = 1 . . . , j} ∪ {(0, 0)}).

Since Mj has only one end, the residue of Φi at this end is 0, i = 1, 2, 3, and so
γ does not generate any real period.

On the other hand, the holomorphic transformations

J(z, w) = (−z, iw), S(z, w) = (z, w)

are well defined on Mj . Taking into account their behavior on the curves βk, k =
1, . . . 2j, and the 1-forms Φi, i = 1, 2, 3, it is not hard to deduce that Φ has no
real periods on M if and only if it has no real periods on the curves αi

def
= β2i−1,

i = 1, . . . , j.
Note that Φ3 is exact, and define

Al =
∫

αl

dz

w
, Bl =

∫
αl

w dz, l = 1, . . . , j.

Observe that the quotient Al

Bl
is well defined and positive, l = 1, . . . , j.

Reasoning as in the above paragraphs, the immersion X = Real
∫

Φ is well
defined if and only if

c2j =
A1

B1

= · · · =
Aj

Bj

. (21)

Furthermore, denote

ϕj l(a2, . . . , aj)
def
=
Al+1

Bl+1
− Al

Bl
, l = 1, . . . , j − 1.
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With this new notation, (21) becomes

ϕj l(a2, . . . , aj) = 0, l = 1, . . . , j − 1, (22)

for a suitable choice of cj. If Sj = {(a2, . . . , aj) ∈ R
j−1 : 1 < a2 < . . . < aj}, we

define
P : Sj −→ R

j−1

P(a2, . . . , aj) = (ϕj 1(a2, . . . , aj), . . . , ϕj j−1(a2, . . . , aj)) .

So, it suffices to prove that P vanishes at least once.

Figure 12: The Thayer-Sato surface of genus five.

The proof of this fact is quite technical, and it can be found in [86]. We are
only going to give a brief sketch of it. The main idea consists of finding a compact
polyhedral domain K ⊂ Sj, K homeomorphic to the unit ball

Bj−1 = {(a2, . . . , aj) ∈ R
j−1 : ||(a2, . . . , aj)|| ≤ 1},

such that:

• 0 /∈ P(∂(K)),

• r ◦ (P|∂(K)) : ∂(K) → ∂(Bj−1) has nonzero topological degree, where r(x) =
x

||x|| .

Then, a homotopy argument leads to the existence of a point in K − ∂(K) where P

vanishes.
The arising surface has the following properties:
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• deg(g) = j + 1, and so C(M) = −4(j + 1)π.

• M has only one end of Enneper type (i.e., its weight is 3), asymptotic to
Enneper’s surface.

• The conformal transformations on M : J((z, w)) = (−z, iw) and S((z, w)) =
(z, w), induce on X(M) a rotation about the x3-axis by angle π

2
followed by

a symmetry with respect to the plane x3 = 0 and a symmetry with respect
to the plane x2 = 0, respectively. Following Theorem 1.4, these transforma-
tions generate the symmetry group of the surface, which contains 8 elements.
Therefore, the surface has the same symmetries as Enneper’s surface.

Remark 2 Weber and Wolf in [92] have also constructed minimal surfaces with
arbitrary genus and critical total curvature. They develop Teichmüller theoretical
methods to produce minimal surfaces which have a low degree Gauss map for their
genus.

Uniqueness theorems for surfaces of this kind are known only when the genus
is zero or one (see the following subsection). Therefore, although it is expected, we
cannot assert whether the Weber and Wolf surfaces coincide with Sato’s ones or not.

5.2 New families of examples

This section is devoted to review some families of orientable minimal surfaces with
finite total curvature which are interesting from different points of view. So, we
describe surfaces with arbitrary genus and high symmetry group. We also state a
general existence theorem for nonrigid minimal surfaces.

As we will see, the period problem for highly symmetric minimal surfaces be-
comes quite easy. This is due to the fact that the rotational symmetry acts as a
cyclic group on the generators of the first homology group of the surface, thereby
reducing the period problem.

Examples derived from Chen-Gackstatter genus one surface. Karcher in
[39] generalized the Cheng-Gackstatter genus one surface by increasing the order of
the normal rotational symmetry from 2 to k ∈ N. This also increases the genus from
1 to k−1, and the weight of the end from 3 to 2k−1. This technique was introduced
before by Hoffman and Meeks in [32]. To be more precise, for each k ∈ N, k > 2,
consider the following Weierstrass data:

Mk =

{
(z, w) ∈ C

2
: wk =

z2 − 1

z

}
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Mk = Mk − {(∞,∞)}, g = Awk−1, ηg = dz,

where A ∈ R − {0}. To solve the period problem, define the conformal transforma-
tions on Mk:

J(z, w) = (−z, eπi
k w), S(z, w) = (z, w),

and observe that:
J∗(tΦ) = R · (tΦ), S∗(tΦ) = S · (tΦ), (23)

where:

R =

 cos π
k

sin π
k

0
− sin π

k
cos π

k
0

0 0 −1

 S =

 1 0 0
0 −1 0
0 0 1


We are looking for a homology basis of Mk. Let α1(s), β1(s) be the oriented

simple closed curves in the t-plane illustrated in Figure 13. We assume that α1(0) ∈
R, α1(0) > 1, β1(0) ∈ R, 0 > β1(0) > 1. Let a1(s) be the unique lift of α1(s) to Mk

satisfying w(a1(0)) ∈ R+. Denote in the same way as b1(s), the corresponding lift
of β1(s) with initial condition arg(w(b1(0))) = π

k
.

Figure 13: The curves α1 and β1.

Then observe that
J∗(a1) = b1, S∗(a1) = −a1 (24)

Define also c as the boundary of a closed conformal disc around the end (∞,∞).
If we label aj = (J j)∗(a1), (j = 0, . . . , 2k − 1), then

B = {aj , j = 0, . . . , 2k − 1} ∪ {c}

generates the homology of Mk. Since the residue at the end of Φ vanishes and
Φ3 is exact, it suffices to check that Φ1 and Φ2 have no real periods along aj ,
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j = 0, . . . , 2k − 1. Taking (23) into account, it is not hard to see that this period
problem reduces to: ∫

a1

η =
∫

a1

ηg2.

This equality easily holds for a suitable choice of A.
The arising surface has the following properties:

• genus(M) = k − 1, deg(g) = 2(k − 1), and so C(M) = −8(k − 1)π.

• M has only one end and its weight is 2k − 1.

• The conformal transformations on M : J and S, induce on X(Mk) a rotation
about the x3-axis by angle −π

k
followed by a symmetry with respect to the

plane x3 = 0 and a symmetry with respect to the plane x2 = 0, respectively.
Following Theorem 1.4, these transformations generate the symmetry group
of the surface, which contains 4k elements.

Thayer and Sato families. Combining an extension of Sato’s idea with Karcher’s
generalization to allow for higher weight on the ends, Thayer, and independently
Sato, produced the Weierstrass data for a countable collection of surfaces Mp k for
p, k ∈ N, p ≥ 0, k ≥ 2. These Weierstrass representation are:

Mp k =
{
(z, w) / wk = Fp(z, q1, q2, . . . , qp)

}
,

Mp k = Mp k − {(∞,∞)}, g = Awk−1, η g = dz,

where A, qj ∈ R, with A > 0, 1 = q1 < q2 < · · · < qp, and

Fp(z, q1, q2, . . . , qp) =


z
∏m

l=1
z2−q2

2l

z2−q2
2l−1

, if p = 2m,

z
z2−q2

p

∏m
l=1

z2−q2
2l

z2−q2
2l−1

, if p = 2m+ 1,

In [89], Thayer presented numerical results suggesting that the period problems
were solvable for p ≤ 34, k ≤ 9. Later, Sato [86] obtained a rigorous proof for the
existence of these examples, which is similar in style to that described in paragraph
5.1.3.

The surface Mp k has genus p(k−1), one end of weight 2k−1 and the symmetry
of the Karcher’s generalized Enneper surface with the same weight at the end.
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Figure 14: Thayer’s surface for p = 3 and k = 4.

Examples derived from the Chen-Gackstatter genus two surface. The
authors of this survey and D. Rodŕıguez [57] exhibited a family of complete minimal
surfaces X : Mk → R

3 of genus k, k ≥ 2, k even, that generalizes the Chen-
Gackstatter genus two example. Except in the case of k = 2 which corresponds to
Chen and Gackstatter’s example, the examples do not lie in any of the families of
surfaces discovered by Thayer, Sato and Weber-Wolf.

Summarizing, the surfaces Mk have the following properties:

(i) The Weierstrass data (Mk, g, ηg) of X are:

Mk = Mk − {(∞,∞)},

where

Mk =

{
(t, w) ∈ (C ∪∞)2 : w2 =

t(tk − ak)

tk − 1

}
, a ∈]1,+∞[,

and
g = A tk/2−1w , ηg = tk/2−1dt , A ∈ R − {0}, .

(ii) C(Mk) = −4(2k − 1)π.

(iii) X(Mk) has 4k symmetries.
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(iv) X(Mk) intersects the (x1, x2)-plane in k straight lines meeting at equal angles at
the origin. Moreover the symmetry group Sym(Mk) is generated by a rotation
by angle π/k around the x3-axis followed by a symmetry with respect to the
(x1, x2)-plane and a symmetry with respect to the (x1, x3)-plane.

(v) X(M2) is the genus two Chen-Gackstatter example.

In [57] the authors proved that there exists a unique a ∈]1,+∞[ solving the
period problem. The ideas are similar to those in paragraph 5.1.2.

Nonrigid minimal surfaces: Pirola’s surfaces. Using methods from Algebraic
Geometry, Pirola have proved:

Theorem 5.9 (Pirola [80]) Let M be a compact connected Riemann surface and
Z be a nonempty finite subset of M . Then, there is a complete nonrigid minimal
immersion X : M − Z → R

3 with finite total curvature.

Looking at Theorem 1.3, the immersion X is nonrigid if and only if the 1-forms Φj ,
j = 1, 2, 3, in the Weierstrass representation are exact.

Minimal surfaces with catenoid ends. In this paragraph we follow the notation
introduced by Cosin and Ros in [12]. A properly immersed minimal surface with r
embedded ends will be called an r-oid. Among these kinds of surfaces, we emphasize
the following examples:

• The Jorge-Meeks r-oid with symmetry group Dr × Z2 [36].

• The r-oids with high genus by Berglund and Rossman [1, 85].

• The genus zero Platonoids with symmetry groups isomorphic to the symmetry
group of the Platonic solids [99, 40, 90].

It is natural to state the following Plateau problem at infinity:

Given a balanced finite system of planes and halfcatenoids in R
3 and a

nonnegative integer g, find a r-oid of genus g whose ends are asymptotic,
up to translations, to the given data.

By definition, we say that a system of planes and halfcatenoids is balanced if and
only if the sum of the flux vectors (see Paragraph 6.2.1) is zero. Classical theory of
compact Riemann surfaces says that any minimal surface with finite total curvature
and embedded ends is balanced. This is an easy consequence of the fact that the
sum of the residues of a meromorphic 1-form on a compact Riemann surface is
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zero. From a geometrical point of view, the flux of a halfcatenoid is the value of
its normal vector at infinity times for the length of its neck and the flux of a plane
is zero. Kusner was the first author who proposed the above problem in its right
terms.

Figure 15: Jorge and Meeks’ four-oid.

In the genus zero case, Kato, Umehara and Yamada [41, 42, 43] reduce the
above Plateau problem at infinity, using Weierstrass representation, to a system of
algebraic equations. So, they prove that, for generic data, this problem admits a
solution.

Let X : M → R
3 be an r-oid. Then M is conformally diffeomorphic to M −

{P1, . . . , Pr}, where M is compact. We will say that M is Alexandrov embedded if
M bounds a compact 3-manifold Ω and the immersion X extends to a proper local
diffeomorphism f : Ω − {P1, . . . , Pr} → R

3. In the line of Kato-Umehara-Yamada
theorems, Cosin and Ros [12] have obtained the existence of a unique one genus zero
r-oid, r ≥ 3, satisfying:

1. The normal vectors at the ends lie in the plane x3 = 0.

2. The surface is Alexandrov-embedded and symmetric with respect to the plane
x3 = 0.

3. The ends form an increasing sequence in the symmetry curve of the surface.

Minimal surfaces with embedded planar ends. Let X : M → R
3 a complete

minimal immersion with finite total curvature. Then (reinterpreting Theorems 5.1
and 5.2) there is associated to X a C1,α immersion of a compact Riemann M into
S

3,
X : M → S

3 ≡ R
3 ∪ {∞},
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such that M = M − {P1, . . . , Pn} and X|M = X. The immersion X is possibly
branched at the ends P1, . . . , Pn. However, if the ends are embedded and asymptotic
to planes, Bryant [4] observed that X is regular at the ends. Furthermore, this
author also noted that these surfaces give extrema for the Willmore functional:
W =

∫
H2 dA.

Concerning minimal surfaces with embedded flat ends, we know the following
results:

• There exist examples of genus zero and 4, 6 and n ends, n ≥ 8. In case of 4
and 6 ends, the classification is known [4, 47, 74].

• There are no examples of genus zero and 3, 5, and 7 ends [5].

• The moduli space of genus zero examples with 2p ends, 2 ≤ p ≤ 7, has
dimension 4(p− 1) [5].

• There exist rectangular tori with four ends [14].

• There is a real two-dimensional family of four-ended immersed examples on
each conformal torus [46].

• There are no three-ended tori [46].

Concerning to the last point, Kusner conjectured that:

Conjecture 1 (Kusner) There are no complete, orientable, minimal surfaces with
finite total curvature and three embedded planar ends.

In genus two case, Pirola [81] have obtained a partial answer to this conjecture, by
proving that there are no three-ended untwisted genus two surfaces.

5.3 Nonorientable examples

Let X ′ : M ′ → R
3 be a complete nonorientable minimal immersion with finite

total curvature. We call (M, I, g, η) the Weierstrass data of X ′ (for more details see
Subsection 1.1).

Under these assumptions, using Huber’s and Osserman’s theorems (see Theorems
5.1 and 5.2), we obtain that M is conformally diffeomorphic to a compact Riemann
surface M punctured in a finite number of points {P1, . . . , Pr} and (g, η) extends
meromorphically toM . Furthermore, I extends meromorphically to M and we have:

r = 2s, {P1, . . . , Pr} = {Q1, . . . , Qs, I(Q1), . . . , I(Qs)}.
Therefore, g has a well defined degree and C(M) = −4π deg(g). Let G : M ′ → RP

2

be the generalized Gauss map. As we mentioned in Subsection 1.1, the following
diagram is commutative
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M ′
RP

2

CM

�

�

� �
p p0

G

g

where p0 : C → RP
2 ≡ (C/〈I0〉) is the natural projection, and I0(z) = −1/z.

As deg(p) = deg(p0) = 2, then deg(G) is also well-defined and deg(g) = deg(G).
In particular C(M ′) = −2π deg(G)

Note that

M
′
=
M

〈I〉
is a compact nonorientable conformal surface, and

M ′ = M
′ − {p(Q1), . . . , p(Qs)}

On the other hand, Jorge-Meeks formula can be reformulated as follows:

deg(g) = −χ(M
′
) +

s∑
i=1

(νi + 1) (25)

where
νi = Maximum{ord(Φj , Qi), j = 1, 2, 3} − 1

and ord(Φj, Qi) is the order of the pole of Φj at Qi.
In the nonorientable case, we have stronger restrictions on the topology of M ′

(or M). Meeks showed that:

Theorem 5.10 (Meeks [62]) Let M
′
be a compact nonorientable conformal sur-

face, and M ′ = M
′ − {P1, . . . , Ps}. If X ′ : M ′ → R

3 is a complete minimal im-
mersion with finite total curvature, then the Euler characteristic χ(M

′
) of M

′
and

C(M ′)/2π are congruent modulo 2.

This theorem is consequence of the following topological lemma.

Lemma 5.11 (Meeks [62]) Let M1 andM2 be two compact surfaces without bound-
ary, and consider p : M1 → M2 a branched covering map. Then:

1. χ(M2) odd implies that χ(M1) and deg(p) are both either even or odd.

2. χ(M2) even yields that χ(M1) is even too.
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The proof of this result can be found in the above mentioned Meek’s article, and we
omit it.

Proof of Theorem 5.10: Consider G : M
′ → RP

2 the generalized Gauss map of X ′.
Then G is a branched covering map. Taking into account that χ(RP

2) = 1, we apply
Lemma 5.11 and obtain deg(G) = −C(M ′)/(2π) ≡ χ(M

′
)(mod 2). �

As a consequence of the monotonicity formula (Theorem 5.5), Kusner proved the
following theorem:

Theorem 5.12 (Kusner [47]) Let X ′ : M ′ → R
3 be a connected complete nonori-

entable minimal immersion with finite total curvature. Following (25), define

n(M ′) =
n∑

i=1

νi.

Then, for any p ∈ R
3, the cardinal number of X ′−1(p) is at most n(M ′) − 1.

No properly embedded surface in R
3 is nonorientable. Hence, and as a conse-

quence of Theorem 5.12, we have

Corollary 5.13 (Kusner [47]) There are no complete nonorientable minimal sur-
faces with finite total curvature and two embedded ends.

5.3.1 Nonorientable minimal surfaces of least total curvature

Let X ′ : M ′ → R
3 be a complete nonorientable minimal surface with finite total

curvature. As in the orientable case, we say that X ′ has critical total curvature iff
|C(M ′)| ≤ |C(M ′′)|, where X ′′ : M ′′ → R

3 is any complete nonorientable minimal
surface with the same genus as M ′. Looking at the formula of Jorge and Meeks
(25), this means that the degree of the generalized Gauss map is the least possible
among the surfaces with the same genus.

We know that M ′ = M
′ − {P1, . . . , Pn} , and from Theorem 5.3 we have

νi ≥ 1, i = 1, . . . , n. Taking into account Remark 1 and the formula of Jorge
and Meeks (25), it is not hard to deduce that |C(M ′)| is critical if and only if
C(M ′) = −2π(genus(M ′)+2) (i.e., degree(G) = genus(M ′)+2), and so either n = 1
and ν1 = 3 or n = 2 and ν1 = ν2 = 1. The second case cannot occur (see Corollary
5.13 ), and so only the first one holds. Thus, surfaces of this kind have only one end
of weight 3.

Meeks’ minimal Möbius strip. We consider M = C − {0} and I(z) = −1/z.
Define

g(z) = z2 z + 1

z − 1
,
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η = i
(z − 1)2

z4
dz,

So, the Weierstrass 1-forms are

Φ1 =
i

2

[
(z − 1)2

z4
− (z + 1)2

]
dz,

Φ2 = − 1

2

[
(z − 1)2

z4
+ (z + 1)2

]
dz,

Φ3 = i
z2 − 1

z2
dz.

which obviously satisfy (3) and (8). Furthermore, it is clear that

Residue(Φ, 0) = Residue(Φ,∞) = 0.

Hence, Φ has no real periods, and so the minimal immersion X : M → R
3, X =

Real(
∫

Φ) is well defined.
As deg(g) = 3, then C(M) = −12π.
Taking M ′ = M/〈I〉, X induces a complete nonorientable minimal immersion

with finite total curvature, X ′ : M ′ → R
3, satisfying C(M ′) = −6π. Observe that

M ′ is homeomorphic to RP
2 − {p(0)}, which has the topological type of a Möbius

strip. The surface X ′(M ′) has two symmetries. The nontrivial one is induced by
T (z) = z, and corresponds to a reflection about the x2-axis, which is contained in
the surface.

Figure 16: Meeks’ minimal Möbius strip.
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A minimal Klein bottle with one end. This section is devoted to construct
the complete minimal Klein Bottle, which was discovered in [51]. This surface has
four symmetries and only one end.

Let M r be the conformal torus:

M r = {(z, u) ∈ (C ∪ {∞})2 / z2 =
u(u− r)

ru+ 1
}

and label 0 = (0, 0),∞ = (∞,∞), r = (r, 0),−1/r = (−1/r,∞) ∈M r. Let I denote
the antiholomorphic involution without fixed points defined as follows:

I : M r −→ M r

I(z, u) = (
1

z
,
−1

u
).

Figure 17: The minimal Klein bottle of total curvature −8π.

Define Mr = M r − {0,∞}, r ∈ R. Mr is a Riemann surface of genus 1, and I
leaves Mr invariant. We define also the conformal mappings:

J, S : M r −→M r

J(z, u) = (−z, u), S(z, u) = (z, u)

Note that S has order 2 and J order k. The group generated by J and S is isomorphic
to the dihedral group D(2) with 4 elements, and leaves Mr invariant. Moreover, this
group fixes both r,−1/r ∈Mr and J ◦I = I ◦J , S ◦I = I ◦S. So, it can be induced,
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in a natural way, on the nonorientable conformal surfaces M ′
r = Mr/〈I〉. We want

to define a proper conformal minimal immersion of M ′
r into R

3, for a suitable r.
First, define the following meromorphic Weierstrass data:

g = z
u − 1

u+ 1
η = i

(u+ 1)2

u2z
du (26)

on Mr.
Then Φ1 = 1

2
η(1−g2),Φ2 = i

2
η(1+g2),Φ3 = ηg satisfy (3) on Mr, and (8). So, as

we have said at the end of Subsection 1.1, if X : Mr → R
3, X = Real

∫
(Φ1,Φ2,Φ3)

is well defined, then it induces a minimal immersion X ′ : M ′
r → R

3 satisfying:
X = p ◦X ′, where p : Mr → M ′

r is the natural projection.

Theorem 5.14 There exists r0 ∈ R − {0,−1} such that X is well defined.

Proof : X is well defined if and only if Φj , j = 1, 2, 3 have no real periods, that
is, Real

∫
γ Φj = 0, for every closed curve, γ in Mr. It is easy to check that

Residue(Φj , 0) = Residue(Φj ,∞) = 0, j = 1, 2, 3. So, it suffices to prove Real
∫
γ Φj =

0 for any closed curve γ lying in M r (not containing the ends).
On the other hand, if γ is a closed curve in M r,∫

γ
Φj =

∫
I∗(γ)

I∗(Φj) =
∫

I∗(γ)
Φj ,

and so:

Real(
∫

γ
Φj) =

1

2

∫
γ+I∗(γ)

Φj .

Therefore, what remains is to show that on a homology basis Γ of M r:∫
γ+I∗(γ)

Φj = 0, γ ∈ Γ

A suitable homology basis of M r may be constructed as follows. Let c1(t), c2(t)
be two oriented differentiable curves in the u-plane illustrated in the Figure 18
in the case r > 0. We suppose c1(0) = (ε1, 0), ε1 > Maximum{0,−1/r}, and
c2(0) = (ε2, 0), ε2 > Maximum{0, r}. The winding number of c1 around 0,−1/r is
1, and 0 around r. The winding number of c2 around 0 is 1, around r is −1 and
around −1/r is 0.

Let γi(t) = (z(ci(t)), ci(t)), i = 1, 2 be the unique lift of ci to M r, i=1,2, satisfying
arg(z(c1(0))) = πi

2
, arg(z(c2(0))) = 0, respectively. The set

{Jh ◦ γi, S
j ◦ γi, h ∈ {0, 1}, j ∈ {0, 1}, i ∈ {1, 2}}
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Figure 18: The curves c1 and c2.

contains a homology basis of M r. As J ◦ I = I ◦ J , S ◦ I = I ◦ S, then∫
J∗(γi)+I∗(J∗(γi))

Φj =
∫

γi+I∗(γi)
(J)∗(Φj)

and analogously: ∫
S(γi)+I∗(S(γi))

Φj =
∫

γi+I∗(γi)
(S ◦ I)∗(Φj)

for i ∈ {1, 2}, j ∈ {1, 2, 3}. Then J∗(tΦ) = A ·t Φ, (S ◦ I)∗(tΦ) = B ·t Φ, where
A,B ∈ O(3,R) are the matrices

A =

 −1 0 0
0 −1 0
0 0 1

 B =

 −1 0 0
0 1 0
0 0 −1


Thus,

∫
γ+I∗(γ) Φj = 0, for every γ ∈ Γ if and only if∫

γi+I∗(γi)
Φj = 0, j ∈ {1, 2, 3}, i ∈ {1, 2}

Since I∗(γ1) = γ1 and I∗(γ2) = γ1 − γ2 + (J)∗(γ1), the map X has no real periods
if and only if

∫
γ1

Φj = 0, j = 1, 2, 3. But Φ3 is exact, Φ1, Φ2 have no residues and
hence above equations are equivalent to∫

γ1

ηg2 = 0 (27)

Remember that ηg2 = i (u−1)2(u−r)
u(ru+1)

du
z

. Then take f =
(− 2(2r+1)

r
u+2)(u−r)

z
, and observe

that:

−iηg2 + df = 2(a0 + a1u)
du

z
, where

a0 = 2r − 1, a1 =
−1 − 3r

r
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Integrating by parts,
∫
γ1
ηg2 = i

∫
γ1

2(a0 + a1u)
du
z

, and so equation (27) is equivalent
to: ∫ −1/r

0
(a0 + a1u)

du

z
= 0

Up to the change u = −t/r, above integral vanishes if and only if:∫ 1

0
(b0 + b1t)

dt

wr(t)
= 0, where :

b0 = r2a0; b1 = −ra1, wr(t) =

√
t(t+ r2)

1 − t
> 0, t ∈]0, 1[

Define f : R −→ R by

f(r) =
∫ 1

0
(b0 + b1t)

dt

wr
(28)

It is clear that r < −1/2 implies b0, b1 < 0, and r > −1/3 yields b0, b1 > 0. So f
vanishes at least once on ]−1/2,−1/3[, and never vanishes on R−]−1/2,−1/3[. In
fact, f < 0 on ] −∞,−1/2[, f > 0 on ] − 1/3,+∞[. �

For arbitrary genus greater than 2, it is still open the following conjecture:

Conjecture 2 There are complete, nonorientable, minimal surfaces of genus g and
least total curvature, for any g > 2.

5.3.2 Highly symmetric nonorientable examples

If the group of symmetries is large enough, elementary topological arguments deter-
mine, up to conformal transformations, the underlying complex structure of such a
surface. Then, it is not hard to describe the Weierstrass data arising out of these
kinds of examples and obtain uniqueness theorems.

Basically, two ways exist to construct new examples of highly symmetric minimal
surfaces:

• In the first one the genus of M is fixed and the number of ends increases.
Among these surfaces we emphasize a family of immersed projective planes
with p (p ≥ 3, p odd) embedded flat ends and total curvature −2π(2p−1), by
Kusner [47].

To be more precise, given p odd, p ≥ 3, define

Mp = C − {z ∈ C / z2p + 2

√
2p− 1

p− 1
zp − 1 = 0}, I(z) = − 1

z
,
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gp =
zp−1(zp −√

2p− 1)√
2p− 1zp + 1

, ηp =
i(
√

2p− 1zp + 1)2

(z2p + 2
√

2p−1
p−1

zp − 1)2
.

It is straightforward to check that (Φ1,Φ2,Φ3) has no residues at the ends,
and satisfies (8). So, the minimal minimal immersion Xp = Real(

∫
Φ) is well

defined, and induces a minimal immersion X ′
p of the nonorientable surface

M ′
p = Mp/〈I〉 in R

3. The surface X ′
p(M

′
p) contains p straight lines which lie

in a plane and meet at equal angles. The dihedral group of order 2p acts on
X ′

p(M
′
p) by reflections about these lines.

• In the second one, the number of ends are fixed and the genus of M increases.
Inside these kinds of minimal surfaces we emphasize a family of complete
nonorientable highly symmetric minimal surfaces with arbitrary topology and
one end, constructed by the authors of this survey in [54, 55]. For each topol-
ogy the authors constructed the most symmetric example. Furthermore, if
the Euler characteristic of the closed associated surface is even, the examples
minimize the energy (or the degree of the Gauss map) among the surfaces with
their symmetry.

The Weierstrass data are:

Mk m r =

{
(z, w) ∈ C

2 : zk =
w(wm − r)

rwm + 1

}

Mk m r = Mk m r − {(0, 0), (∞,∞)}
I1 : Mk m r −→Mk m r

I1(z, w) =
(

1

z
,− 1

w

)

g = zk−1 w
m − 1

wm + 1
g ω = i

w2m − 1

wm+1
dw

where k ≥ 2, m ≥ 1 and m is odd, r is suitable and r ∈ R − {0,−1}.
When k ≥ 2, k even, we also have:

Mk m r =

{
(z, w) ∈ C

2 : zk =
w(wm − r)

rwm + 1

}

Mk m r = Mk m r − {(0, 0), (∞,∞)}
I2 : Mk m r −→Mk m r

I2(z, w) =
(
−1

z
,− 1

w

)
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g = zk−1 wm − 1

w(wm + 1)
g ω = i

w2m − 1

wm+1
dw

where as above m ≥ 1, m odd, r is suitable and r ∈ R − {0,−1}.
For each k,m the surfaces Mk m r intersect the x1 x2-plane in km straight lines
which meet at equal angles at the origin, and the dihedral group D(k m) acts
on Mk m r by reflections about these lines.

If k = 2 and m = 1, we obtain the once punctured Klein bottle of total
curvature −8π described above.

5.4 Uniqueness results for minimal surfaces of least total

curvature

Following the formula of Jorge and Meeks, there are essentially three numbers which
determine the geometry of a complete orientable minimal surface with finite total
curvature: the genus of the surface, the number of ends and the degree of the Gauss
map. A natural way to obtain classification results is to fix some of these variables
and study the arising moduli space of minimal surfaces.

The most classical results of classification are due to Osserman and Schoen.

Theorem 5.15 (Osserman [73]) A complete minimal surface in R
3 with finite

total curvature −4π is the catenoid or Enneper’s surface.

Proof : Let X : M → R
3 be a complete orientable minimal surface with total

curvature −4π. From Huber and Osserman theorems (Theorems 5.1 and 5.2),
M = M − {P1, . . . , Pr} and the Weierstrass data (g, η) extend meromorphically
to M . Since C(M) = −4π deg(g), then g has degree 1, and so, it is a biholomor-
phism. In particular, M = C. From the formula of Jorge and Meeks (see Theorem
5.3), we infer that either r = 2 and ν1 = ν2 = 1 or r = 1 and ν1 = 3.

• In the first case, we can put, up to a Möbius transformation, M = C − {0},
g = z and ηg = Bdz/z. Since ηg has no real periods, B ∈ R, which corresponds
to the Weierstrass representation of a catenoid.

• In the second case, we can put M = C and g = z. So, ηg = Bz dz, which
corresponds to Enneper’s surface.

This concludes the proof. �

Theorem 5.16 (Schoen [87]) The only complete minimal surface in R
3 with fi-

nite total curvature and two embedded ends is the catenoid.

54



The proof of this theorem consists of an elegant use of Alexandrov’s reflection prin-
ciple. We refer to [87].

If we also deal with nonorientable surfaces, we have:

Theorem 5.17 (Meeks [62]) The only complete minimal surfaces in R
3 with total

curvature greater than −8π are: the plane, the catenoid, Enneper’s surface and
Meeks’ minimal Möbius strip.

Proof : By Theorem 5.15, Enneper’s surface and the catenoid are the only orientable
surfaces with total curvature −4π.

Claim 1 There are no complete nonorientable minimal surfaces with total curvature
−2π.

Suppose that X ′ : M ′ → R
3 is complete nonorientable minimal surfaces with total

curvature −2π. Using Jorge-Meeks formula (25) one has:

1 = −χ(M
′
) +

r∑
i=1

(νi + 1),

which implies χ(M
′
) = r = 1 and ν1 = 1. So, Remark 1 leads to a contradiction.

Claim 2 There are no complete nonorientable minimal surfaces with total curvature
−4π.

We proceed once again by contradiction. If X ′ : M ′ → R
3 is a complete nonori-

entable minimal surfaces with total curvature −4π, then Jorge-Meeks formula (25)
says:

2 = −χ(M
′
) +

r∑
i=1

(νi + 1).

As C(M ′)/(2π) ≡ −χ(M
′
)(mod 2) (Theorem 5.10), then we deduce χ(M

′
) = 0,

r = 1 and ν1 = 1, and so Remark 1 once again leads to a contradiction.

Claim 3 The only complete minimal surface in R
3 with total curvature −6π is

Meeks’ minimal Möbius strip.

Let X ′ : M ′ → R
3 be a complete minimal surface in R

3 with total curvature −6π.
As C(M ′) is not a multiple of −4π, then M ′ is nonorientable. As in the above two
claims, we use formula (25), Remark 1 and Theorem 5.10 to obtain that χ(M

′
) = 1

and the number of ends r is either one or two.
If r = 2, then (25) leads to ν1 = ν2 = 1. This kind of surface does not exist by

Theorem 5.12.
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Hence r = 1, and from (25), ν1 = 3. Label (M, g, η, I) the Weierstrass represen-
tation of X ′. Then, up to Möbius transformations, M = C − {0} and I(z) = −1/z.
After a rigid motion in R

3, we can assume that g has a zero at 0 and a pole at ∞.
Since C(M) = −6π, then deg(g) = 3.

We will distinguish three cases:

Case1. The multiplicity of g at the ends is 3.

So, g = cz3 and η = B dz
z4 , c, B ∈ C − {0}. Since I∗(ηg) = ηg, then cB ∈ iR.

Thus, η g has real periods, which is impossible.

Case2. The multiplicity of g at the ends is 2.

In this case g = cz2(z − b)/(z − a), where a, b, c ∈ C − {0}. After a rotation
of the coordinates of M , we may assume a ∈ R

+, and up to a rotation in
R

3, c ∈ R. Since g ◦ I = −1/g, b = −1/a and c = a. On the other hand,

taking (25) and (8) into account, it is clear that η = i(z−a)2

z4 dz. Since Φ has no
real periods, it is not hard to check that a = 1. This corresponds to Meeks’
example.

Case3. The multiplicity of g at the ends is 1.

In this case, and as in the preceding one,

g = cz
(z + 1/a)(a+ 1/b)

(z − a)(z − b)
, η = B

(z − a)2(z − b)2

z4
dz,

where a, c ∈ R
+, B ∈ iR. Since Φ has no real periods, then η, ηg and ηg2 are

exact. Calculating the residues, one gets Residue(η, 0) = −2B(a + b), and so
a = −b. Thus, Residue(ηg, 0) = −cB(a2 + 1/a2) �= 0, which is absurd.

�

Concerning to complete nonorientable minimal surfaces with total curvature
−8π, one has the following result:

Theorem 5.18 ([51]) The only complete nonorientable minimal surface with to-
tal curvature −8π is, up to scaling and rigid motions, the one-ended Klein bottle
described in paragraph 5.3.1.

We omit the proof.
Next, we deal with the classification of complete orientable minimal surfaces

with total curvature −8π. From the formula of Jorge and Meeks, there are three
topological possibilities:
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• The surface has genus zero, and the number of ends n is 1, 2 or 3. The sum
of the weights of the ends is 6− n. In this case, the classification is merely an
algebraic exercise. We refer to [50].

• The genus of the surface and the number of ends are 1. In this case, the weight
of the end is 3. See Theorem 5.19 below.

• The genus of the surface is 1 and the number of ends are 2. In this case, both
ends are embedded. From Theorem 5.16, there are no such surfaces.

• The genus of the surface is 2 and the number of ends is 1. In this case the end
is embedded, which contradicts Remark 1.

Hence, we are going to restrict our interest to the genus one case, and prove the
following theorem:

Theorem 5.19 ([2, 50]) The only orientable complete minimal surface of genus
one with total curvature −8π is the Chen-Gackstatter example.

Proof : We sketch the proof of this theorem given in [50].
During the proof, we will use some basic results about compact Riemann surfaces.

We refer to [20] for a good setting.

Figure 19: Chen and Gackstatter’s surface of genus one.

Let X : M → R
3 be a conformal complete minimal immersion of a genus one

surface with total curvature −8π. Following Theorem 5.2, M is conformally equiva-
lent to a compact genus one Riemann surface punctured in a finite set of points (the
ends of the surface). Moreover, if (g, η) is the Weierstrass representation of M , then
the Gauss map g is a meromorphic function of degree two on M , and the 1-forms
Φj , j = 1, 2, 3, defined as in (4), are meromorphic on M . As we have mentioned
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above, the formula of Jorge and Meeks (Theorem 5.3) implies that M has only one
end, and so:

M = M − {P}.
After a suitable rigid motion, we assume that the normal vector at the unique end
is (0, 0, 1), i.e., g(P ) = ∞.

Recall that meromorphic 1-forms and functions on a torus have the same number
of zeroes and poles. Accordingly to the formula of Jorge and Meeks, the weight of
the end is 3, and so the meromorphic 1-form η has either a double pole at P (if P
is a regular point of g) or is holomorphic on M (if P is a ramification point of g).
Furthermore, from (3) and in the first case, η has a double zero at the other pole of
g and no more zeroes.

We will distinguish two cases:

1. P is a ramification point of g, and then the divisors [g] and [η] satisfy (see
[20]): [g] = Y Z

P 2 , [η] = 1, where Y, Z ∈ M.

2. P is not a ramification point of g: [g] = Y Z
PQ

, [η] = Q2

P 2 .

Suppose firstly that P is a ramification point of g. Since g has degree two, the
Riemann-Hurwitz formula (see [20]) implies that g has four ramification points:
P1, P2, P3, P4 = P . Label zi = g(Pi), i = 1, 2, 3, 4. As the normal vector of X at
the end is (0, 0, 1), then z4 = ∞. Classical theory of compact Riemann surfaces (see
[20]) yields that M is conformally equivalent to the algebraic curve:

{(z, w) ∈ C
2

: w2 = (z − z1)(z − z2)(z − z3)},

with its natural complex structure, and up to this identification, P = (∞,∞) and
g = z. As we mentioned, η is holomorphic on M , and thus

η = A
dz

w
,

where A ∈ C
∗. On the other hand, the transformation T : (z, w) �→ (z,−w) satisfies

T ∗(φj) = −φj . Therefore, viewed on X(M) and up to a translation, it is the
restriction of the symmetry with respect to the origin. The points Pi, i = 1, 2, 3 are
points of M fixed by T , and so X(Pi) = (0, 0, 0), i = 1, 2, 3, and so the origin is a
triple point of the surface x(M). However, the total weight of the immersion is 3,
which contradicts Theorem 5.6. This proves that the first case is impossible.

Consider the second one, and assume that P is a regular point of g. As we have
said above, we write Q as the other pole of g. In this case, η has a double pole at
P and a double zero at Q, i.e., [η] = Q2

P 2 . Label θ0 as a holomorphic nonzero 1-form
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on M and define z = η/θ0. It follows that z is a degree two meromorphic function
on M satisfying:

[z] =
Q2

P 2
.

Label Q1 and Q2 as the two other ramification points of z, and put z1 = z(Q1),
z2 = z(Q2). Up to an affine Möbius transformation z → a1z + a2, we can suppose
that z1 = 1, z2 = −1. Hence, writing a = z(Q), and up to biholomorphisms,

M = {(z, w) ∈ C : w2 = (z − a)(z2 − 1)},
P = (∞,∞) M = M − {P}.

Since [g] = Y Z
PQ

and [η] = Q2

P 2 , Riemann-Roch Theorem implies easily that

g = A
w

z − a
+B, η = C

z − a

w
dz,

where A,B,C ∈ C, A,C �= 0. Note that a2 �= 1: otherwise, M would be the Riemann
sphere, which is absurd.

Claim 1 The constant B is equal to zero.

Let {γ1, γ2} be a canonical homology basis of H1(M,Z). We can choose γ1 and
γ2 as the closed curves given by the lifts to M of the slits [−1, a] and [a, 1] in the
z-plane. Define τ1 = z−a

w
dz, τ2 = w

z−a
dz, and write:

fi =
1

2

∫
γi

τ1, gi =
1

2

∫
γi

τ2,

where i = 1, 2.
Up to a suitable choice of the orientation of γi, and using standard bilinear

relations (see [20]), we deduce

f1g2 − f2g1 =
4πi

3
(1 − a2). (29)

On the other hand, the 1-forms Φj have no real periods, and so:

BCfi ∈ iR, Cfi = CB
2
f i + CA

2
gi,

where i = 1, 2. If B �= 0, the last equation gives

(1 + |B|2)fi =
−BA2

B
gi,
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which contradicts (29) and the fact a2 �= 1. This proves the claim.

Therefore, g = A w
z−a

dz and η = C z−a
w
dz. Then, Φ3 = ACdz is exact. Since Φ1

and Φ2 have no real periods along γj, j = 1, 2, then

f1g2 − f2g1 = 0. (30)

To solve this equation, we have to carry out a careful analysis. Introduce the fol-
lowing notation.

Consider the algebraic curve {(a, y) ∈ C
2

: y2 = a2 − 1}, and denote by Ω the
region in a−1(C − ([∞,−1] ∪ [1,∞])) which contains the point (0, i). Identify the
points in Ω with the complex numbers in a(Ω). Let Ω be the closure of Ω on the
Riemann surface of the polynomial y2 = a2 − 1. The boundary of Ω contains two
copies of the real segments [−∞,−1[∪]1,+∞], but a−1({1,−1}) contains only two
points. We shall denote ∞i, i = 1, 2, as the two points of ∂(Ω) lying in a−1(∞).

Straightforward arguments imply that the functions fi, gi, i = 1, 2, are holomor-
phic on Ω and have continuous extensions to ∂(Ω) (taking possibly infinite values
on the set {∞1,∞2}.) Furthermore,

• For i = 1, 2,

f ′
i(a) =

a

2(a2 − 1)
fi(a)+

3

4(1 − a2)
gi(a) g′i(a) =

1

1 − a2
fi(a)− 3a

2(1 − a2)
gi(a).

• f1(a) = f1(a), g1(a) = g1(a), f2(a) = if1(−a) and g2(a) = −ig1(−a).
These analytical properties imply the following claims. The proof can be found

in [50].

Claim 2 The function f1g2

f2g1
is well defined, holomorphic and never vanishes on Ω.

Moreover, it has a continuous extension to Ω, satisfying:∣∣∣∣∣f1g2

f2g1

∣∣∣∣∣ (a) �= 0, 1, ∀a ∈ ∂Ω − {∞1,∞2},

and
f1g2

f2g1

(∞i) = 1.

Claim 3 If a ∈ iR, then
∣∣∣f1g2

f2g1

∣∣∣ (a) = 1. Moreover, the only solution of (30) on the
imaginary axis is a = 0.
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Now we can conclude the proof of the theorem. Consider the function:

h
def
= log

(∣∣∣∣∣f1g2

f2g1

∣∣∣∣∣
)

: Ω −→ R

From Claim 2, h is well defined and continuous on Ω, and harmonic on Ω.
The symmetries of the functions fi, gi, imply that the nodal set of h; N =

{a ∈ Ω : h(a) = 0}, is invariant under the transformations a → a and a → −a.
Moreover, it is easy to deduce that N contains the set iR ∪ {∞1,∞2} (this is part
of Claim 3). On the other hand, Claim 2 gives that N ∩ (∂(Ω) − {∞1,∞2}) = ∅.

Since h is nonconstant, the maximum principle for harmonic functions implies
that it is not possible to have compact domains in Ω bounded by curves in N .
Thus, taking into account the above arguments, it is not hard to infer that N =
iR ∪ {∞1,∞2}.

Since any solution of (30) lies in N − {∞1,∞2}, then a ∈ iR. Therefore, Claim
3 yields a = 0, which corresponds to the Chen-Gackstatter genus one example. �

The Cheng-Gackstatter genus two surface also admits the following uniqueness
theorem:

Theorem 5.20 (—, —, Rodŕıguez [57]) The Chen-Gackstatter genus two sur-
face is the only complete minimal immersion in R

3 of genus two, total curvature
−12π and eight symmetries.

A natural conjecture asserts that this theorem is true without any symmetry as-
sumption. In fact, Hoffman and Meeks proposed the following:

Conjecture 3 The moduli space of complete, orientable, minimal surfaces with
genus k, k ∈ N, and total curvature −4π(k + 1) is discrete (probably a unique
point).

In the nonorientable case, the corresponding conjecture asserts:

Conjecture 4 The moduli space of complete, nonorientable, minimal surfaces with
genus m, m ∈ N, and total curvature −2π(m+ 2) is also discrete.

6 Properly embedded minimal surfaces

Embedded minimal surfaces are more natural; they correspond to our primitive
notion of a surface, the boundary of a solid region. At the beginning of the eighties,
this theory gathered new speed. This is particularly thanks to C. Costa [15], D.
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Hoffman and W. H. Meeks [30], [32] who disproved a longstanding conjecture which
said that the only complete embedded minimal surfaces in R

3 of finite topological
type are the plane, the catenoid and the helicoid. This conjecture turned out to be
false as there is a family of complete embedded minimal surfaces defined on a genus
k − 1 (k > 1) compact Riemann surface with three points removed.

Figure 20: Costa’s surface.

A natural question is to decide under what conditions finite total curvature is
equivalent to finite topology. As the helicoid shows, this result is false for prop-
erly embedded minimal surfaces in R

3 with only one end. Furthermore, Hoffman,
Karcher and Wei [28, 29] have recently discovered an one-ended, genus one, properly
embedded minimal surface with infinite total curvature (see also Bobenko’s paper
[3]).

Inspired in previous results by Meeks and Rosenberg [67], Collin proved the
following theorem:

Theorem 6.1 (Collin [9]) Let A be a properly embedded minimal annulus whose
boundary is a Jordan curve. Suppose that A is contained in a half-space of R

3 and
the boundary of A lies in the boundary of the half-space. Then A has finite total
curvature, and so, it is asymptotic to either a plane or a half-catenoid.
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This theorem proves a classical conjecture by Nitsche. Using the main result in [67],
any annular end of a properly embedded minimal surface in R

3 with more than one
end lies in a half-space. Therefore, Theorem 6.1 implies that this end has finite total
curvature. As a corollary,

Corollary 6.2 (Collin [9]) A properly embedded minimal surface in R
3 with finite

topology and more than one end has finite total curvature.

Note that from Theorem 5.1 the converse is also true.
Embedded minimal surfaces have some special properties. If X : M → R

3 is
an embedding then R

3 −X(M) consists of two connected components. Outside of
a sufficiently large compact set, the ends of M are ordered from top to bottom.
Therefore, up to a rotation, the normal limit vector at the ends are (0, 0,±1) and
they alternate from one end to the next. Since the ends are embedded, they are
either planar ends or catenoid ends (see Definition 2). In particular the logarithmic
growth rates are also ordered: r1 ≤ r2 ≤ · · · ≤ rs, r1rs < 0. Furthermore, from (52),∑s

i=1 ri = 0. For details see [36], [73].

6.1 Examples with finite topology and more than one end

Corollary 6.2 and Theorem 5.16 imply that the only properly embedded minimal
surface in R

3 with two ends is the catenoid. As we have mentioned above, properly
embedded minimal surfaces with three or more ends have finite total curvature.
Hoffman and Meeks in [33] (see [27] for a complete discussion) constructed a one-
parameter family Fk of complete embedded minimal surfaces of genus k− 1 (k > 1)
with three ends and 2k symmetries. These surfaces are deformations of the examples
of Hoffman and Meeks in [32] (Costa’s example for k = 2). A complete list of figures
of these surfaces can be found in [27].

Today we have more families of examples for which only computational evidences
of embeddedness are known. We emphasize the family of four ended examples with
high topology, by Wohlgemuth [95], and the Weber-Wolf family [93].

It is also remarkable Kapouleas’ work [38]. His method of construction amounts
to desingularizing the circles of intersection of a collection of coaxial catenoids and
planes. The desingularization process uses Scherk’s singly periodic surfaces for an
approximate construction which is subsequently corrected by singular perturbation
methods. So, this author shows complete embedded minimal surfaces with arbitrar-
ily many (at least three) ends. The examples are highly symmetric, and the genus
takes arbitrarily high values.
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6.1.1 Properly embedded minimal surfaces with three ends: Costa-
Hoffman-Meeks and Hoffman-Meeks families

In this subsection we deal with the period problem associated to the Hoffman-Meeks
family of embedded minimal surfaces with three ends. This matter has been studied
in depth by Hoffman and Karcher in [27]. Furthermore, in that work these authors
have been able to give a uniqueness theorem in terms of the symmetry (see Theorem
6.9).

The exposition of the period problem given here is different from the one in [27].
Let Mk a, k ∈ N, k ≥ 2, a ∈ R − {0,−1}, be the compact Riemann surface

Mk a =

{
(z, w) ∈ (C ∪ {∞})2 : wk =

(z + 1)(z − a)

z

}

Let P0 = (0,∞), P1 = (−1, 0), P2 = (∞,∞) and P3 = (a, 0), and define

Mk a = Mk a − {P1, P2, P3}

Consider the conformal mappings of Mk a

J(z, w) = (z, θw), θ = e
2πi
k

S(z, w) = (z, w)

The group generated by J and S is the dihedral group D(k) with 2k elements, it
leaves Mk a invariant and fixes Pi, i = 0, 1, 2, 3.

It will be useful to construct a homology basis of Mk a. We distinguish two cases:

• Suppose a > 0. Let βi(t), i = 1, 2, be the oriented simple closed curves in
the z-plane illustrated in Figure 21. We assume that β1(0) ∈ R, β1(0) > a,
β2(0) ∈ R, 0 < β2(0) < a. Let bi(t) be the unique lift of βi(t) to Mk a, i = 1, 2,
satisfying w(b1(0)) ∈ R+ and Arg(w(b2(0))) = π

k
.

• Suppose a < 0. Write a0 = Minimum{a,−1}, a1 = Maximum{a,−1} and
let βi(t), i = 1, 2, the oriented closed curves in the z-plane illustrated in the
Figure 22. We assume that β1(0) ∈ R, β1(0) > 0, β2(0) ∈ R, a1 < β2(0) < 0.
Let bi(t) be the unique lift of βi(t) to Mk a, i = 1, 2, satisfying w(b1(0)) ∈ R+,
Arg(w(b2(0))) = π

k
.

In the following, we identify d and its homology class [d], for any closed curve d
in Mk a. The desired homology basis of Mk a is:

B =
{
(Jh)∗(bi) : h ∈ {0, . . . , k − 2}, i ∈ {1, 2}

}
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Figure 21: β1 and β2 for a > 0

Figure 22: β1 and β2 for a < 0
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We leave the topological details to the reader.
Consider the following meromorphic data Mk a:

gm = A
zw

mz + 1
ηmgm = B

mz + 1

(z + 1)(z − a)
dz

where m ∈ R, A ∈ R − {0}, B ∈ C, |B| = 1. Define as in (4)

2Φm
1 = (1 − g2

m)ηm, 2Φm
2 = i(1 + g2

m)ηm, Φm
3 = gmηm

Let

Xm(P ) = Real
∫ P

P0

(Φm
1 ,Φ

m
2 ,Φ

m
3 ) , P ∈Mk a

In general Xm is a multivalued conformal minimal immersion.
It is interesting to translate the period problem associated to Xm to a sim-

pler language. First observe that Φm
3 has no real periods if and only if ri(a,m) =

Residue(Φm
3 , Pi) ∈ R, i = 1, 2, 3. An easy computation gives

r1(a,m) = Bk
m− 1

1 + a
, r2(a,m) = −Bkm, r3(a,m) = Bk

ma + 1

1 + a
(31)

and therefore Real(
∫

Φm
3 ) is well defined if and only if B ∈ R, that is, B ∈ {−1, 1}.

In what follows and up to rigid motions we will assume that B = 1.
It is clear that the residues of Φm

1 and Φm
2 vanish.

If we put Φm =

 Φm
1

Φm
2

Φm
3

, then J∗(Φm) = R · Φm where R ∈ O(3) is the matrix

R =

 cos(2π
k

) − sin(2π
k

) 0
sin(2π

k
) cos(2π

k
) 0

0 0 1


Taking into account that B is a homology basis of Mk a and the last equality, we
deduce that Xm has no real periods if and only if

Real
(∫

bi

Φm
j

)
= 0, i, j = 1, 2 (32)

Let τ1, τ2, τ3 be the following 1-forms on Mk a

τ1 =
dz

w
, τ2 =

zdz

w
, τ3 =

dz

wk−1

and observe that
ηmg

2
m = Aτ3
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ηm =
1

A

(
q0τ1 + q1τ2 − d(

c0 + c1z + c2z
2

w
)

)
where

q0 =
(k + 1)(1 − a)

2(2k − 1)
q1 +

(k − 1)m

a
, q1 =

2(2k − 1)(m− 1)(1 + am)

a(1 + a)2

c0 =
k

a
, c1 =

k(−1 + a+ 2m+ 2a2m+ am2 − a2m2)

a(1 + a)2
, c2 =

2k(m− 1)(1 + am)

a(1 + a)2

Define on R − {0,−1} the following functions

f1(a) =
1

θ

∫
b1
τ1, g1(a) =

1

θ

∫
b1
τ2, h1(a) =

1

θ

∫
b1
τ3

f2(a) =
1

ξ

∫
b2
τ1, g2(a) = −1

ξ

∫
b2
τ2, h2(a) =

1

ξ

∫
b2
τ3

where θ = e
πi
k − e−

πi
k and ξ = e

2πi
k − 1.

Deforming the curves bi, i = 1, 2 on the real axis, an analytic continuation
argument gives:

• for a > 0

f1(a) =
∫ a

0

d z

|w| , g1(a) =
∫ a

0

zd z

|w| , h1(a) =
∫ a

0

d z

|w|k−1

f2(a) =
∫ 0

−1

d z

|w| , g2(a) =
∫ 0

−1

zd z

|w| , h2(a) =
∫ 0

−1

d z

|w|k−1

• for a < 0

f1(a) = −
∫ 0

a1

d z

|w| , g1(a) = −
∫ 0

a1

zd z

|w| , h1(a) = −
∫ 0

a1

d z

|w|k−1

f2(a) = −
∫ a1

a0

d z

|w| , g2(a) =
∫ a1

a0

zd z

|w| , h2(a) = −
∫ a1

a0

d z

|w|k−1

Notice that fi(a), gi(a), hi(a) ∈ R+ ∀a > 0, i ∈ {1, 2}, and fi(a), hi(a) ∈ R− ∀a < 0,
i ∈ {1, 2}, g1(a) ∈ R+, g2(a) ∈ R−, ∀a < 0.

From above definitions (32) becomes

(−1)i+1q0fi + q1gi = −A2hi i = 1, 2, (33)

Call Ω = {(a,m) ∈ R
2 : a �= 0,−1}, Ω+ = {(a,m) ∈ Ω : a > 0} and

Ω− = {(a,m) ∈ Ω : a < 0}.
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Definition 3 Define by C the set of points of Ω for which there exists A ∈ R−{0}
such that (33) holds (i.e. Xm has no real periods). Label C+ = C ∩ Ω+ and C− =
C ∩ Ω−.

Remark 3 For any point (a,m) ∈ C, the conformal transformations J and S yield
on Xm a rotation around the x3-axis by angle 2π

k
and a symmetry with respect to the

plane x2 = 0, respectively.

Let π1(a,m) = a, π2(a,m) = m the two natural projections from the (a,m)-plane
into the a and m-axis, respectively.

Theorem 6.3 (Hoffman, Karcher [27]) The set C+ is a regular curve in Ω+ and

π1|C+ : C+ −→]0,+∞[

is a diffeomorphism.

Proof : Let Λ = {(a,m) ∈ Ω+ : (m− 1)(ma+ 1) < 0}.
Define ϕ : Ω+ −→ R by

ϕ = h2(q0f1 + q1g1) + h1(q0f2 − q1g2)

First, we observe that C+ = {(a,m) ∈ Λ : ϕ(a,m) = 0}. If ϕ(a,m) = 0
and (a,m) ∈ Λ, then there exists λ ∈ R such that ((−1)i+1q0fi + q1gi) (a,m) =
λhi(a,m) i = 1, 2. Hence (q1(g1f2 + g2f1)) (a,m) = λ(h1f2 +h2f1)(a,m), and then
λq1(a,m) > 0. As q1 < 0 on Λ we deduce that λ < 0 and taking A =

√−λ ∈
R, (33) holds. Conversely, if (a,m) ∈ C+ then (33) implies: ϕ(a,m) = 0 and
(q1(g1f2 + g2f1)) (a,m) = −A2(h1f2 + h2f1)(a,m). In particular q1(a,m) < 0 and
thus (a,m) ∈ Λ.

For each a ∈]0,+∞[, we label �a = (π1)
−1(a).

We want to show that �a meets C+ in a single point. It is clear that �a intersects
the boundary of Λ in two points: (a,−1

a
) and (a, 1). On the other hand we have

ϕ(a, 1) =
k − 1

a
(h2(a)f1(a) + h1(a)f2(a)) > 0

ϕ(a,−1

a
) = −k − 1

a2
(h2(a)f1(a) + h1(a)f2(a)) < 0

By an intermediate value argument the function ϕ vanishes at a point of �a ∩ Λ.
Furthermore, since ϕ|�a is a polynomial function of m of degree less than or equal
to two it has only one root m(a) ∈ [−1

a
, 1] (counting multiplicities).

Hence C+ = {(a,m(a)) : a ∈]0,∞[} is a graph on the positive a-axis and it is
not hard to check that the function a �−→ m(a) is continuous on ]0,+∞[. We are
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going to prove that in fact it is differentiable. To see this we note firstly that C+

does not meet the zero set S of q0f1+q1g1: if (a,m) ∈ C+ and (q0f1+q1g1)(a,m) = 0
then (33) gives h1(a) = 0, a contradiction. Therefore defining ρ : Ω+ − S −→ R by

ρ =
q0f2 − q1g2

q0f1 + q1g1
+
h2

h1

we have that C+ = {(a,m) ∈ Λ − S : ρ(a,m) = 0}. On the other hand on Λ − S
∂ρ

∂m
= −2(k − 1)(2k − 1)(1 + am2)(f2g1 + f1g2)

(a(a+ 1)(q0f1 + q1g1))2
< 0

Hence applying the implicit function theorem the function a �−→ m(a) is differen-
tiable and so C+ is a regular curve in Ω+ which projects homeomorphically on the
positive a-axis. �

Define Σ = {(a,m) ∈ Ω+ : ((2 + a)m− 1)((2a+ 1)m+ 1) < 0}.

Remark 4 The involutive automorphism I on Ω defined by I(a,m) = ( 1
a
,−am)

leaves Λ, Σ, C− and C+ invariant. Furthermore if (a,m) ∈ C then the surfaces
associated to (a,m) and (1/a,−am) are, up to change of variables, scaling and rigid
motions, the same.

An important fact is that, for any (a,m(a)) ∈ C+,

r1(a,m(a)) < r2(a,m(a)) < r3(a,m(a)) (34)

These inequalities easily follow from the Theorem

Theorem 6.4 (Hoffman, Karcher [27]) The set C+ is contained in Σ.

Proof : To prove that C+ ⊂ Σ we need to work harder than in Theorem 6.3.
The boundary of Σ has two connected components µ1 = {(a, 1

2+a
) : a > 0} and

µ2 = {(a,− 1
2a+1

) : a > 0}.
We want to prove that ϕ|µ1 > 0 and ϕ|µ2 < 0, where ϕ was defined in the proof of

Theorem 6.3. Notice that from (ii) in Lemma 6.5 above inequalities are equivalent
to ψ|µ1

> 0 and ψ|µ2
< 0, where ψ = ϕf1/h1.

Firstly, we notice that µ1 ∩ S = ∅, where S is the zero set of q0f1 + q1f1, as in
Theorem 6.3. For, we define

h(a) = (q0f1 + q1f1)
(
a,

1

2 + a

)
=

(3ak + a− 4)f1(a) + 4(1 − 2k)g1(a)

a(2 + a)2
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Using (i) in Lemma 6.5 and substituting it is easy to see that

h(a) = 0 =⇒ h′(a) =
(1 − k)(16 + 8a+ a2 + 8ak + 3a2k)f1(a)

4a2(1 + a)(2 + a)2k
< 0 (35)

On the other hand, for a > 0 it is clear that

f1(a) =
∫ a

0

dz

|w| = a
∫ 1

0

k

√
t

(1 + at)(1 − t)
dt

g1(a) =
∫ a

0

z dz

|w| = a2
∫ 1

0
t k

√
t

(1 + at)(1 − t)
dt

Hence one obtains

lim
a→0+

f1(a)

a
=

π

k sin(π/k)
, lim

a→+∞ f1(a)a
1/k−1 =

k

k − 1
(36)

lim
a→0+

g1(a)

a2
=

(k + 1)π

2k2 sin(π/k)
, lim

a→+∞ g1(a)a
1/k−2 =

k2

(k − 1)(2k − 1)
(37)

From (36) and (37) one has lim
a→0+

h(a) = − π

k sin(π/k)
. If h vanishes in ]0,+∞[ and

a0 is the lowest root of h then the above limit says us that h′(a0) ≥ 0, which is
contrary to (35). Thus h(a) < 0 ∀a ∈]0,+∞[ and so µ1 ∩ S = ∅.

Now we observe that ρ|µ1 is negative, where ρ was defined in the proof of Theorem
6.3. From (ii) in Lemma 6.5 it is obvious that

ρ =
f2

f1
+
q0f2 − q1g2

q0f1 + q1g1

and so

ρ
(
a,

1

2 + a

)
=
f2(a)

f1(a)
+

(4 − a− 3ak)f2(a) + 4(1 − 2k)g2(a)

(4 − a− 3ak)f1(a) + 4(2k − 1)g1(a)

In what follows we write u(a) = ρ
(
a, 1

2+a

)
. From (i) in Lemma 6.5 once again, we

obtain

u′(a) =
(2k − 1)(f1g2 + f2g1)

ka3(2 + a)4(a + 1)h2

(k − 1)((4 + a)2 + ak(8 + 3a)) −
(
a(2 + a)2 h

f1

)2


Note that u′(a) > 0. To see this we define v :]0,+∞[−→ R by

v(a) =
√

(k − 1)((4 + a)2 + ak(8 + 3a)) + a(2 + a)2 h(a)

f1(a)
=

=
√

(k − 1)((4 + a)2 + ak(8 + 3a)) + 3ak + a− 4 + 4(1 − 2k)
g1(a)

f1(a)
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It is clear that u′(a)/v(a) > 0. Taking into account the assertion (i) of Lemma 6.5

d

da

(
g1(a)

f1(a)

)
=

k + 1

k(1 + a)
+

2a− 1

a(1 + a)

(
g1(a)

f1(a)

)
− 2k − 1

a(1 + a)k

(
g1(a)

f1(a)

)2

(38)

Using this equation and substituting, we deduce that v(a) = 0 implies

v′(a) =
(k − 1)[(a− 4)(a+ 4)2 + 4(8 − 6a+ a3)k + 3a(8 + 4a+ a2)k2]

2a(1 + a)k
√

(k − 1)((4 + a)2 + ak(8 + 3a))
> 0 (39)

On the other hand, from (36) and (37) we obtain that lim
a→0+

v(a) = 4(
√
k − 1−1) > 0.

A similar discussion for the function h gives v(a) > 0 ∀a ∈ R+, and so u′(a) > 0,
∀a ∈ R+.

From (36), (37) and the following formulae:

f1

(
1

a

)
= a

1−k
k f2(a), f2

(
1

a

)
= a

1−k
k f1(a), g1

(
1

a

)
= a

1−2k
k g2(a), g2

(
1

a

)
= a

1−2k
k g1(a)

we obtain lim
a→+∞ a · u(a) = − 2(k + 1)π

k2 sin(π/k)
. Hence u(a) is increasing and so u(a) < 0

for all a > 0, i.e., ρ|µ1
< 0.

As h(a) < 0 ∀a > 0 we obtain that ψ|µ1
> 0.

To estimate the sign of ψ|µ2 observe that the above formulae lead to:

(q0f1 + q1g1) ◦ I = −a 2k+1
k · (q0f2 − q1g2), (q0f2 − q1g2) ◦ I = −a 2k+1

k · (q0f1 + q1g1)

and thus one gets

ψ ◦ I = −a 2+k
k ψ

Therefore, using that I(µ1) = µ2 we deduce ψ|µ2 < 0. An intermediate value
argument yields C+ ⊂ Σ. �

Remark 5 The minimal surfaces Xm(a), (a,m(a)) ∈ C+, form the curve of embed-
ded examples with three ends shown by Hoffman and Meeks in [33]. The surface X0

associated to the point (1, 0) is just Hoffman-Meeks genus k − 1 example in [32],
and Xm(a) provides a smooth deformation of this surface. Furthermore since (34)
holds at the point (1, 0) and the logarithmic growth rates are continuous functions
of a, Theorem 6.4 implies that the inequalities (34) hold at any point of C+. This
fact yields a good control of the logarithmic growth rates of the ends along the de-
formation and together with the embeddedness of the Hoffman-Meeks surface, they
have a strong influence on the proof of the embeddedness of this family of surfaces.
For details see [32], [27] and [33].

If k = 2 and a = 1 (m(1) = 0) we obtain Costa’s example. For k = 2 and
a ∈]0, 1[ we get the Hoffman-Meeks deformation of Costa surface, [15].
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6.1.2 Some analytical nonexistence and uniqueness theorems.

In Paragraph 6.1.3 we will obtain a classification theorem for the family Fk in terms
of their symmetries, which generalizes that by Hoffman and Karcher (Theorem 6.9).
To do this, we will need some analytical results of nonexistence and uniqueness.

Along this subsection we assume k > 2. The case k = 2 has been treated
extensively by Costa in [13]. We follow the notation established in Paragraph 6.1.1.
We start with the following technical lemma:

Lemma 6.5 The functions fi, gi, hi, i = 1, 2, satisfy:

(i) For a ∈ R − {0,−1} and i ∈ {1, 2}

f ′
i(a) =

k − a

ka(a + 1)
fi(a) + (−1)i+1 2k − 1

ka(a+ 1)
gi(a)

g′i(a) = (−1)i+1 k + 1

k(a + 1)
fi(a) +

2k − 1

k(a + 1)
gi(a)

(ii) For a > 0
(f1h2 − f2h1)(a) = 0

Proof : Taking w = w(a) into account, one formally gets:

∂τ1
∂a

=
k − a

ka(a+ 1)
τ1 +

2k − 1

ka(a + 1)
τ2 + d v

∂τ2
∂a

=
k + 1

k(a + 1)
τ1 +

2k − 1

k(a+ 1)
τ2 + d (a v)

where v = − z(z+1)
a(a+1)w

. Hence, using the definitions of fi, gi, i = 1, 2, (ii) holds.

To obtain (iii) we need to compute the intersection matrix of the homology basis
B. Given c1, c2 ∈ H1(Mk a,Z) we label c1 · c2 as the intersection number of c1 and
c2 (see [20]). If we write di = (J i−1)∗(b1), ei = (J i−1)∗(b2), i = 1, . . . , k − 1, it is not
hard to check that for j, h ∈ {1, . . . , k − 1}:

dj · dh = 0, ej · eh = 0

dj · eh =


0 j − h < 0
0 j − h > 1
−1 j = h
1 j = h+ 1

eh · dj = −dj · eh
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Hence arranging the basis B as follows

(d1, . . . , dk−1, e1, . . . , ek−1)

the intersection matrix DB is given by

DB =

(
0 G

−tG 0

)

where G = (gj,h)1≤i,j≤k−1 is the matrix defined by:

gj,h =


0 j − h < 0
0 j − h > 1
−1 j = h
1 j = h + 1

Classical bilinear relations of Riemann applied to the 1-forms τ1 and τ3 say:

−�v1 ·D−1
B ·t �v3 = 2πiResidue(fτ3, P2)

where

�v1 =

(∫
d1

τ1, . . . ,
∫

dk−1

τ1,
∫

e1

τ1, . . . ,
∫

ek−1

τ1

)

�v3 =

(∫
d1

τ3, . . . ,
∫

dk−1

τ3,
∫

e1

τ3, . . . ,
∫

ek−1

τ3

)

D−1
B =

(
0 −tG−1

G−1 0

)
and τ1 = df locally around P2. It is easy to see that k > 2 implies Residue(fτ3, P2) =

0. Taking that J∗(τ1) = e−
2πi
k τ1, J

∗(τ3) = e
2πi
k τ3 and the definitions of fi, hi, i = 1, 2,

dj , ej, j = 1, . . . , k − 1 into account, (iii) holds.
�

The Hoffman-Meeks surface is the only element in C+ with a flat end. This is a
consequence of the following

Theorem 6.6 The function m(a) vanishes only at the point a = 1, i.e. C+ ∩
π−1

2 (0) = {(1, 0)}.
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Proof : Since I(C+) = C+, it suffices to prove that m(a) �= 0 ∀a ∈]0, 1[. Define
f :]0, 1[→ R by f(a) = ρ(a, 0) where ρ was defined in the proof of the Theorem 6.3.
From (ii) in Lemma 6.5 we obtain that

f(a) =
(1 − a)(k + 1)f2 + 2(1 − 2k)g2

(1 − a)(k + 1)f1 + 2(2k − 1)g1
+
f2

f1

Using the assertion (i) of Lemma 6.5, one has

f ′(a) =
(2k − 1)(f1g2 + f2g1)[(1 + a)2(k2 − 1)f 2

1 − ((1 − a)(k + 1)f1 + 2(2k − 1)g1)
2]

a(1 + a)kf 2
1 ((1 − a)(k + 1)f1 + 2(2k − 1)g1)2

If we define y(a) = (1 + a)
√
k2 − 1 − (1 − a)(k + 1) − 2(2k − 1)g1

f1
it is clear that

f ′(a)/y(a) > 0. Using (38) and substituting one obtains that

y(a) = 0 ⇒ y′(a) =
(a− 1)

√
k2 − 1

ak
< 0 (40)

From (36) and (37) one has lim
a→0

y(a) =
√
k2 − 1 − k − 1 < 0. If y vanishes in ]0, 1[

and a0 is the lowest root of y in this interval, then the above limit says us that
y′(a) ≥ 0, which is contrary to (40). Thus y(a) < 0 ∀a ∈]0, 1[ and hence f ′(a) < 0
in ]0, 1[. As m(1) = 0 then f(1) = 0 and so f(a) > 0 ∀a ∈]0, 1[. �

Theorem 6.7 The set of points in C− providing embedded minimal surfaces is void.

Proof : Take (a,m) a point of C−. From Remark 4 and without loss of generality we
can assume that a < −1.

The equation (33) implies

q1(a,m)(g1(a)f2(a) + f1(a)g2(a)) = −A2(h1(a)f2(a) + f1(a)h2(a))

As A ∈ R then q1(a,m)(g1(a)f2(a) + f1(a)g2(a)) < 0.
We want to see that g1(a)f2(a) + f1(a)g2(a) is positive. Applying the assertion

(i) of Lemma 6.5, it is clear that

d

da
(f2g1 + f1g2) =

2ka+ k − 2a

a(1 + a)k
(f2g1 + f1g2)

Integrating the above ordinary differential equation, we obtain that

f2g1 + f1g2 = K · |a||a+ 1| k−2
k , ∀a ∈ R − {0,−1}

where K is constant on each connected component of R − {0,−1}.
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We are going to find the value of K in the interval ] −∞,−1[. Observe that

K = lim
a→−∞

f2g1 + f1g2

|a||a+ 1| k−2
k

From the definitions of fi, gi, i = 1, 2, for a < −1 we have:

f1(a) = −
∫ 0

−1

dz

|w| = −
∫ 1

0

k

√
t

(1 − t)(−a− t)
dt

g1(a) = −
∫ 0

−1

z dz

|w| =
∫ 1

0
t k

√
t

(1 − t)(−a− t)
dt

f2(a) = −
∫ −1

a

dz

|w| = −|a + 1| k−2
k

∫ 1

0

k

√√√√(1 + a)t− a

t(1 − t)
dt

g2(a) =
∫ −1

a

z dz

|w| = −|a+ 1| k−2
k

∫ 1

0
((1 + a)t− a) k

√√√√(1 + a)t− a

t(1 − t)
dt

Using these expressions

lim
a→−∞ |a| 1

k f1(a) = − π

k sin(π/k)
, lim

a→−∞ |a| 1
k g1(a) =

π(k + 1)

2k2 sin(π/k)

lim
a→−∞ |a| 1−k

k f2(a) = − k

k − 1
, lim

a→−∞ |a| 1−2k
k g2(a) = − k2

(k − 1)(2k − 1)

and so K =
πk

sin(π/k)(k − 1)(2k − 1)
. In particular, f2g1 + f1g2 > 0 in ] −∞,−1[.

Then we deduce that q1(a,m) < 0. Suppose Xm is an embedding. As Mk a has
three ends and g(P1) = g(P3) = 0 then P1 and P3 are the top and the bottom
ends (or viceversa) and P2 is the middle end of Mk a. In particular their logarithmic
growth rates satisfy r1(a,m) · r3(a,m) < 0 (see the beginning of Subsection 6.1).
This implies that

q1(a,m) =
2(2k − 1)r1(a,m)r3(a,m)

ak2
> 0

which is a contradiction. �

To finish this section we will prove an analytic uniqueness theorem for the
Hoffman-Meeks surface X0.

For r ∈] − 2, 2[ and k > 2, define

Mk r =

{
(u, w) ∈ (C ∪ {∞})2 : wk =

u2 + ru+ 1

u

}
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Let now P0 = (0,∞), P1 = (d(r), 0), P2 = (∞,∞) and P3 = (d(r), 0), where

d(r) = −r+i
√

4−r2

2
. Put Mk r = Mk r − {P1, P2, P3}.

Consider on Mk r the following meromorphic data:

g = Auw ηg = B
d u

u2 + ru+ 1

where A ∈ R − {0} and B ∈ C, |B| = 1. Define Φj , j = 1, 2, 3, as in (4) and let

X(P ) = Real
∫ P

P0

(Φ1,Φ2,Φ3), P ∈Mk r

Theorem 6.8 The minimal immersion X has no real periods if and only if r = 0.
This case leads to Hoffman-Meeks genus k − 1 example.

Proof : Up to the change u �−→ −u, we will assume r > 0.
Suppose X has no real periods. In particular, Residue(Φ3, Pi) ∈ R, i = 1, 2, 3

and so B ∈ iR, that is, B ∈ {−i, i}. In what follows and without loss of generality
we will suppose B = i.

Let γ1 and γ2 be the oriented closed curves in the u-plane illustrated in Figure
23 below. We suppose γi(0), i = 1, 2, are the points indicated in Figure 3.

Let ci, i = 1, 2, be the unique lifts of γi, i = 1, 2, toMk r satisfying: Arg(w(c1(0))) =
−π

k
, Arg(w(c2(0))) = 2π

k
. Let τ1, τ2 denote the following 1-forms

τ1 =
d u

(u2 + ru+ 1)uw
, τ2 =

(1 − k)u(2 + ru)w

(u2 + ru+ 1)2
d u

Observe that η = i
A
τ1 and ηg2 = iAτ2 + d f , where:

f = k
u2w

u2 + ru+ 1

Define

f1(r) =
1

θ

∫
c1
τ1, f2(r) = −1

ξ

∫
c2
τ1, g1(r) = −1

θ

∫
c1
τ2, g2(r) =

1

ξ

∫
c2
τ2

where θ = e
−2πi

k −1, ξ = e
3πi
k −eπi

k . Deforming c1 and c2 on the real axis, an analytic
continuation argument gives:

f1(r) =
∫ +∞

0

d u

(u2 + ru+ 1)u|w| , f2(r) = −
∫ 0

−∞
d u

(u2 + ru+ 1)u|w| (41)

g1(r) =
∫ +∞

0

(k − 1)u(2 + ru)|w|
(u2 + ru+ 1)2

d u, g2(r) =
∫ 0

−∞
(1 − k)u(2 + ru)|w|

(u2 + ru+ 1)2
d u (42)
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Figure 23: γ1 and γ2

As Φ1 and Φ2 have no real periods we deduce∫
ci

τ1 = −A2
∫

ci

τ2, i = 1, 2

and thus (g1f2 − g2f1)(r) = 0.
Assertion: The functions fi, gi satisfy:

f ′′
i (r) =

(2 + 3k)r

k(4 − r2)
f ′

i(r) +
1 + 2k

k2(4 − r2)
fi(r) (43)

g′′i (r) =
(−2 + 3k)r

k(4 − r2)
g′i(r) +

1 − 2k

k2(4 − r2)
gi(r) (44)

To see this, note that w = w(r) and formally

∂2τ1
∂r2

=
(2 + 3k)r

k(4 − r2)

∂τ1
∂r

+
1 + 2k

k2(4 − r2)
τ1 + d j1

∂2(ηg2)

∂r2
=

(−2 + 3k)r

k(4 − r2)

∂(ηg2)

∂r
+

1 − 2k

k2(4 − r2)
ηg2 + d (iAj2)
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where j1 and j2 are the meromorphic functions

j1 =
u2 − rku− 2k − 1

k(4 − r2)(u2 + ru+ 1)2w
, j2 =

u2((2k − 1)u2 + rku+ 1)w

k(4 − r2)(u2 + ru+ 1)2

Now the assertion follows immediately.
As f1(r), g1(r) > 0 ∀r ∈ [0, 2[, we can define the function ρ : [0, 2[→ R

ρ =
f2

f1

− g2

g1

We will observe that ρ is a increasing function. We obtain this by proving that(
f2

f1

)′
> 0 and

(
g2

g1

)′
< 0, that is, f ′

2f1 − f2f
′
1 > 0, g′2g1 − g2g

′
1 < 0.

From the above Assertion we have

(f ′
2f1 − f2f

′
1)

′ =
(2 + 3k)r

k(4 − r2)
(f ′

2f1 − f2f
′
1), (g′2g1 − g2g

′
1)

′ =
(−2 + 3k)r

k(4 − r2)
(g′2g1 − g2g

′
1)

and then

f ′
2f1 − f2f

′
1 = C1(4 − r2)−

3k+2
2k , g′2g1 − g2g

′
1 = C2(4 − r2)

2−3k
2k

To finish the proof it remains only to check that C1 > 0 and C2 < 0.
It is clear that fi(0) > 0, gi(0) > 0, i = 1, 2. On the other hand

∂τ1
∂r

= − k + 1

k(u2 + ru+ 1)2w
d u,

∂ηg2

∂r
= iA

(1 − k)u2w

k(u2 + ru+ 1)2
d u

and so

f ′
1(0) = − k + 1

k

∫ +∞

0

d u

(u2 + 1)2|w| < 0

f ′
2(0) =

k + 1

k

∫ 0

−∞
d u

(u2 + 1)2|w| > 0

g′1(0) =
k − 1

k

∫ +∞

0

u2|w|
u2 + 1

du > 0

g′2(0) = − k − 1

k

∫ 0

−∞
u2|w|
u2 + 1

du < 0

This implies that C1 = 4
3k+2
2k (f ′

2f1−f2f
′
1)(0) > 0 and C2 = 4

3k−2
2k (g′2g1−g2g

′
1)(0) < 0.

Since ρ(0) = 0 and ρ is increasing, ρ(r) > 0 ∀r > 0 and then we could solve the
period problem only for r = 0, which corresponds to Hoffman-Meeks example. �
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6.1.3 Uniqueness results for embedded examples with three ends

The aim of this subsection is to characterize the minimal embeddings Xm(a) : Mk a →
R

3, k > 2, a > 0, described in Paragraph 6.1.1. They are the unique surfaces
of maximal symmetry among complete minimal embeddings of genus k − 1 with
three ends and finite total curvature. For a �= 1 the symmetry group Sym(Mk a)
is isomorphic to the dihedral group with 2k elements D(k) and is generated by a
rotation about the x3-axis by angle 2π

k
and a symmetry with respect to the (x1, x3)-

plane.
Hoffman and Karcher have previously obtained the following uniqueness theorem:

Theorem 6.9 (Hoffman, Karcher [27]) Let X : M → R
3 be a complete em-

bedded minimal surface of finite total curvature and three catenoid ends. Suppose
that M has genus k − 1 and k vertical planes of symmetry intersecting in a com-
mon vertical line. Then, up to scaling and rigid motion, X = Xm(a), for a suitable
a ∈]0, 1[.

For a = 1, the immersionXm(1) = X0 is the Hoffman-Meeks surface of genus k−1.
The group Sym(Mk 1) is isomorphic to D(2k) and is generated by a rotation about
the x3-axis by angle π

k
followed by a symmetry with respect to the (x1, x2)-plane

and a symmetry with respect to the (x1, x3)-plane. The corresponding uniqueness
theorem for this surface was firstly obtained by Hoffman and Meeks.

Theorem 6.10 (Hoffman, Meeks [32]) Suppose X : M → R
3 is a complete em-

bedded minimal surface with finite total curvature, genus k−1, k > 1, and three ends.
If the symmetry group of X(M) has at least 4k elements, then, up to homothety and
rigid motion, X = X0.

In the case of genus one, a more general theorem was proved by Costa:

Theorem 6.11 (Costa [13]) The only complete embedded minimal surfaces of genus
one and three ends are the surfaces {Xm(a) : M2 a → R

3, a ∈]0, 1]}.
The following notes are due to the authors of this survey and D. Rodŕıguez.

We generalize Theorems 6.9 and 6.10 (see Corollary 6.13 and Theorem 6.14). The
fundamental ideas here are inspired in the uniqueness part of the paper [32].

Let X : M → R
3 be a complete embedded minimal surface of genus k−1, k > 2,

with three ends and finite total curvature. We assume that Sym(M) has at least
2k elements. From Theorem 5.1 M is conformally equivalent to M − {P1, P2, P3},
where M is a compact Riemann surface of genus k − 1. The points removed corre-
spond to the ends and from Theorem 5.2 the Weierstrass data (g, η) of X extends
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meromorphically to M . Since the ends of M are parallel, we can suppose, up to one
rotation if necessary, g(Pi) ∈ {0,∞}, i = 1, 2, 3.

A symmetry of X(M) induces in a natural way a conformal automorphism of
M which extends to M leaving the set {P1, P2, P3} invariant. Since the subgroup of
holomorphic transformations has index either one or two in Sym(M), then Hurwitz’s
Theorem (see [20]) implies that Sym(M) is finite. Thus after a suitable choice
of the origin, Sym(M) is a finite group G of orthogonal linear transformations.
Furthermore, since the normal vectors at the ends are vertical G leaves the x3-
axis invariant. Basic topics on embedded minimal surfaces indicate that, up to
re-indexing the ends and without loss of generality, g(P1) = g(P3) = 0, g(P2) = ∞,
and that P1 is the highest end, P2 is the middle end and P3 is the lowest end (see
Subsection 6.1).

In what follows we do not distinguish between T and T|X(M), the latter being
viewed as conformal transformation of M , ∀T ∈ G.

Observe that any symmetry in G leaves the set {P1, P3} invariant and so it fixes
the point P2. Let H be the subgroup of holomorphic transformations in G. If we
take D a conformal disk centered at P2 invariant by G then {T|D : T ∈ G} is a
finite group of conformal automorphisms of the disk fixing the origin. Hence this
group is either cyclic (i. e. G = H) or |H| = |G|/2 and is isomorphic to D(|H|).
Since H has at least k elements and k > 2, H is generated by J , where J is either a
rotation around the x3-axis or a rotation around the x3-axis followed by a symmetry
with respect to the (x1, x2)-plane. Moreover, if G is a dihedral group there exists
an antiholomorphic transformation S ∈ G satisfying J ◦ S ◦ J = S. The isometry S
corresponds to either a symmetry with respect to a plane containing the x3-axis or
a reflection around a straight line orthogonal to the x3-axis and meeting this axis
at the origin.

In the remaining part of this section, we assume that J is the generator of
H corresponding either to a rotation around the x3-axis by an angle of 2π

ord(J)
or

a rotation around the x3-axis by an angle of 2π
ord(J)

followed by a symmetry with

respect to the (x1, x2)-plane, where ord(J) is the order of J and ord(J) = |H|. In
the second case the number ord(J) is even. Label J0 as the rotation around the
x3-axis with the lowest positive angle in H. Note that either J0 = J or J0 = J2.

We have fixed the following notation: for Q ∈ M we denote

I(Q) = {T ∈ H : T (Q) = Q}
as the isotropy group of Q in H and label µ(Q) = |I(Q)| as the cardinal of I(Q).

We also denote orb(Q) =
{
Q, J(Q), . . . , J |H|−1(Q)

}
as the orbit of Q associated to

H. Notice that orb(Q) has |H|
µ(Q)

elements.

Label H0 = 〈J0〉 and define I0(Q), µ0(Q) and orb0(Q), for each Q ∈M , as above.
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Theorem 6.12 (—,—, Rodŕıguez) If ord(J0) ≥ k then there exists a ∈ R+ such
that, up to conformal transformations and rigid motions in R

3, M = Mk a and
X = Xm(a).

Proof : Since J0 is a rotation around the x3-axis then J0(Pi) = Pi, i = 1, 2, 3, and so
the formula of Riemann-Hurwitz gives:

4 − 2k = |H0|χ
(
M/H0

)
− (3|H0| − 3 +

∑
Q∈M

(µ0(Q) − 1))

Hence
1 − 2k + 3|H0| +

∑
Q∈M

(µ0(Q) − 1) = |H0|χ
(
M/H0

)
As |H0| ≥ k, the left hand side of this formula is positive and then χ

(
M/H0

)
> 0,

which implies that M/H0 is a sphere and χ
(
M/H0

)
=2. Therefore

1 − 2k + |H0| +
∑

Q∈M

(µ0(Q) − 1) = 0 (45)

Let orb0(Q1), . . . , orb0(Qs) be the different nontrivial orbits ofH0 onM (i.e., µ0(Qi) >

1, i = 1, . . . , s and if Q ∈M −∪s
i=1orb0(Qi) then µ0(Q) = 1). We label mi = |H0|

µ0(Qi)
,

i = 1, . . . , s. Since J0
mi is a rotation around the x3-axis that fixes J0

l(Qi), l =
0, . . . , mi − 1, then these points are mapped by X into the x3 axis. Furthermore,
as J0 is a rotation then X(Qi) = X(J0

l(Qi)), l = 0, . . . , mi − 1. Our embeddedness
assumption implies mi = 1, i = 1, . . . , s and then (45) becomes

1 − 2k + |H0| + s(|H0| − 1) = 0

Since |H0| ≥ k the last equation implies that either s = 0 and |H0| = 2k − 1 or
s = 1 and |H0| = k.

If s = 0 then X(M) does not meet the x3-axis and so the number of points in M
with the same vertical normal vector is a multiple of |H0| = 2k−1 (The rotation J0

maps a point with vertical normal vector into another point with the same normal
vector). Since the ends P1 and P3 have the same normal vector, we can deduce that
the degree of the Gauss map g is 2 + n(2k− 1), n > 0. This number is greater than
k + 1 which contradicts the formula of Jorge-Meeks (Theorem 5.3).

Therefore s = 1 and |H0| = k. Let P0 be the unique fixed point of J0 in M . Since
P0 is a point of M fixed by a conformal automorphism of order k which corresponds
to a rotation around the x3-axis by an angle of 2π

k
, then the normal vector at this

point is vertical and the multiplicity of the Gauss map g at P0 is nk − 1, n > 0.
Furthermore any other point Q ∈M −{P0} with vertical normal vector does not lie
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on the x3-axis and so J0
l(Q), l = 0, . . . , k − 1, are k different points with the same

vertical normal vector. Taking into account that g(P1) = g(P3) = 0, g(P2) = ∞
and deg(g) = k + 1 we deduce that n = 1, g(P0) = 0 and either g−1(∞) = {P2}
or g−1(∞) = {P2, Q0, . . . , J0

k−1(Q0)}, where Q0 ∈M − {P0, P1, P3} is not a branch
point of g. In other words the divisor associated to g is

[g] =
P1 · P3 · P k−1

0

P2 ·∏k−1
i=0 J

i
0(Q0)

(46)

The mapping u : M −→ M/H0 is a k-fold cyclic branched covering of M/H0 =
C∪{∞}. Without loss of generality we may choose u(P0) = 0, u(P1) = −1, u(P2) =
∞. We also write u(P3) = a ∈ C and u(Q0) = −1/m, m ∈ C (of course, m = 0
means u(Q0) = ∞). If we define N = M −P0 then u|N : N → C−{0,−1, a} is a k-
fold unbranched cyclic covering. Moreover, the conformal structure of N determines
the conformal structure of M . We may determine u|N as follows. Remember that
J0 is the generator of H0 corresponding to a counterclockwise rotation around the
x3-axis by an angle of 2π

k
. Let αi, i = 1, 2, 3 be a counterclockwise circuit around

0, a and −1 respectively, and α̃i its lift to N . The end points of α̃i will differ by a
deck transformation of the form Jki

0 , 0 ≤ ki ≤ k − 1, i = 1, 2, 3. The choice of J0

and the fact that we have oriented M with downward-pointing normal vectors at
P0, P1 and P3 implies that J0 has rotation number 2π/k at P1 and P3 and rotation
number −2π/k at P0 and P2. Hence k2 ≡ k3 ≡ 1 mod(k) and k1 ≡ −1 mod(k).
The numbers k1, k2 and k3 determine the induced map from Π1(C−{0,−1, a}) onto
Zk whose kernel corresponds to u∗(Π1(N)) ⊂ Π1(C − {0,−1, a}). Any k-fold cyclic
covering of C − {0,−1, a} is equivalent to u|N if the associated representation has
the same kernel. In particular the cyclic covering defined by the z-projection of{

(z, w) ∈ (C − {0,−1, a}) × (C − {0}) : wk =
(z + 1)(z − a)

z

}

is equivalent to u|N . The extension of this covering to the Riemann surface

Mk a =

{
(z, w) ∈ (C ∪ {∞})2 : wk =

(z + 1)(z − a)

z

}

is conformally equivalent to u. In particular M = Mk a, u = z and J0(z, w) =

(z, e
2πi
k w).

Furthermore from (46) and taking into account that the ends are embedded (i.e.
νi = 1, i = 1, 2, 3, see Theorem 5.3) we have up to rigid motions and scaling:

g = A
zw

mz + 1
, ηg = B

mz + 1

(z + 1)(z − a)
d z (47)
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where A ∈ R and B ∈ C, |B| = 1.
We distinguish two cases: J0 = J2 and J0 = J .
In the first case J is a rotation followed by a symmetry and then J(P1) = P3,

J(P3) = P1, J(P2) = P2 and since J0 has only a fixed point P0 in M , then J(P0) =
P0. The conformal transformation J can be induced on M/H0 = C ∪ {∞} giving a
nontrivial involutive holomorphic automorphism of C ∪ {∞} fixing 0 and ∞. This
automorphism must be z �→ −z and then a = 1. Furthermore, since J maps points
with vertical normal vector into other points with vertical normal vector we deduce
that J2l+1(Q0) l = 0, . . . k − 1 are points which appear in the divisor associated to
g. Moreover it is clear that J(Q0) �= P0, P1, P3 and so Q0 = P2, i. e. m = 0. Hence
the Weierstrass data in (47) correspond to the Hoffman-Meeks surface.

Suppose now J0 = J , i.e., J is a rotation around the x3-axis. In this case
H0 = H and |G| = 2k. Let S be a symmetry in G − H. From the definition of
H, S is an antiholomorphic transformation on M fixing P2 which corresponds to
either a symmetry with respect to a plane containing the x3-axis or a reflection
about a straight line orthogonal to the x3-axis and meeting it at the origin. Since
J ◦ S ◦ J = S and P0 is the unique point fixed by J = J0 on M , S fixes P0 too.
Inducing S on M/H0 we obtain an antiholomorphic involution in C ∪ {∞} which
fixes 0 and ∞. This implies that z ◦ S = θz, where |θ| = 1.

If S is a symmetry with respect to a plane containing the x3-axis then S fixes
P1 and P3, and so the function z �→ θz fixes −1 and a, which implies θ = 1 and
a ∈ R − {0,−1}. In particular and without loss of generality S(z, w) = (z, w).
Furthermore, since S maps points with vertical normal vector into other points with
vertical normal vector then it leaves invariant orb(Q0) and so m ∈ R. Thus Theorem
6.3 and Theorem 6.7 leads to X = Xm(a).

If S is a reflection about a straight line orthogonal to the x3-axis then S(P1) = P3

and P2 is a flat end. This implies that m = 0 ,θ = −a and without loss of generality
S(z, w) = (−az, k

√−aw). Making u = z/
√−a, we obtain M = Mk r where r =

2Real(
√−a) and the Weierstrass data (47) are , up to natural transformations,

those studied in Theorem 6.8. This theorem leads to Hoffman-Meeks surface which
has 4k symmetries, which is a contradiction. �

If P1, P2 and P3 are catenoid ends then Sym(M) does not contain any rotation
followed by a symmetry, i. e. J0 = J . Hence we get the following

Corollary 6.13 (—,—, Rodŕıguez) If X : M → R
3 has three catenoid ends

and Sym(M) contains 2k elements or more then, up to natural transformations,
X = Xm(a), a ∈ R+ − {1}.

In the end, we are going to obtain a new characterization of the Hoffman-Meeks
surface which improves on the one by Hoffman and Meeks in [30].
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Theorem 6.14 (—,—, Rodŕıguez) If M has 2k+3 symmetries or more then X
is the Hoffman-Meeks surface X0.

Proof : First we observe that J0 = J2. If J0 = J then Sym(M) contains a rotation
about the x3-axis of order greater than k + 1 and then Theorem 6.12 leads to
X = Xm(a) for a suitable a > 0. No such surfaces contain a rotation of this order,
which is a contradiction.

Hence J0 = J2 and H is generated by a rotation followed by a symmetry. We
deduce that P2 is a flat end, P1 and P3 are catenoid ends, J(P2) = P2, J(P1) = P3

and J(P3) = P1. From the Riemann-Hurwitz formula we obtain

4 − 2k = |H|χ
(
M/H

)
− (2|H| − 3 +

∑
Q∈M

(µ(Q) − 1))

Since |H| ≥ k we deduce χ
(
M/H

)
> 0 and so M/H is a sphere and χ

(
M/H

)
= 2.

Substituting in the above formula χ
(
M/H

)
for 2, we get∑

Q∈M

(µ(Q) − 1) = 2k − 1 (48)

Let orb(Q1), . . . , orb(Qs) be the different nontrivial orbits of H onM (i.e., µ(Qi) > 1,

i = 1, . . . , s and if Q ∈ M − ∪s
i=1orb(Qi) then µ(Q) = 1). If we label mi = |H|

µ(Qi)
,

i = 1, . . . , s, then (48) gives

s∑
i=1

(|H| −mi) = 2k − 1 (49)

Since |H| is even then at least one of the numbers mi is odd. On the other hand,
if mi is odd then Jmi is a rotation around the x3-axis followed by a symmetry with
respect to the (x1, x2)-plane and it fixes only the origin of R

3. As X is an embedding,
there is at most one point of M mapped by X into the origin, and so there exists a
unique odd number mi and mi = 1. Up to re-indexing we can assume that m1 = 1.

Therefore mi is even, i ≥ 2, and Jmi is a rotation, i ≥ 2. If mi > 2, i ∈ {2, . . . , s},
then Qi and J2(Qi) are two different points lying in orb(Qi). Since Jmi is a rotation
around the x3-axis then X(Qi) and X(J2(Qi)) lie in the x3-axis. Moreover J2 is a
rotation around the x3-axis too, and thus X(Qi) = X(J2(Qi)), which contradicts
the fact that X is an embedding. Hence mi = 2 ∀i ≥ 2 and (49) becomes

|H| + (s− 1)(|H| − 2) = 2k

Since |H| ≥ k + 2 we get s = 1 and |H| = 2k.
In particular ord(J0) = k. Using Theorem 6.12 we obtain X = Xm(a), a ∈ R+.

Taking into account that the unique surface of the family, which has more than 2k
symmetries, is the Hoffman-Meeks example, then the theorem holds. �
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A standing conjecture asserts that:

Conjecture 5 The moduli space of properly embedded minimal surfaces in R
3 with

finite topology and three ends consists of the family {Xm(a)(Mk a), a ∈]0, 1], k ∈ N}.
As we have mentioned before, Costa’s theorem (Theorem 6.11) proves that the

conjecture is true for k = 1.
This conjecture suggest a more general question: the study of the moduli space

of embedded complete minimal surfaces in R
3, up to homotheties, with finite total

curvature and fixed topology. In this sense, they are remarkable the works by Ros
[84] and by Pérez and Ros [77, 78]. So, in the first paper, it is proved that if the
genus is one and the number of ends is five or more then the moduli space above is
compact in strong sense. In the other two papers, and under suitable conditions of
nondegeneration, it is proved that this moduli space is a real analytical sub-manifold
of a finite dimensional Euclidean complex space.

6.2 Properly embedded minimal surfaces of genus zero

It gradually became a question of increasing interest to classify the properly embed-
ded minimal planar domains.

In case of finite topology, Corollary 6.2 and Theorem 6.15 below show that the
only such surface with two or more ends is the catenoid. For simply connected
properly embedded minimal surfaces, it is still open the following conjecture:

Conjecture 6 (Osserman, Meeks) The only properly embedded, simply connected,
nonflat, minimal surface in R

3 is the helicoid.

Partial answers to this conjecture can be found in [66, 97, 98, 83].
A more general conjecture asserts:

Conjecture 7 (Meeks) The only properly embedded genus zero minimal surfaces
are the plane, the catenoid, the helicoid and Riemann’s minimal examples.

Riemann’s minimal examples will be described in Paragraph 6.2.2. As we will
comment in Theorem 6.19, Meeks, Pérez and Ros have proved that Conjecture 7 is
true if, in addition, we suppose that the surface has infinitely many symmetries.

6.2.1 Properly embedded minimal surfaces with vertical flux

Let X : M → R
3 be a minimal immersion. Given γ a closed curve in M , we define

the flux of X along γ as

Flux(γ) = Im
(∫

γ
Φ
)
,
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where Φ = (Φ1,Φ2,Φ3) are the Weierstrass data of X. From the definition, it is
clear that Flux(γ) only depends on the homology class of γ in H1(M,Z).

On the other hand, if n(s) represents the conormal vector of X along the curve
γ, then it is straightforward to check that

Flux(γ) =
∫

γ
n(s)ds.

Furthermore, the following assertions are equivalent:

1. Flux(γ) = 0, ∀γ ∈ H1(M,Z),

2. Φ1, Φ2 and Φ3 are exact,

3. η, g η and g2 η are exact,

4. The conjugate immersion X∗ = Im (
∫

Φ) is well defined.

For any λ > 0, we consider on M the Weierstrass data gλ
def
= λ g and ηλ

def
= 1

λ
η.

They define in general a multivalued unbranched minimal immersion Xλ : M → R
3,

given by

Xλ(P ) = Real
∫ P

P0

1

λ

(
1

2
(1 − λ2g2),

i

2
(1 + λ2g2), λg

)
η. (50)

If all the fluxes ofX are vertical vectors, we easily conclude that Φ1 and Φ2 are exact,
and we can check that this fact occurs if and only if Xλ is well defined, ∀λ > 0.
If the deformation {Xλ}λ>0 exists on M , it is obviuous that the third coordinate
function of Xλ is independent on λ.

Suppose A is an annulus, A homeomorphic to D
∗
, and consider X : A → R

3 a
minimal immersion. We define the flux of the minimal end X(A) as Flux(γ), where
γ is any curve in A generating H1(A,Z). If X : M → R

3 is a complete minimal
immersion with finite topology, and we label Ei, i = 1, . . . , r, as the topological ends
of M , then

r∑
i=1

fi = 0, (51)

where fi is the flux of the end Ei (i.e., the flux of the minimal end X(Di), where Di

is a neighborhood of Ei homeomorphic to D
∗
,) i = 1, . . . , r. This result is an easy

consequence of Stokes’ Theorem.
In particular, if X has finite total curvature, the sum of the fluxes of the ends is

zero, and in this sense, the surface is balanced. If P is an embedded end of M with
limit normal vector vP , then the flux of P is

Residue(Φ tvP )aP ,

86



where aP is the logarithmic growth of P . So, if all the ends P1, . . . , Pr are embedded
and parallel, one has

r∑
i=1

aPi
= 0. (52)

Other balancing formulae for minimal surfaces can be found in [76].

Remark 6 Any annular embedded end with finite total curvature and vertical limit
normal vector at the end has vertical flux.

Thus, any properly embedded minimal surface with finite total curvature, genus
zero, and vertical normal vectors at the ends, has vertical flux. So, the above defor-
mation exists for these kinds of surfaces.

Theorem 6.15 (López, Ros [59]) Let X : M → R
3 be a complete, genus zero,

embedded minimal surface with finite total curvature. Then X(M) is the catenoid
or the plane.

Proof : As we have mentioned above, any embedded genus zero minimal surface has
vertical flux. In fact, we are going to prove that:

The only complete, properly embedded, minimal surfaces with finite total curva-
ture and vertical flux are the plane and the catenoid.

The presentation here of this result follows that of Pérez and Ros [79].
Suppose that X(M) is not a plane. Then, by Theorems 5.1, 5.2 and 5.3, M

is conformally equivalent to M − {P1, . . . , Pr}, where M is a compact Riemann
surface, the Weierstrass data (g, η) extends meromorphically to M , and the ends
are asymptotic to planes or half-catenoids.

As X(M) has vertical flux, then the deformation Xλ : M → R
3, λ > 0, given in

(50), is well defined. It is clear that Xλ is complete, has finite total curvature and
embedded ends.

Claim 1 Let X : M → R
3 be a complete nonflat minimal immersion with vertical

flux. Consider P ∈M satisfying g(P ) ∈ {0,∞}, then for all conformal disc centered
at P , D(P ), there is λ > 0 such that Xλ|D(P ) is not an embedding.

Firstly, observe that the set g−1
λ ({0,∞}) does not depend on λ. Suppose that X(M)

is not a plane, and consider P ∈M a point with vertical normal vector. Up to a rigid
motion, we can assume that g(P ) = 0. Take (D(ε), z) a local coordinate centered
at P , in such a way that:

g(z) = zk, η = (a + z h(z)) dz,
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where k ∈ N, k > 0, a ∈ C − {0}, h is a holomorphic function on D(ε) = {z ∈
C / |z| < ε}. If we consider (D(λ1/kε), ζ = λ1/kz), then the Weierstrass data of Xλ

can be locally expressed as:

gλ(ζ) = ζk, ηλ =
1

λ1+1/k

(
a+

ζ

λ1/k
h

(
ζ

λ1/k

))
dζ.

Thus, the homothetic shrinking X̃λ = λ1+1/k Xλ is another complete minimal immer-
sion. As λ → ∞, X̃λ converges uniformly over compact subsets of C to a minimal
immersion X̃∞ whose Weierstrass representation is:

g∞(ζ) = ζk, η∞ = a dζ.

This minimal immersion is complete, but not embedded. Therefore, if λ is large
enough Xλ is not an embedding. This proves the claim.

In order to prove the next claim, we need some previous results.
Consider X : D(ε)∗ → R

3 be an embedded end with well defined limit normal
vector (i.e. g is well defined at 0, and so the total curvature is finite), and assume
that X(D(ε)∗) is not a planar domain. Up to a rigid motion, we suppose that
g(0) = 0. By Theorem 5.4, the Weierstrass data of the end are:

g(z) = zk, η =
(
a

z2
+ h(z)

)
dz, a ∈ C − {0}, (53)

where h is holomorphic and k is a positive integer. If k = 1, then a must be real,
and so we have a catenoid end with logarithmic growth a. If k > 1 the end is flat.
The flux of X either vanishes (flat end) or is vertical (catenoid end). Hence, Xλ is
well defined on D(ε)∗. Furthermore, if X is a catenoid end (resp. flat end) then Xλ

is a catenoid end (resp. flat end).
We obtain from (53) that

Xλ(z) = φλ(z) + F (z, λ), (54)

where φλ : D(ε)∗ → R
3 denotes either a parametrization of the end of the (x1, x2)-

plane or a parametrization of an end of the vertical catenoid symmetric respect to
the origin with logarithmic growth a, and F is a finite-valued smooth function on
D(ε)×]0,+∞[.

Claim 2 Let X : D(ε)∗ → R
3 be a planar end with finite total curvature. If

X(D(ε)∗) is not a planar domain, then there is λ > 0 such that Xλ is not an
embedding.
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As in Claim 1, we consider the conformal coordinate (D(λ1/kε)∗, ζ = λ1/kz). Then,
taking (53) into account, the Weierstrass data of Xλ are:

gλ(ζ) = ζk, ηλ =
1

λ1+1/k

(
a

ζ2
+

1

λ2/k
h

(
ζ

λ1/k

))
dζ.

Thus, the homothetical shrinking X̃λ = λ1+1/k Xλ is another complete minimal
immersion. As λ→ ∞, X̃λ converges uniformly over compact subsets of C−{0} to
a minimal immersion X̃∞ : C − {0} → R

3 whose Weierstrass representation is:

g∞(ζ) = ζk, η∞ =
a

ζ2
dζ.

As k ≥ 2, this surface has an embedded end at 0 and a nonembedded one at ∞. So,
for λ large enough, Xλ is not an embedding.

Claim 3 Xλ is an embedding, ∀λ > 0.

Let B = {λ > 0 / Xλ is an embedding}. Observe that 1 ∈ B, and so B �= ∅. If
λ0 ∈ B, then, using Theorem 1.6, one has that the distance between two ends of Xλ0

is positive. So, from (54), this distance is either infinite , for all λ > 0, or a continuous
function on λ. Then, there exists ε, R > 0 such that Xλ(M) ∩ (R3 − B(0, R)) is
embedded, ∀λ ∈]λ0 − ε, λ0 + ε[. If Xλ were not injective for some λ ∈]λ0 − ε, λ0 + ε[,
then self-intersections of Xλ(M) would be in B(0, R), and so we would arrive to
a contradiction, by using the classical maximum principle (Theorem 1.5). Hence,
]λ0 − ε, λ0 + ε[⊂ B which implies that B is open.

Now take {λn}n∈N a sequence in B converging to λ0 > 0. Assume that Xλ0 is
not injective. Then, there are two points x, y ∈M satisfying Xλ0(x) = Xλ0(y). The
convergence of {Xλn}n∈N to Xλ0 uniformly over compact subsets of M and Theorem
1.5 insure that there exist neighborhoods N(x), N(y), of x and y, respectively, such
that Xλ0(N(x)) = Xλ0(N(y)). So, the image setXλ0(M) is an embedded minimal
surface with finite total curvature and

Xλ0 : M −→ Xλ0(M)

is a finitely sheeted covering map. By Theorem 1.6, there exists an embedded
tubular neighborhood of Xλ0(M) in R

3. Label π : U → Xλ0(M), and d : U → R the
orthogonal projection and the oriented distance, respectively. From (54), it is clear
that Xλn(M) ⊂ U , for n ∈ N large enough. Hence,

π ◦Xλn : M −→ Xλ0(M)
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is a proper local diffeomorphism, i.e., a finitely sheeted covering map. As Xλn is an
embedding, then d◦Xλn is a continuous map which separates the points in the fiber
(π ◦Xλn)−1({P}), ∀P ∈ Xλ0(M). So, π ◦Xλn has only one sheet. As {π ◦Xλn}n∈N

converges to π ◦Xλ0 = Xλ0 uniformly over compact subsets of M , we deduce that
Xλ0 is injective, which is contrary to our assumption. This contradiction proves that
B is closed.

Thus, an elementary connectedness argument gives that B =]0,+∞[, which
concludes the claim.

Claim 4 The surface X(M) is a catenoid.

Taking into account Claims 1, 2 and 3, we deduce that X has neither planar ends
nor points with vertical normal vector. Hence, the third coordinate function X3 is
proper and has no critical points. So, M is an annulus and Theorems 5.3 and 5.15
imply that X(M) is a catenoid. �

6.2.2 Properly embedded minimal cylinders with planar ends

The first examples of periodic minimal surfaces with more than one end were dis-
covered by B. Riemann [82] in 1867. Riemann constructed a one-parametric family
of properly embedded minimal surfaces, {Rλ : λ > 0}, which are invariant un-
der a translation, Tλ. He proved also that every minimal surface expressible as a
union of circles in parallel planes is either a subset of some Rλ or a subset of the
catenoid. Furthermore, Enneper obtained the same conclusion without assuming
that the planes of the folitation are parallel.

Let us introduce the Riemann minimal examples. Consider, for each λ > 0, the
compact genus one Riemann surface

Mλ = {(z, w) ∈ C
2

: w2 = z(z − λ)(λz + 1)},
with its natural complex structure. Define

Mλ = Mλ − {(0, 0), (∞,∞)}
g = z, ηg = Bdz/w,

where B ∈ R. Let [α] be the homology class of the closed curve in Mλ obtained by
lifting the slit [0, λ]. We suppose that α is an element of [α] lying in Mλ.

Let p : Nλ → Mλ be the conformal covering determined by: p∗(H1(Nλ,Z)) =
{m[α] : m ∈ Z}. Up to conformal transformations, Nλ = C

∗. We label M̃λ =
p−1(Mλ), and observe that M̃λ is conformally equivalent to C

∗ punctured in a se-
quence of points diverging to 0 and ∞. We write g̃ = g ◦ p, and η̃ = p∗(η). We also
label α̃ as a lift of the curve α in M̃λ.
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Consider the minimal immersion Yλ : M̃λ → R
3 given by:

Yλ(P ) = Real
∫ P

P0

(Φ̃1, Φ̃2, Φ̃3),

where Φ̃j , j = 1, 2, 3, were defined in (4), and P0 ∈ M̃λ. It is clear that the 1-forms
η, ηg2 and ηg have no residues at the ends of Mλ, and so the same holds for their
pull-backs at the ends of M̃λ. Furthermore,

∫
α ηg =

∫
α̃ η̃g̃ ∈ iR, and so the map Y

is well defined (i.e., it has no real periods) if and only if∫
α̃
η̃ =

∫
α̃
η̃g̃2,

which is equivalent to ∫
α
η =

∫
α
ηg2. (55)

The transformation I(z, w) = (−1/z, w/z2) satisfies I∗α = −α and I∗η = −ηg2.
Therefore, (55) trivially holds.

The arising family of surfaces R = {Rλ = Yλ(M̃λ} are the so called Riemann
minimal examples. These surfaces are invariant under the translation Tλ defined by
the vector

�vλ = Real

(∫
[β]

(Φ1,Φ2,Φ3)

)
,

where [β] is the homology class of a lift to Mλ of the slit [−1/λ, 0].
The ends of Rλ are embedded and planar, and the quotient Rλ/〈Tλ〉 is a genus

one, embedded minimal surface in R
3/〈Tλ〉 with two ends and total curvature −8π.

F. J. López, M. Ritoré and F. Wei [58] have characterized Riemann’s examples as
the only embedded minimal tori with two planar ends in R

3/Tλ. From this point of
view, and very recently, Meeks, Pérez and Ros [64] have obtained the best possible
theorem, generalizing the last result for a finite arbitrary number of ends. See
Theorem 6.17 below.

We first include here the following classical theorem.

Theorem 6.16 (Riemann [82]) A nonflat minimal surface foliated by pieces of
circles or lines in parallel planes is, up to scaling and rigid motions, a piece of
either some Rλ, λ > 0, the catenoid or the helicoid.

Proof : Let X : M → R
3 be a surface satisfying the hypotheses in the theorem. Take

(D, z) a conformal disk in M such that ηg = dz. The level curve x3 = c, c ∈ R,
corresponds in D to the curve zc(y) = c + iy. Therefore, it is straightforward to
check that

kc(y) =

[ |g|
1 + |g|2Real

(
g′

g

)]
|z=zc(y),
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Figure 24: A fundamental piece of R1.

where kc is the planar curvature of the curve X ◦ zc. In what follows, we write
k(c, y) = kc(y), and observe that from our assumptions, this function just depends
on c. In particular,

∂k

∂y
= 0.

By a straightforward computation, this equality is equivalent to

Im

3

2

(
g′(z)
g(z)

)2

− g′′(z)
g(z)

− 1

1 + |g(z)|2
(
g′(z)
g(z)

)2
 = 0. (56)

If we define

f1(z) =
1

2

(
g′(z)
g(z)

)2

− g′′(z)
g(z)

, f2(z) = g(z)

g′′(z)
g(z)

− 3

2

(
g′(z)
g(z)

)2
 ,

then (56) becomes
Im(f1) = Im(gf2). (57)

This implies that Im(gf2) is harmonic. Since g and f2 are meromorphic, it is not
hard to deduce that

f2 = r1g + a,

where r1 ∈ R and a ∈ C. By using (57), one has

f1 + ag − r2 = 0,
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where r2 ∈ R.
These two equations imply that r1 = r2 = r ∈ R and

g′(z)2 = g(z)
(
ag(z)2 − 2rg(z) − a

)
. (58)

If a = 0, then g′(z) = ±i√2rg(z), and so, g(z) = Ae±i
√

2rz, A ∈ C
∗. If r < 0, we

get a piece of a catenoid. When r > 0, we obtain a piece of the helicoid. Remember
that Catalan in [7] obtained a previous characterization of the helicoid as the only
ruled minimal surface in R

3.
Assume that a �= 0.Up to a rotation about the x3-axis (i.e., the change g �−→ eitg,

where a = |a|eit) , we can suppose that a ∈]0,+∞[. Moreover, up to the change
z = µ−1ζ , where µ4 − a2 + 2rµ2 = 0, (58) becomes

g′(ζ)2 = g(ζ)(g(ζ)− λ)(λg(ζ) + 1),

where λ = a/µ2. Up to scaling and rigid motions, this surface corresponds to a piece
of Rλ. �

The Meeks-Pérez-Ros uniqueness theorem asserts:

Theorem 6.17 (Meeks, Pérez, Ros [64]) Let M be a properly embedded mini-
mal surface in R

3/T of genus one and a finite number of planar ends, T being a
nontrivial translation. Then, M is a quotient of a Riemann example.

Sketch of the proof : Let S denote the space of properly embedded minimal (oriented)
tori in a quotient of R

3 by a translation T , which depends on the surface, with 2n
horizontal planar (ordered) ends. In S we consider the uniform topology on compact
subsets of R

3. By the maximum principle at infinity (Theorem 1.6), the ends are
separated by a positive distance. Furthermore, embeddedness insures that, up to a
rotation, the normal limit vector at the ends are (0, 0,±1) and they alternate from
one end to the next. Note that if we rotate around the x3-axis a M ∈ S, we get a
different element of S. The allowed orders for the ends with normal vector (0, 0,−1),
P1, . . . , Pn, and for the ends with normal vector (0, 0, 1), Q1, . . . , Qn, will be those
in which the list (P1, Q1, P2, Q2, . . . , Pn, Qn) corresponds to consecutive ends in the
quotient space. We will indentify in S two surfaces which differ by a translation that
preserves both orientation and the order of the above list of ends.

A surface M ∈ S cuts transversally any horizontal plane nonasymptotic to its
ends in a compact Jordan curve γ. We will orient γ in such a way that Flux(γ) has
positive third coordinate. As the flux vanishes around the ends (they are planar
ends), it follows that Flux(γ) does not depend on the height of the plane. Results
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in [79] say us that Flux(γ) = (Flux(γ)1,Flux(γ)2,Flux(γ)3) is not vertical. We will
rescale our surfaces so that Flux(γ)3 = 1. We define the Flux map:

F : S −→ R
2 − {0}

F (M) = (Flux(γ)1,Flux(γ)2) .

Denote by R the subset of S consisting of the Riemann examples and their
rotations around the x3-axis. The set R is open and closed in S. Indeed, it is proved
in [75] that any small deformation of a Riemann example must be another Riemann
example. This gives the openness of R. Remember that Riemann examples are
characterized by the fact of being foliated by circles and lines in horizontal planes
(Theorem 6.16). So, if a sequence of Riemann examples converges to a surface
M ∈ S, then horizontal sections on M will de circles or lines and, thus, M ∈ R.

The theorem is a consequence of the following three facts:

1. The map F is proper.

2. The map F is open.

3. There exists ε > 0 such that if M ∈ S satisfies |F (M)| < ε, then M ∈ R.

The proof of these assertions can be found in [64].
Indeed, suppose S′ def

= S − R �= ∅. As S′ is open and closed in S and F is proper
and open, it follows that its restriction to S′ is also an open and proper map. So,
F (S′) = R

2 − {0}. This contradicts assertion 3, and completes the proof. �

This theorem has the following consequences:

Theorem 6.18 (Meeks, Pérez, Ros [64]) If M is a properly embedded periodic
minimal planar domain in R

3 with two limit ends, then M is one of the Riemann
examples.

Proof : Since every periodic minimal surface with more than one end has a top and
bottom limit end, it follows that the middle ends are simple ends, which in the case
of finite genus means annular ends (see [21]). The structure theorem in [6] implies
the existence of a nontrivial screw motion or a translation Λ which preserves the
surface and such that the quotient surface M/〈Λ〉 has genus one and finitely many
planar parallel ends. In particular, M/〈Λ〉 has finite total curvature. By a result of
Pérez and Ros [79] we have that Λ must be a translation. From Theorem 6.17 we
conclude the proof. �

Theorem 6.19 (Meeks, Pérez, Ros [64]) Let M be a properly embedded mini-
mal surface in R

3 with genus zero. If the symmetry group of M is infinite, then M
is one the following surfaces: a plane, a catenoid, a helicoid or a Riemann example.
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Proof : Recently, Kusner, Meeks and Rosenberg have proved that an embedded
genus zero minimal surface that is not the plane or the helicoid must have exactly
two limit ends. Then, the theorem is a consequence of Theorem 6.18. �

This theorem has the following corollary:

Corollary 6.20 (Meeks, Pérez, Ros [64]) A properly embedded minimal surface
of R

3 with genus zero has infinite symmetry group if and only if it is foliated by circles
and/or lines in parallel planes.
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