Properly embedded minimal disks bounded by non compact polygonal lines

Leonor Ferrer * Francisco Martín *

Abstract

In this paper we give a uniqueness and existence result for minimal discs with some non compact, U-shaped boundaries in a slab of \mathbb{R}^{3}.

2000 Mathematics Subject Classification: primary 53A10; secondary 53C42.
Keywords and phrases: properly embedded minimal surfaces.

1 Introduction

Minimal surfaces containing straight lines have special properties that distinguish them from the rest of minimal surfaces. In this article, we emphasize Schwarz's reflection principle. Examples of this type were well studied during the last two centuries.

Recently, in [10], F.J. López and F. Wei obtained an existence and uniqueness theorem for properly immersed minimal discs whose boundaries consist of two disjoint straight lines and a segment which meets the lines orthogonally (see Fig. 5).

Following this, López and the second author of this paper have constructed a deformation of López-Wei discs which consists of properly embedded minimal discs bounded by straight lines and contained in a wedge of a slab (see [8], [9]). Essentially, the deformation modifies the angle formed by the two halfplanes containing the connected components of the boundary. The surfaces that appear in this deformation for angle zero correspond to some Jenkins-Serrin graphs (see [5]). The López-Martín examples have nice geometric properties such as the convex hull property. These examples are a solution to Plateau's problem for a polygonal noncompact boundary consisting of a double U shaped contour (see Fig. 1). These surfaces can be used as a new type of barrier for the maximum principle application ($[7,8]$). Examples of this kind are also closely related to minimal surfaces with helicoidal ends ([13]).

In this paper, we obtain all the solutions to the aforementioned Plateau problem with non compact polygonal boundary, which are contained in the slab, but not lie necessarily in the convex hull of their boundary (see Fig. 3). To be more precise, we deal with the study of properly embedded minimal surfaces whose boundary $\Gamma_{\theta d}$ consists of the following configuration of straight lines:

Fix $\theta \in[0, \pi]$ and $d \geq 0$, and consider two half-lines r_{1}^{+}and r_{1}^{-}in \mathbb{R}^{3}, meeting at an angle of θ. If $\theta=0$ this means that the straight lines are parallel. Let q_{1}^{+}and q_{1}^{-}be two points in r_{1}^{+}and r_{1}^{-}, respectively, such that they are symmetric with respect the inner bisector of this half-lines. We choose q_{1}^{+}and q_{1}^{-}in such a way that either $q_{1}^{+}=q_{1}^{-}$or the half-lines ℓ_{1}^{+}and ℓ_{1}^{-}on r_{1}^{+}and r_{1}^{-} starting at q_{1}^{+}and q_{1}^{-}, respectively, do not intersect. Write $d=\operatorname{dist}\left(q_{1}^{+}, q_{1}^{-}\right)$.

[^0]Let Π_{1} be the plane determined by ℓ_{1}^{+}and ℓ_{1}^{-}, Π_{2} a plane parallel and distinct to Π_{1} and let S denote the slab determinated by Π_{1} and Π_{2}. Let ℓ_{2}^{+}and ℓ_{2}^{-}be the orthogonal projections to Π_{2} of ℓ_{1}^{+}and ℓ_{1}^{-}, respectively. Denote q_{2}^{+}(resp. q_{2}^{-}) as the orthogonal projection to Π_{2} of q_{1}^{+}(resp. q_{1}^{-}), and label ℓ_{0}^{+}(resp. ℓ_{0}^{-}) as the segment $\left[q_{1}^{+}, q_{2}^{+}\right]$(resp. $\left[q_{1}^{-}, q_{2}^{-}\right]$). Finally, we write

$$
\Gamma_{\theta d}^{+}=\bigcup_{i=0}^{2}\left(\ell_{i}^{+}\right), \quad \Gamma_{\theta d}^{-}=\bigcup_{i=0}^{2}\left(\ell_{i}^{-}\right)
$$

and define

$$
\Gamma_{\theta d}=\Gamma_{\theta d}^{+} \cup \Gamma_{\theta d}^{-} .
$$

Figure 1: The curve $\Gamma_{\theta d}$.
We consider the following generalized Plateau problem:
Problem 1 Determine a properly immersed minimal surface $X: M \rightarrow \mathbb{R}^{3}$ satisfying:
(1) M is homeomorphic to the closed unit disc $\overline{\mathbb{D}}$ minus two boundary points E_{1} and E_{2}, that we call the ends of M.
(2) $X(\partial(M))=\Gamma_{\theta d}$.
(3) If $d>0, X$ is an embedding.
(4) In the limit case $\ell_{0}^{+}=\ell_{0}^{-}$(i.e., $d=0$), the maps $\left.X\right|_{M-\gamma^{+}}$and $\left.X\right|_{M-\gamma^{-}}$are injective, where γ^{+}and γ^{-}are the two connected components of $\partial(M)$.
(5) $X(M)$ lies in a slab that contains S.

Observe that if (5) is satisfied then it is easy to prove (see Lemma 2.1 in [11]) that $X(M)$ lies in the slab S. Then the condition (5) is equivalent to
(5) $X(M)$ lies in S.

We have proved the following:

Figure 2: Two of the solutions of the Plateau problem that we have studied.

Main Theorem

If $0<\theta<\pi$ there exist d_{θ} and d_{θ}^{\prime} with $0<d_{\theta}^{\prime}<d_{\theta}$ such that:
(i) If $d>d_{\theta}$ there are no solutions of Problem 1.
(ii) If $d=d_{\theta}$, Problem 1 has a unique solution.
(iii) If $d \in] d_{\theta}^{\prime}, d_{\theta}[$ or $d=0$, Problem 1 has two solutions.
(iv) If $d=d_{\theta}^{\prime}$, Problem 1 has three solutions.
(v) If $d \in] 0, d_{\theta}^{\prime}[$, Problem 1 has four solutions.

If $\theta=\pi$ there exist d_{π} with $0<d_{\pi}$ such that:
(i) If $d>d_{\pi}$ there are no solutions of Problem 1.
(ii) If $d=0$ or $d=d_{\pi}$, Problem 1 has a unique solution.
(iii) If $d \in] 0, d_{\pi}[$, Problem 1 has two solutions.

If $\theta=0$ there exist d_{0}^{\prime} with $0<d_{0}^{\prime}<\operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)$ such that:
(i) If $d \geq \operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)$ there are no solutions of Problem 1.
(ii) If $d=0$ or $d \in] d_{0}^{\prime}, \operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)[$, Problem 1 has a unique solution.
(iii) If $d=d_{0}^{\prime}$, Problem 1 has two solutions.
(iv) If $d \in] 0, d_{0}^{\prime}[$, Problem 1 has three solutions.

López and Wei proved in [10] that there exists a unique solution of Problem 1 when $\theta=\pi$ and $d=0$. Therefore, we always omit this case in our discussions.

The aim of this paper is to prove the uniqueness and existence of the solutions stated in the main theorem.

The paper is set out as follows:
In Section 2, we fix the notation and state the previous results we need in this paper. In Section 3 , we obtain the uniqueness result stated in the above theorem. For the sake of clarity we divide the proof in several subsections. In the first one, we shall see that if M is a solution of our Plateau problem then M is conformally equivalent to a twice punctured closed disc with piecewise analytic boundary and its meromorphic data extend to the closed disc. Among the results obtained in this subsection, we emphasize the following proposition:

Figure 3: The four solutions in case $\theta=\frac{\pi}{2}, d=\frac{\operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)}{2}$. The first and second one on the left corresponds to López-Martín examples.

Figure 4: The three solutions in case $\theta=0, d=0.38 \operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)$. The first on the left corresponds to a Jenkins-Serrin example.

Figure 5: Three solutions in case $d=0$. The first on the left corresponds to a López-Wei example $(\theta=\pi)$. The middle one coorresponds to the angle $\theta=\frac{\pi}{2}$ and the last one to the angle $\theta=0$.

Proposition 1 Assume $X: M \longrightarrow \mathbb{R}^{3}$ is a solution of Problem 1 for $0 \leq \theta<\pi$ and denote by $\mathcal{E}\left(\Gamma_{\theta d}\right)$ the convex hull of $\Gamma_{\theta d}$. Then $X(M)$ lies either in $\mathcal{E}\left(\Gamma_{\theta d}\right)$ or in $\left(S \backslash \mathcal{E}\left(\Gamma_{\theta d}\right)\right) \cup \Gamma_{\theta d}$. If $\theta=\pi$, then $X(M)$ lies in one of the half-slabs determinated by the strip $\mathcal{E}\left(\Gamma_{\pi d}\right)$.

Roughly speaking, the above proposition asserts that if $0 \leq \theta<\pi$, then the solutions of our problem lie either in the interior of the convex hull of the boundary or in the exterior of it. Subsection 3.2 is devoted to proving that M inherits the horizontal symmetry of its boundary and also the vertical symmetry in case $d=0$. Finally, in Subsection 3.3, taking into account the preceding steps, we determine a model of the complex structure and Weierstrass representation of any solution of Plateau's problem above. As a consequence, we obtain that, in the general case, a solution of our Plateau problem also inherits the vertical symmetry of its boundary.

The existence part of the main theorem can be found in Section 4. We prove that the Weierstrass data obtained in Sect. 3 really correspond to solutions of our problem.

The main theorem is a consequence of the following results: Propostion 1, Proposition 5, Proposition 6, Lemma 7, Remark 2, Lemma 8, Lemma 9, Theorem 4 in [9] and Theorem 3.32 in [8].

Acknowledgments. We would like to thank professor F.J. López for helpful conversations.

2 Preliminaries

The aim of this section is to fix the principal notation used in this paper, and to summarize some results about minimal surfaces.

Let $X: M \rightarrow \mathbb{R}^{3}$ a proper conformal minimal immersion, where M is a Riemann surface with piecewise analytic boundary homeomorphic to the closed unit disc \mathbb{D} minus two boundary points E_{1} and E_{2}, that we call the ends of M. We say that M is a Riemann surface with piecewise analytic boundary if and only if M is a subset of an open Riemann surface M^{\prime}, the conformal structure of $M-\partial(M)$ is that induced by M^{\prime} and $\partial(M)$ consists of a set of piecewise analytic curves. Meromorphic (resp. holomorphic) functions and 1-forms on M are, by definition, the restriction of meromorphic (resp. holomorphic) functions and 1-forms on M^{\prime}.

The Weierstrass representation of X is denoted by (g, η). Recall that g is the stereographic projection of the Gauss map $N: M \rightarrow \mathbb{S}^{2}$, and η is a holomorphic 1-form on M. Both of them determine the minimal immersion X as follows:

$$
X(P)=\operatorname{Re}\left(\int^{P}\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)\right)
$$

where $\Phi_{1}=\frac{1}{2}\left(1-g^{2}\right) \eta, \Phi_{2}=\frac{i}{2}\left(1+g^{2}\right) \eta, \Phi_{3}=g \eta$.
In this paper we will often use the following classical result about minimal surfaces with common points.

Let M_{1} and M_{2} be two minimal surfaces in \mathbb{R}^{3}. Assume p_{0} is an interior point of both M_{1} and M_{2} and suppose $T_{p_{0}} M_{1}=T_{p_{0}} M_{2}$. Up to a rigid motion, assume that $p_{0}=(0,0,0)$ and $T_{p_{0}} M_{1}=\left\{x_{3}=0\right\}$ so that both M_{1} and M_{2} are given near p_{0} as the graphs of two real analytic functions $u_{1}\left(x_{1}, x_{2}\right)$ and $u_{2}\left(x_{1}, x_{2}\right)$, respectively.

The difference $u\left(x_{1}, x_{2}\right)=u_{1}\left(x_{1}, x_{2}\right)-u_{2}\left(x_{1}, x_{2}\right)$ can be expanded as a power series $u\left(x_{1}, x_{2}\right)=$ $\sum_{k=1}^{\infty} f_{k}\left(x_{1}, x_{2}\right)$ in a neighbourhood of the origin, where each $f_{k}\left(x_{1}, x_{2}\right)$ is an homogeneous polynomial of degree k in x_{1} and x_{2}. If $f_{k}\left(x_{1}, x_{2}\right) \equiv 0,1 \leq k \leq \nu-1$, and $f_{\nu}\left(x_{1}, x_{2}\right)$ does not vanish identically,
then we say that M_{1} and M_{2} have a contact of $(\nu-1)^{t h}$ order at p_{0}. If $\nu-1=1$, we say that they have an ordinary contact. In case $\nu=1$, the surfaces are transverse at p_{0}.

Theorem 1 (Order of contact) Two minimal surfaces M_{1} and M_{2} have a contact of order $\nu-1$ at p_{0} if and only if M_{1} intersects M_{2} along ν curves $\mathcal{C}_{1}, \ldots, \mathcal{C}_{\nu}$ in a neighbourhood of p_{0}. If $\nu-1>0$, these curves intersect each other at p_{0} at an angle π / ν. They divide a neighbourhood of p_{0} in M_{1} into 2ν open sectors, such that M_{1} lies on one side of M_{2} in one sector and on the other side in the next sector.

Furthermore, if m_{i} is the multiplicity of the Gauss map of M_{i} at $p_{0}, i=1,2$, then

$$
\nu-1 \geq \operatorname{Minimum}\left\{m_{1}, m_{2}\right\}
$$

In particular, when M_{2} is the tangent plane $T_{p_{0}} M_{1}$ at p_{0}, the multiplicity of the Gauss map g of M_{1} at p_{0} is $\nu-1$ if, and only if, $T_{p_{0}} M_{1}$ intersects the surface along ν curves $\mathcal{C}_{1}, \ldots, \mathcal{C}_{\nu}$ in a neighbourhood of p_{0}. As above, these curves intersect each other at p_{0} forming angles different to 0 and π. They divide a neighbourhood of p_{0} into 2ν open sectors, such that M_{1} lies on one side of the tangent plane in one sector and on the other side in the next sector.

We say that p_{0} is an ordinary point of contact if the multiplicity of the Gauss map at p_{0} is 1 . Obviously, at an ordinary point of contact the tangent plane to a minimal surface intersects the surface along two orthogonal curves.

As we mentioned in the previous section, López-Martín examples can be used as barriers in order to prove non existence results for minimal surfaces with planar boundaries in a wedge of a slab. Furthermore, they extended the family of minimal surfaces satisfying the convex hull property. To state these results we need some notation. Define

$$
L=\left\{(0,0, t) \left\lvert\, \frac{1}{2}<t<\frac{1}{2}\right.\right\}, \quad W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, \frac{1}{2} \leq x_{3} \leq \frac{1}{2}\right.\right\}
$$

For $\theta \in[0, \pi]$, we also write:

$$
\begin{gathered}
W_{\theta}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W \backslash L \mid \quad \operatorname{Arg}\left(\left(x_{1}, x_{2}\right)\right) \in[0, \theta]\right\} \cup L, \\
\Sigma_{\theta}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W_{\pi} \backslash L \mid \operatorname{Arg}\left(\left(x_{1}, x_{2}\right)\right)=\theta\right\} \cup L .
\end{gathered}
$$

Using this notation López and the second author have proved the following:
Theorem 2 ([9]) Let M be a connected properly immersed minimal surface in a wedge $W_{2 \pi-\epsilon}$ for some $0<\epsilon<2 \pi$. Then one has:
(i) If $\partial(M) \subset \Sigma_{0}$, then M is a planar region in Σ_{0}.
(ii) If $\partial(M) \subset W_{\theta}$, for $\left.\theta \in\right] 0, \pi[$, then M lies in the convex hull of its boundary.

3 Conformal structure and Weierstrass representation

As we mentioned before, this section is devoted to study the underlying complex structure and Weierstrass data of the solutions of our problem.

Throughout this paper $\left(x_{1}, x_{2}, x_{3}\right)$ denote a set of Cartesian coordinates such that:

- ℓ_{0}^{+}and ℓ_{0}^{-}have the direction of x_{3}-axis
- $\left\{x_{3}=\frac{1}{2}\right\}$ and $\left\{x_{3}=-\frac{1}{2}\right\}$ are the equations of planes Π_{1} and Π_{2}, respectively
- the origen is the middle point between $\frac{q_{1}^{+}+q_{2}^{+}}{2}$ and $\frac{q_{1}^{-}+q_{2}^{-}}{2}$
- the x_{2}-axis is the inner bisector of the orthogonal projection of ℓ_{i}^{+}and ℓ_{i}^{-}to the plane $x_{3}=0$, $i=1,2$, and
- $\Gamma_{\theta d}^{+} \subset\left\{x_{1} \geq 0\right\}$.

Along this section, $X: M \longrightarrow \mathbb{R}^{3}$ is a proper conformal minimal immersion satisfying the conditions (1)-(5) of Problem 1. For the sake of simplicity, we use Γ, Γ^{+}and Γ^{-}instead of $\Gamma_{\theta d}$, $\Gamma_{\theta d}^{+}$and $\Gamma_{\theta d}^{-}$. Taking into account that $X(M) \subset S$ and the maximum principle, we deduce that $\Pi_{i} \cap X(M) \subset \Pi_{i} \cap \Gamma$, for $i=1,2$.

As we announced, we shall divide the study of conformal structure in several subsections.

3.1 Conformal type of M.

First of all we must determine the conformal type of M. This can be done easily using a global result on conformal structure of properly immersed minimal surfaces by P. Collin, R. Kusner, W.H. Meeks and H. Rosenberg (see [4]). From Theorem 3.1 of [4] we obtain that M is parabolic and hence, taking into account the topological type of M, M is conformally equivalent to the closed unit disc $\overline{\mathbb{D}}$ minus two boundary points E_{1} and E_{2}, where the biholomorphism extends piecewise analytically to the boundary.

Next, we prove that the Gauss map and Weierstrass data extend continously to the ends. To obtain this, we need some additional results.

Let $U\left(E_{i}\right), i=1,2$, be two open disjoint neighbourhoods of the ends of M and let C_{a} denote the catenoid given by the equation

$$
x_{1}^{2}+x_{2}^{2}=a^{2} \cosh ^{2}\left(\frac{x_{3}}{a}\right)
$$

where $a \in \mathbb{R}^{+}$. Define $\sigma_{a}=X^{-1}\left(X(M) \cap C_{a}\right)$, for $a>0$. With this notation we shall prove the following:
Lemma 1 There exists $a_{0}>0$ such that for $a \geq a_{0}, \sigma_{a}=\sigma_{a}^{1} \cup \sigma_{a}^{2}$, where σ_{a}^{1} and σ_{a}^{2} are two disjoint simple compact analytic curves such that $\sigma_{a}^{i} \subset U\left(E_{i}\right)$, for $i=1,2$.

Proof: Clearly, since $X(M) \cap C_{a}$ is compact and X is proper, we have that σ_{a} is compact for $a>0$. Furthermore, σ_{a} is a set of properly immersed analytic lines, because it is the intersection of distinct minimal surfaces. Denote by $\operatorname{Int}\left(C_{a}\right)$ and $\operatorname{Ext}\left(C_{a}\right)$, the interior and exterior connected component of $\mathbb{R}^{3} \backslash C_{a}$, respectively.

Note that we can consider a_{1} sufficiently large to insure the following: $\ell_{0}^{+} \cup \ell_{0}^{-} \subset \operatorname{Int}\left(C_{a}\right)$ and $S \cap \operatorname{Int}\left(C_{a}\right) \subset S \cap \operatorname{Int}\left(C_{a^{\prime}}\right)$ if $a_{1} \leq a \leq a^{\prime}$. As C_{a} and $X(M)$ are transverse along $\bigcup_{i=1}^{2} \ell_{i}^{+} \cup \ell_{i}^{-}$, for $a \geq a_{1}$, we can assert that only one curve lying in σ_{a} approaches to each one of the four points in $\sigma_{a} \cap \partial(M)$, for $a \geq a_{1}$.

Moreover, since $\sigma_{a_{1}}$ is compact, we can find $U^{\prime}\left(E_{i}\right)$, connected neigbourhoods of E_{i} such that $U^{\prime}\left(E_{i}\right) \subset U\left(E_{i}\right)$ and $X\left(U^{\prime}\left(E_{i}\right)\right) \subset \operatorname{Ext}\left(C_{a_{1}}\right)$. Consider now $a_{0}>a_{1}$ such that $\sigma_{a_{0}} \subset U^{\prime}\left(E_{1}\right) \cup$ $U^{\prime}\left(E_{2}\right)$.

Therefore, if $a \geq a_{0}$ we deduce that $\sigma_{a}=\sigma_{a}^{1} \cup \sigma_{a}^{2}$, with $\sigma_{a}^{i} \subset U^{\prime}\left(E_{i}\right), i=1,2$ and $\sigma_{a}^{1} \cap \sigma_{a}^{2}=\emptyset$. Now, we must prove that σ_{a}^{i} are simple curves for $i=1,2$. Suppose that there exists a disc Ω in $U^{\prime}\left(E_{i}\right)$ bounded by an arc of σ_{a}^{i}. In this case, either $X(\Omega) \subset \operatorname{Ext}\left(C_{a}\right)$ or $X(\Omega) \subset \operatorname{Int}\left(C_{a}\right)$. In the first case, we have that $X(\Omega) \subset \operatorname{Ext}\left(C_{a}\right) \cap \operatorname{Int}\left(C_{a_{2}}\right)$, for some $a \leq a_{2}$. Hence, using the family of catenoids $\left\{C_{t}\right\}_{a \leq t \leq a_{2}}$ and the maximum principle, we obtain that $X(\Omega)$ is contained in the catenoid C_{a}, which is contrary to our assumptions. Moreover, since $a_{0} \leq a$ we can assert that $X(\Omega) \subset \operatorname{Ext}\left(C_{a_{1}}\right)$. Consequently, if $X(\Omega) \subset \operatorname{Int}\left(C_{a}\right)$ we may consider the family of catenoids $\left\{C_{t}\right\}_{a_{1} \leq t \leq a}$. The maximum principle gives again a contradiction.

Label $\gamma_{i}^{+}=X^{-1}\left(\Gamma_{i}^{+}\right)$and $\gamma_{i}^{-}=X^{-1}\left(\Gamma_{i}^{-}\right)$, for $i=1,2$. Consider also $\gamma_{0}^{+}=X^{-1}\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right) \cap \gamma^{+}$ and $\gamma_{0}^{-}=X^{-1}\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right) \cap \gamma^{-}$.

Concerning the boundary behaviour we have, up to relabellings, three possibilities:
CASE 1.- $X\left(\gamma^{+}\right)=\Gamma^{+}, X\left(\gamma^{-}\right)=\Gamma^{-}$and $\gamma_{i}^{+} \cup \gamma_{i}^{-}$diverges to E_{i}, for $i=1,2$ (see Fig. 6.(1)).
CASE 2.- $X\left(\gamma^{+}\right)=\Gamma^{+}, X\left(\gamma^{-}\right)=\Gamma^{-}, \gamma_{1}^{+} \cup \gamma_{2}^{-}$diverges to E_{1} and $\gamma_{2}^{+} \cup \gamma_{1}^{-}$diverges to E_{2} (see Fig. 6.(2)).

CASE 3.- When $d=0$ we have also the case $X\left(\gamma^{+}\right)=\ell_{1}^{+} \cup \ell_{0} \cup \ell_{2}^{-}, X\left(\gamma^{-}\right)=\ell_{1}^{-} \cup \ell_{0} \cup \ell_{2}^{+}$and $\gamma_{i}^{+} \cup \gamma_{i}^{-}$diverges to E_{i}, for $i=1,2$, where $\ell_{0}=\ell_{0}^{+}=\ell_{0}^{-}$(see Fig. 6.(3)).

Figure 6:

Now, we shall prove that if $d=0$ then the CASE 2 and CASE 3 do not occur.
Lemma 2 Assume $d=0$. Then the boundary of $X: M \longrightarrow \mathbb{R}^{3}$ is as in CASE 1 .
Proof: Note that if $d=0$ and the boundary is either as in CASE 2 or as in CASE $3, X(M)$ contains a Möbius strip. Let us define t_{ρ} as the translation of vector $(0,0, \rho)$ and consider N the topological surface of \mathbb{R}^{3} given by $N=\bigcup_{n \in \mathbb{Z}} t_{n}(X(M))$. Since $X(M) \subset S$ we have that N is a connected embedded topological surface in \mathbb{R}^{3}. A well-known topological result asserts that then N must be orientable, but this is absurd because N contains Möbius strips.

Throughout the paper we denote by $\mathcal{E}(\Gamma)$ the convex hull of Γ and $\vec{a}_{2}=(0,1,0)$. Observe that \vec{a}_{2} is the unitary vector in the direction of the inner bisector of ℓ_{2}^{+}and ℓ_{2}^{-}pointing to $\mathcal{E}(\Gamma)$. At this point we can prove:

Proposition 1 If $0 \leq \theta<\pi$, then $X(M)$ lies either in $\mathcal{E}(\Gamma)$ or in $(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$. If $\theta=\pi$, then $X(M)$ lies in one of the half-slabs determinated by the strip $\mathcal{E}(\Gamma)$.

Proof: Assume $0 \leq \theta<\pi$. In accordance to Lemma 2 we have that the boundary behaviour is either as in CASE 1 or as in CASE 2. Consider $\beta=X^{-1}\left(X(M) \cap\left\{x_{2}=0\right\}\right)$. Since β is a nodal set of an harmonic function we have that β is a set of properly immersed analytic lines. Using the maximum principle we obtain that there are no compact connected regions of M bounded by curves in β. Furthermore, as we are assuming $0 \leq \theta<\pi$, Theorem 1 gives us that there are no curves in β approaching to either γ_{i}^{+}or γ_{i}^{-}, for $i=1,2$. Now, we consider the following half-strips

$$
B^{+}=\left\{\left(x_{1}, 0, x_{3}\right) \left\lvert\, x_{1} \geq \frac{d}{2}\right., \frac{-1}{2} \leq x_{3} \leq \frac{1}{2}\right\}, \quad B^{-}=\left\{\left(x_{1}, 0, x_{3}\right) \left\lvert\, x_{1} \leq \frac{-d}{2}\right., \frac{-1}{2} \leq x_{3} \leq \frac{1}{2}\right\}
$$

First, we shall prove that if there exists a curve in β starting at either γ_{0}^{+}or γ_{0}^{-}and diverging to one end, then there are no curves starting at the same vertical segment and diverging to the same end. Assume that β^{\prime} and $\beta^{\prime \prime}$ are two curves starting at γ_{0}^{+}and diverging to E_{1}. The other cases can be treated in the same way. Clearly, if $d>0$ we have $X\left(\beta^{\prime}\right) \cup X\left(\beta^{\prime \prime}\right) \subset B^{+}$. Suppose that $d=0$ and $X\left(\beta^{\prime}\right)$ and $X\left(\beta^{\prime \prime}\right)$ are contained in different half-strips. Then we can consider, taking a piece of γ_{0}^{+}if necessary, a piecewise analytic curve $\hat{\beta}$ that diverge to E_{1} and contains β^{\prime} and $\beta^{\prime \prime}$. It is not difficult to see that there is an angle between the curves in $\hat{\beta}, \Theta$, that goes by X to an angle greater or equal than 2Θ. Since $X: M \longrightarrow \mathbb{R}^{3}$ is conformal this is a contradiction. Then we conclude that in both cases $X\left(\beta^{\prime}\right)$ and $X\left(\beta^{\prime \prime}\right)$ are contained in the same half-strip. Therefore, we can find a connected component, Ω, of $M \backslash \beta$ such that $X(\Omega)$ is contained in one of the half-slabs determinated by $\left\{x_{2}=0\right\}$ and $X(\partial(\Omega))$ is in a half-strip. Consequently, applying statement (i) in Theorem 2 we obtain that $X(\Omega)$ is a planar domain of $\left\{x_{2}=0\right\}$ which contradicts our assumptions.

Moreover, we shall prove that there are no compact curves in $\beta \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$starting at γ_{0}^{+}and ending at γ_{0}^{-}. Assume there exists τ such a curve. As there are no compact regions of $M \backslash \beta$, we infer that τ is the unique curve that starts at γ_{0}^{+}and ends at γ_{0}^{-}. Taking into account the above paragraph and the fact that Γ^{+}and Γ^{-}are in the same half-slab of S determinated by $\left\{x_{2}=0\right\}$ we conclude that must exist a pair of curves, τ_{1} and τ_{2} starting at γ_{0}^{+}and γ_{0}^{-}, respectively and diverging to either E_{1} or E_{2}. We assert that both curves must diverge to the same end. Indeed, if τ_{1} and τ_{2} diverge each one to one different end, then there exists a curve τ_{3} diverging to both ends. But this curve τ_{3} intersects τ transversally in a odd number of points while $X\left(\tau_{3}\right)$ intersects $X(\tau)$ transversally in a even number of points.

Without loss of generality, we can assume that τ_{1} and τ_{2} diverge to E_{1}. Now, we may consider, taking pieces of γ_{0}^{+}and γ_{0}^{-}if necessary, a piecewise analytic curve τ^{\prime} from E_{1} to E_{1} that encloses a disk Ω of $M \backslash \beta$. Assume that $X\left(\tau_{1}\right)$ and $X\left(\tau_{2}\right)$ are contained in different half-strips. Note that then there is an angle between the curves in τ^{\prime}, Θ, that goes by X to an angle greater or equal than 2Θ. Using again that $X: M \longrightarrow \mathbb{R}^{3}$ is conformal this is a contradiction. We still have to discard the case in which $X\left(\tau_{1}\right)$ and $X\left(\tau_{2}\right)$ are contained in the same half-strip. Observe that in this situation the domain Ω verifies the conditions of statement (i) in Theorem 2 and as before we get a contradiction.

Consequently, $\beta \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$consists of curves starting at $\gamma_{0}^{+} \cup \gamma_{0}^{-}$and diverging to one end and divergent curves. Next we prove that there are no curves diverging to only one end. As before we have that one of these curves would be contained either in B^{+}or in B^{-}. Otherwise, in each of these cases it is possible to find a connected component, Ω, of $M \backslash \beta$ such that $X(\Omega)$ is contained in a half-slab of S and $X(\partial(\Omega))$ is contained in a half-strip of $\left\{x_{2}=0\right\}$. Consequently, applying statement (i) in Theorem 2 we obtain that $X(\Omega)$ is a planar domain of $\left\{x_{2}=0\right\}$ which contradicts our assumptions. Furthermore, using again that Γ^{+}and Γ^{-}are in one of the half-slabs determinated by $\left\{x_{2}=0\right\}$ we deduce that if there exists a curve that starts at $\gamma_{0}^{ \pm}$and diverge to one end, then there exists a curve that starts at $\gamma_{0}^{ \pm}$and diverge to the other end. All these facts allows us to assert that in $\beta \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$either there are no curves starting at $\gamma_{0}^{+} \cup \gamma_{0}^{-}$, or there are a pair starting at γ_{0}^{+}or γ_{0}^{-}and diverging to different ends or there are four curves, a pair starting at γ_{0}^{+}and diverging to different ends and another pair starting at γ_{0}^{-}and diverging to different ends. Moreover, we may find curves in $\beta \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$diverging to the two ends. Note that then the number of curves diverging to E_{1} is the same as the number of curves diverging to E_{2}. It is not hard to see, using statement (i) in Theorem 2, that two consecutive curves diverging to the same end have to be in different half-strips, it is to say, if one is in B^{+}the other one is in B^{-}and that all divergent curves are disjoint. Assume that there are more than two curves in β diverging to E_{1} and consider the compact curves $\sigma^{i}=\sigma_{a}^{i}$, for $i=1,2$ and $a \geq a_{0}$ given in Lemma 1.

Now, we analyze each of the possibilities for the boundary separately.

CASE 1.

Denote $p_{1}^{+}=\gamma_{1}^{+} \cap \sigma^{1}$ and $p_{1}^{-}=\gamma_{1}^{-} \cap \sigma^{1}$. Then, denoting $\mathfrak{p}_{3}: \mathbb{R}^{3} \longrightarrow\left\{x_{3}=0\right\}$ as the orthogonal projection over the plane $\left\{x_{3}=0\right\}$ we deduce that $\mathfrak{p}_{3}\left(X\left(\sigma^{1}\right)\right)$ is a curve in $\left\{x_{3}=0\right\}$ such that $\left|\arg \left(\mathfrak{p}_{3}\left(X\left(p_{1}^{-}\right)\right)\right)-\arg \left(\mathfrak{p}_{3}\left(X\left(p_{1}^{+}\right)\right)\right)\right|>2 \pi$. Since $X_{3}\left(p_{1}^{+}\right)=X_{3}\left(p_{1}^{-}\right)=\frac{1}{2}$ we infer that $X\left(\sigma^{1}\right)$ has self-intersections, which is contrary to our assumptions. As a consequence, there is at most two curves in β diverging to E_{1} and the same for E_{2}.

CASE 2.
Denote $p_{1}^{+}=\gamma_{1}^{+} \cap \sigma^{1}, p_{2}^{-}=\gamma_{2}^{-} \cap \sigma^{1}, p_{2}^{+}=\gamma_{2}^{+} \cap \sigma^{2}$ and $p_{1}^{-}=\gamma_{1}^{-} \cap \sigma^{2}$ and suppose that σ^{1} has been parametriced so that it starts at p_{1}^{+}and ends at p_{2}^{-}and σ^{2} has been parametriced so that it starts at p_{1}^{-}and ends at p_{2}^{+}. Using the same notation as above we can see that $\mathfrak{p}_{3}\left(X\left(\sigma^{i}\right)\right)$ are curves in $\left\{x_{3}=0\right\}$ satisfying $\left|\arg \left(\mathfrak{p}_{3}\left(X\left(p_{2}^{-}\right)\right)\right)-\arg \left(\mathfrak{p}_{3}\left(X\left(p_{1}^{+}\right)\right)\right)\right|>2 \pi$ and $\mid \arg \left(\mathfrak{p}_{3}\left(X\left(p_{2}^{+}\right)\right)\right)-$ $\arg \left(\mathfrak{p}_{3}\left(X\left(p_{1}^{-}\right)\right)\right) \mid>2 \pi$. Moreover, $\mathfrak{p}_{3}\left(X\left(\sigma^{1}\right)\right)$ and $\mathfrak{p}_{3}\left(X\left(\sigma^{2}\right)\right)$ rotates around $(0,0,0)$ in reverse sense, it is to say, if $\mathfrak{p}_{3}\left(X\left(\sigma^{1}\right)\right)$ rotates clockwise then $\mathfrak{p}_{3}\left(X\left(\sigma^{2}\right)\right)$ rotates counterclockwise, and vice versa. Since $X_{3}\left(p_{i}^{+}\right)=X_{3}\left(p_{i}^{-}\right)$for $i=1,2$ we infer that $X\left(\sigma^{1}\right)$ and $X\left(\sigma^{2}\right)$ intersect each other. This contradicts our assumptions and therefore there is at most two curves diverging to each end in β.

The same argument used in both cases proves that if $\beta \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$consists of two curves, τ_{1} and τ_{2}, diverging to the two ends such that $X\left(\tau_{1}\right) \subset B^{+}$and $X\left(\tau_{2}\right) \subset B^{-}$, then the boundaries of the three connected components of $M \backslash \beta$ are $\gamma^{+} \cup \tau_{1}, \tau_{1} \cup \tau_{2}$ and $\gamma^{-} \cup \tau_{2}$.

Taking into account this and the fact that $\Gamma^{+} \cup \Gamma^{-}$is in one of the half-slabs determinated by $\left\{x_{2}=0\right\}$ we have that either $\beta \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$is empty or it consists of:

1. two curves diverging to the two ends (see Fig. 7.(1)),
2. a curve starting at γ_{0}^{+}and diverging to E_{1}, a curve starting at γ_{0}^{+}and diverging to E_{2} and a curve diverging to the two ends (see Fig. 7.(2)),
3. a curve starting at γ_{0}^{-}and diverging to E_{1}, a curve starting at γ_{0}^{-}and diverging to E_{2} and a curve diverging to the two ends (see Fig. 7.(3)),
4. a curve starting at γ_{0}^{+}and diverging to E_{1}, a curve starting at γ_{0}^{+}and diverging to E_{2}, a curve starting at γ_{0}^{-}and diverging to E_{1} and a curve starting at γ_{0}^{-}and diverging to E_{2} (see Fig. 7.(4)).

Figure 7:

Clearly, if $\beta \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$is empty we obtain that $X(M)$ is contained in the half-slab $\left\{x_{2} \geq 0\right\}$. Therefore $X(M)$ satisfies the conditions of the statement (ii) in Theorem 2 and so $X(M) \subset \mathcal{E}(\Gamma)$.

Assume that we have one of the other possibilities. Then we shall prove that $X(M) \subset(S \backslash$ $\mathcal{E}(\Gamma)) \cup \Gamma$. Note that it is sufficient to study the connected components of $M \backslash \beta$ whose image is contained in the half-slab $\left\{x_{2} \geq 0\right\}$. Note that these connected components are those whose
contains any of the curves γ_{i}^{+}or γ_{i}^{-}, for $i=1,2$. At this point, it can be easily check that each of these connected components have the boundary contained in one of the following wedges

$$
\begin{aligned}
& (S \backslash \mathcal{E}(\Gamma)) \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \geq 0, x_{2} \geq 0, \frac{-1}{2} \leq x_{3} \leq \frac{1}{2}\right\} \\
& (S \backslash \mathcal{\circ}(\Gamma)) \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \leq 0, x_{2} \geq 0, \frac{-1}{2} \leq x_{3} \leq \frac{1}{2}\right\}
\end{aligned}
$$

Using again assertion (ii) of Theorem 2, we conclude that the image of these connected components is contained entirely in the correspondent wedge. Summarizing, we have prove that $X(M) \subset$ $(S \backslash \mathcal{E}(\Gamma))$. Now the Proposition is an easy consequence of the maximum principle.

Next, we analyze the case $\theta=\pi, d>0$. Let us define $\Delta=X^{-1}\left(X(M) \cap\left\{x_{1}=\frac{d}{2}\right\}\right)$. It is wellknown that Δ is a nodal set of an harmonic function and so it is a set of properly immersed analytic lines. Using the maximum principle we obtain that there are no compact connected regions of M bounded by curves in Δ. Then, $\Delta \backslash \gamma_{0}^{+}$consists of a set of divergent curves. Since $\Gamma^{+} \subset\left\{x_{1} \geq \frac{d}{2}\right\}$ and $\Gamma^{-} \subset\left\{x_{1} \leq \frac{d}{2}\right\}$, we infer that if there exist a curve in Δ starting at γ_{0}^{+}and diverging to one end, then another curve starting at γ_{0}^{+}and diverging to the other end must exist. Reasoning as in case $0 \leq \theta<\pi, d=0$ we can see that the image of such a pair of curves is contained in one of the following half-strips

$$
C^{+}=\left\{\left.\left(\frac{d}{2}, x_{2}, x_{3}\right) \right\rvert\, x_{2} \geq 0, \frac{-1}{2} \leq x_{3} \leq \frac{1}{2}\right\}, \quad C^{-}=\left\{\left.\left(\frac{d}{2}, x_{2}, x_{3}\right) \right\rvert\, x_{2} \leq 0, \frac{-1}{2} \leq x_{3} \leq \frac{1}{2}\right\}
$$

and if two curves in Δ diverge to the same end there must be one of them with the image contained in C^{+}and the other one with the image in C^{-}. Therefore, adapting to this situation the argument presented above for the two different possibilities of the boundary, it is not hard to see that there is at most a curve diverging to each end. And then $\Delta \backslash \gamma_{0}^{+}$consists of

1. a curve diverging to the two ends (see Fig. 8.(1)),
2. a pair of curves starting at γ_{0}^{+}and diverging to different ends (see Fig. 8.(2)).

Figure 8:

Note that in both cases $X(\Delta)$ is contained either in C^{+}or C^{-}. In order to conclude the proposition it is sufficient to apply statement (ii) in Theorem 2 to each of connected components of $M \backslash \Delta$.

Remark 1 Assume that T is a plane in \mathbb{R}^{3} and that the divergent curves in $X^{-1}(X(M) \cap T)$ verifies that two consecutive divergent curves are in different half-strips of T. Then reasoning as in the proof of Proposition 1 we can see that there are at most two curves diverging to each end.

Corollary 1 The boundary of the immersion X is as in Case 1.

Proof: Assuming that $0 \leq \theta<\pi$ and taking into account Proposition 1 we have that either $X(M) \subset \mathcal{E}(M)$ or $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$. Suppose that the boundary behaviour is as in CASE 2 and consider the compact curves $\sigma^{i}=\sigma_{a}^{i}, i=1,2$ given in Lemma 1 for some $a \geq a_{0}$. Clearly, $X\left(\sigma^{1}\right)$ starts at ℓ_{1}^{+}and ends at ℓ_{2}^{-}and $X\left(\sigma^{2}\right)$ is a curve starting at ℓ_{1}^{-}and ending at ℓ_{2}^{+}. Since both curves lie either in $C_{a} \cap \mathcal{E}(\Gamma)$ or in $C_{a} \cap((S \backslash \mathcal{E}(\Gamma)) \cup \Gamma)$, they intersect, which contradicts our assumptions.

Corollary 2 The function $X_{3}: M \longrightarrow \mathbb{R}^{3}$ extends continously to the ends.
Proof: This is clear because X_{3} is a bounded harmonic function and from Corollary $\left.1 X_{3}\right|_{\gamma_{i}^{+} \cup \gamma_{i}^{-}}$ is constant for $i=1,2$.

Let us consider $\delta_{t}=X^{-1}\left(X(M) \cap\left\{x_{3}=t\right\}\right)$ for $t \geq-\frac{1}{2}$. Concerning δ_{t} we can prove:
Corollary 3 The set δ_{t} is compact and consists of a simple arc, for all $\left.t \in\right]-\frac{1}{2}, \frac{1}{2}[$. Moreover, the Gauss map g of X omits the points 0 and ∞.

Proof: Clearly, from Corollary 2, we deduce that δ_{t} is compact. Since δ_{t} is the nodal set of a harmonic function we have that δ_{t} is a one-dimensional proper real analytic subvariety of M. Then, taking into account the maximum principle we deduce that there are no regions in M bounded by curves in $X^{-1}\left(\delta_{t}\right)$. Therefore, δ_{t} is a regular simple curve in M starting at ℓ_{0}^{+}and ending at ℓ_{0}^{-}. Moreover, Theorem 1 gives that there are no points in M with vertical normal vector.

In the case $0 \leq \theta<\pi$ the uniqueness of solutions $X: M \longrightarrow \mathbb{R}^{3}$ of the Problem 1 satisfying $X(M) \subset \mathcal{E}(M)$ were completely studied by F.J. López and F. Martín in [8]. Henceforth, in the remainder of the section we assume that $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$. Furthermore, we always assume that $X(M) \subset\left\{x_{2} \leq 0\right\}$ in the case $\theta=\pi$. With this assumptions, we can prove:
Lemma 3 We have the following possibilities for the set $\tau_{0}=X^{-1}\left(X(M) \cap\left\{x_{1}=0\right\}\right)$:
i) If $d>0, \tau_{0}$ consists of a curve diverging to both ends, E_{1} and E_{2}.
ii) If $d=0, \tau_{0} \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)$either consists of a curve diverging to both ends E_{1} and E_{2} or $\tau_{0} \backslash\left(\gamma_{0}^{+} \cup \gamma_{0}^{-}\right)=\tau_{0}^{1} \cup \tau_{0}^{2}$, where τ_{0}^{i} are curves starting at γ_{0}^{+}or γ_{0}^{-}and diverging to E_{i}, for $i=1,2$.

Proof: Since τ_{0} is the nodal set of a harmonic function we have that τ_{0} is a set of properly immersed analytic curves in M. Observe that $\tau_{0} \neq \emptyset$. If not, applying statement (ii) in Theorem 2 we obtain that $X(M)$ are two planar domains. Moreover, by the maximum principle, there are no compact connected regions in $M \backslash \tau_{0}$ bounded by curves in τ_{0}. Clearly, taking into account that $X(M) \cap\left\{x_{1}=0\right\} \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=0, x_{2} \leq 0,-\frac{1}{2} \leq x_{3} \leq \frac{1}{2}\right\}$ and statement (i) in Theorem 2 we obtain i.

Assume now that $d=0$. In this case we have $\gamma_{0}^{+} \cup \gamma_{0}^{-} \subset \tau_{0}$. Since $\Gamma^{+} \subset\left\{x_{1} \geq 0\right\}$ and $\Gamma^{-} \subset\left\{x_{1} \leq 0\right\}$, we infer that if there exists a curve in τ_{0} starting at $\gamma_{0}^{ \pm}$and diverging to one end, then there exist another curve which starts at $\gamma_{0}^{ \pm}$and diverges to the other end. Then reasoning as in the above paragraph we obtain ii).

Proposition 2 Counting multiplicities $\sharp\left[N^{-1}\left(-\vec{a}_{2}, \vec{a}_{2}\right)\right] \leq 5$ and $\sharp\left[N^{-1}\left(-\vec{a}_{2}, \vec{a}_{2}\right) \cap(M \backslash \partial(M))\right] \leq$ 3 , where $N: M \longrightarrow \mathbb{S}^{2}$ is the Gauss map of X. Furthermore, if $0<\theta<\pi$ we have $\sharp\left[N^{-1}(-\vec{a}, \vec{a})\right] \leq$ $5, \forall \vec{a} \in \mathbb{S}^{2} \cap\left\{x_{3}=0\right\}$.

Proof: We prove the first assertion in Proposition 2. The second assertion can be proved using similar arguments. Let us consider $\beta_{t}=X^{-1}\left(X(M) \cap\left\{x_{2}=t\right\}\right)$, for $t \in \mathbb{R}$. Note that β_{t} is a set of properly immersed analytic lines, because it is the nodal set of a harmonic function. Hence, using the maximum principle, we infer that there are no compact domains in M bounded by curves in β_{t}, for all $t \in \mathbb{R}$. Therefore, any two curves in β_{t} do not intersect in more than one point. If not, we can find a compact domain of $M \backslash \beta_{t}$ bounded by curves in β_{t}.

We start with the case $t<0$. Observe that in this case β_{t} is a non empty set of divergent curves, converging to a unique end or to the two ends. If $\beta_{t}=\emptyset$ for some $t<0$ we deduce that $X(M) \subset\left\{x_{2} \geq 0\right\}$ and applying statement (ii) in Theorem 2 we obtain $X(M) \subset \mathcal{E}(\Gamma)$ which contradicts our assumption.

Let $\widetilde{\alpha}_{1}$ and $\widetilde{\alpha}_{2}$ be a pair of arcs in β_{t} diverging to E_{i} such that $\widetilde{\alpha}_{1} \cap \widetilde{\alpha}_{2} \neq \emptyset$. Therefore, there exists U_{i}, a neighbourhood of E_{i}, verifying that:

- $U_{i} \backslash\left(U_{i} \cap \tau_{0}\right)$ has two connected components, U_{i}^{+}and U_{i}^{-}, where τ_{0} was defined in Lemma 3 .
- $\widetilde{\alpha}_{1} \cap U_{i} \subset U_{i}^{+}$and $\widetilde{\alpha}_{2} \cap U_{i} \subset U_{i}^{-}$.

If not, one can find a neighbourhood of E_{i}, U_{i}, verifying the first condition and such that either $\left(\widetilde{\alpha}_{1} \cup \widetilde{\alpha}_{2}\right) \cap U_{i} \subset U_{i}^{+}$or $\left(\widetilde{\alpha}_{1} \cup \widetilde{\alpha}_{2}\right) \cap U_{i} \subset U_{i}^{-}$. Hence, we deduce that $X\left(\left(\widetilde{\alpha}_{1} \cup \widetilde{\alpha}_{2}\right) \cap U_{i}\right), i=1,2$ are contained in a half strip of $\left\{x_{2}=t\right\}$ and so there is a connected component in $M \backslash \beta_{t}, \Omega$, whose boundary is in a half-strip of $\left\{x_{2}=t\right\}$. Therefore, we can apply statement (i) in Theorem 2 to conclude that $X(\Omega)$ is a planar domain in $\left\{x_{2}=t\right\}$, which is a contradiction.

Let us prove that if α_{1} and α_{2} are two curves in β_{t} diverging to E_{i}, then they are disjoint. Indeed, if α_{1} and α_{2} intersect then we have four $\operatorname{arcs}\left\{\widetilde{\alpha}_{i}\right\}_{i=1}^{4}$ in β_{t} diverging to E_{i} and $\widetilde{\alpha}_{j} \cap \widetilde{\alpha}_{l} \neq \emptyset$. But this contradicts the above result.

Assume now that α_{1} is a curve diverging to E_{i} and that α_{2} is a curve diverging to the two ends. If α_{1} and α_{2} intersect each other then we have three $\operatorname{arcs}\left\{\widetilde{\alpha}_{i}\right\}_{i=1}^{3}$ in β_{t} diverging to E_{i} and $\widetilde{\alpha}_{j} \cap \widetilde{\alpha}_{l} \neq \emptyset$. But, again this contradicts the above result.

As a consequence, only curves diverging to the two ends can intersect. Now, we shall prove that there are at most two of these curves whose intersection is not empty. Assume there exist α_{i} for $i=1,2,3$ curves in β_{t} diverging to the two ends such that $\alpha_{1} \cap \alpha_{i} \neq \emptyset$, for $i=2,3$. Then, by considering apropriate arcs in α_{i}, for $i=1,2,3$ and using the assertion proved above about arcs diverging to one end, we can find a connected component of $M \backslash \beta_{t}$ that satisfies the conditions of statement (i) in Theorem 2 and then $X(\Omega)$ must be a planar domain in $\left\{x_{2}=t\right\}$, which contradicts our assumptions. Moreover, it is clear that if α_{1} and α_{2} are two curves in β_{t} diverging to the two ends whose intersection is not empty then $\alpha_{1} \cap \alpha_{2}$ is a unique point.

Lastly, if we have two curves in β_{t} diverging to the two ends whose intersection is not empty, then there are no more intersections in $\beta_{t^{\prime}}$ for any $t^{\prime}<0, t^{\prime} \neq t$. If not, using again the above assertion, we deduce that the pair of divergent curves in β_{t} intersect the pair of divergent curves in $\beta_{t^{\prime}}$. Since β_{t} and $\beta_{t^{\prime}}$ are contained in parallel planes, this is a contradiction.

Now, we tackle the case $t>0$. Observe that this case only have sense if $0 \leq \theta<\pi$ and that $\beta_{t} \cap \partial(M)=p_{1}^{+} \cup p_{2}^{+} \cup p_{1}^{-} \cup p_{2}^{-}$where $p_{i}^{+} \in \gamma_{i}^{+}$and $p_{i}^{-} \in \gamma_{i}^{-}$, for $i=1,2$. Since $X(M) \subset(S \backslash \mathcal{E}(M)) \cup \Gamma$ we deduce that connected curves in β_{t} are contained in a half-strip of $\left\{x_{2}=t\right\}$. Therefore, there are no curves in β_{t} diverging to one end. Indeed, we have a connected component of $M \backslash \beta_{t}$ satisfying the conditions in statement (i) in Theorem 2 and so we get a contradiction. Hence, it is clear that curves in β_{t} diverging to two ends are disjoint and moreover a divergent curve starting at $\partial(M)$ and a curve diverging to the two ends can not intersect each other. Then, $\alpha_{1} \cap \alpha_{2} \neq \emptyset$ only in two situations
i) when α_{1} is a curve starting at γ_{1}^{+}and diverging to E_{2} and α_{2} is a curve starting at γ_{2}^{+}and diverging to E_{1}
ii) when α_{1} is a curve starting at γ_{1}^{-}and diverging to E_{2} and α_{2} is a curve starting at γ_{2}^{-}and diverging to E_{1}.

Moreover, we observe that if there exist a pair of curves as in i) for $t_{0}>0$, this pair is unique. It is to say, $\left\{x_{2}=t\right\} \cap\left\{x_{1} \geq 0\right\} \cap X\left(N^{-1}\left(\left\{-\vec{a}_{2}, \vec{a}_{2}\right\}\right)\right)=\emptyset$ for $t>0, t \neq t_{0}$. And the same occurs for a pair of curves as in ii). Therefore, we have at most two points in $\delta_{t} \cap N^{-1}\left(\left\{-\vec{a}_{2}, \vec{a}_{2}\right\}\right)$ for $t>0$

We recall that the set $\beta_{0}=\beta$ was studied in the proof of Proposition 1. Since we are assuming $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$ the possibilities for β_{0} are those described in $1,2,3$ and 4 . We also point out that the case 2 is not compatible with the case i) analyzed in the case $t>0$, the case 3 is not compatible with the case $i i$) analyzed in the case $t>0$ and so the case 4 is not compatible with neither i) or $i i$). Therefore, there exist at most five points of ordinary contact in M and only three of them can lie in $M \backslash \partial(M)$.

Lemma 4 For any $p \in \gamma_{1}^{+} \cup \gamma_{1}^{-} \cup \gamma_{2}^{+} \cup \gamma_{2}^{-}$, counting multiplicities, one has

$$
\sharp\left[g^{-1}(g(p)) \cap \partial(M)\right]<6 .
$$

Proof: Assume $X(p) \in \ell_{1}^{+}$. The proofs of the other possibilities are similar.
Label Σ as the tangent plane to $X(M)$ at $X(p)$ and let us consider $\Lambda=X^{-1}(\Sigma \cap X(M))$. Since Λ is the nodal set of a harmonic function, then Λ is a set of properly immersed analytic curves. Using the interior maximum principle we also deduce that there are no compact simply connected region of M bounded by curves in Λ.

First, we study the case $0 \leq \theta<\pi$. In this case $\ell_{1}^{+} \subset \Sigma$ and since $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$, it is straightforward to prove that $\Lambda \cap X^{-1}\left(\Gamma-\ell_{1}^{+}\right)=\emptyset$. Hence, taking into account the reasoning at the beginning of the proof and that M is simply connected, we have that if λ is a curve in Λ starting at γ_{1}^{+}, then λ diverges to an end and when two curves in Λ originates from γ_{1}^{+}, they do not intersect.

If $\sharp\left[g^{-1}(g(p)) \cap \partial(M)\right] \geq 6$ then, using Theorem 1 , there are at least 6 curves in Λ starting at γ_{1}^{+}. Observe that then there exist at least three curves diverging to the same end. Consider this set of diverging curves. If there is a pair of consecutive curves in this set contained in the same half-strip of Σ then the connected component between them, that we call Ω, satisfies the conditions of statement (i) in Theorem 2 and then $X(\Omega)$ must be a planar domain in Σ, which contradicts our assumptions. On the contrary, if each pair of consecutive curves are in different half-strips, we can use Remark 1 and obtain so a new contradiction.

Finally, we analyze the case $\theta=\pi$. Observe that in this case $\Lambda \cap \partial(M)=\gamma_{1}^{+} \cup \gamma_{1}^{-}$. Suppose $\sharp\left[g^{-1}(g(p)) \cap \partial(M)\right] \geq 6$. We note that in this case compact curves starting at γ_{1}^{+}and ending at γ_{1}^{-}can appear in Λ. Otherwise, we can only have one of these curves, because if there exist two or more curves of this type in Λ we would get a compact domain, Ω, in $M \backslash \Lambda$ satisfying $X(\Omega) \subset \Sigma$, and this is a contradiction. Either there exists a compact curve in Λ or Λ consists only of divergent curves starting at $\gamma_{1}^{+} \cup \gamma_{1}^{-}$, it is not hard to see, using statement (i) in Theorem 2, that there are at least a set of three curves (counting the curve γ_{1}^{+}) diverging to the same end in Λ such that two consecutive curves in this set are in different half-strips of Σ. Then we can conclude as in the former case.

Using the above lemmas we can now prove:
Proposition 3 The map g extends continously to the ends. In particular, the total curvature of M is finite. Furthermore, the limit tangent plane to M at E_{i} is $\pi_{i}, i=1,2$.

Proof: We shall prove that the map g extends to E_{1}. The same argument can be used for E_{2}.

Taking into account Lemma 4 it is not difficult to prove that the following limits exist:

$$
\begin{array}{ll}
\lim _{p \rightarrow E_{1}} g(p), & \lim _{p \rightarrow E_{1}} g(p), \quad i=1,2 . \tag{1}\\
p \in \gamma^{+} & p \in \gamma^{-}
\end{array}
$$

For the proof of this fact see Claim 3.15 in [8].
Since M is conformally equivalent to a sector $S_{\theta_{1}}=\left\{r \mathrm{e}^{\mathrm{i} \Theta} \mid r>0, \Theta \in\left[0, \theta_{1}\right]\right\}$, a truncated sector $S_{\theta_{1}}(R)=S_{\theta_{1}} \backslash \overline{D(0, R)}$ can be seen as a neighbourhood of E_{1} in M. Furthermore, we can assume that R is sufficiently large so that $X\left(r \mathrm{e}^{\mathrm{i} \theta_{1}}\right) \in \ell_{1}^{+}$for $r>R$. According to Schwarz Principle we can consider the reflection respect to ℓ_{1}^{+}of $X\left(S_{\theta_{1}}(R)\right)$. Taking into account Proposition 2 we deduce that the Gauss map N on the truncated sector

$$
S_{2 \theta_{1}}(R)=\left\{r \mathrm{e}^{\mathrm{i} \Theta} \mid r>0, \Theta \in\left[0,2 \theta_{1}\right]\right\} \backslash \overline{D(0, R)}
$$

assumes the values \vec{a}_{2} and $-\vec{a}_{2}$ a finite number of times. Then it is possible to choose $R^{\prime}>R$ sufficiently large so that g restricted to $S_{2 \theta_{1}}\left(R^{\prime}\right)$ omits the values -1 and 1 .

At this point, we need the following technical result:

$$
\begin{aligned}
& \text { Let } \alpha<\gamma<\beta, S(R)=\left\{r \mathrm{e}^{\mathrm{i} \Theta} \mid r>0, \Theta \in\right] \alpha, \beta[\} \backslash \overline{D(0, R)} \text {, for } R>0 \text { and let } f \\
& \text { be holomorphic in } S(R) \text { and for some complex } c \text { satisfy } \lim _{r \rightarrow+\infty} f\left(r e^{i \gamma}\right)=c \text {. Sup- } \\
& \text { pose that there are two distinct complex number absent from the range of } f \text {. Then } \\
& \left.\lim _{r \rightarrow+\infty} f\left(r e^{i \Theta}\right)=c \text { for every } \Theta \in\right] \alpha, \beta[\text {. }
\end{aligned}
$$

We refer to reference book [1, pp. 441-445].
This theorem and (1) imply that g extends continuously to E_{1}. Finally, since $M \subset S$ we have that the limit tangent plane at E_{i} coincides with $\pi_{i}, i=1,2$.

Consider again the compact curves σ_{a}^{i} given in Lemma 1 for $i=1,2$ and $a \geq a_{0}$ sufficiently large. Let us denote by U_{a}^{i} the connected component of $M \backslash\left(\sigma_{a}^{1} \cup \sigma_{a}^{2}\right)$ that contains the end $E_{i}, i=1,2$. With this notation we can prove the following useful result.

Corollary 4 For a sufficiently large, $X\left(U_{a}^{i}\right)$ is a graph over the plane $\pi_{i}, i=1,2$.
Proof: Take $a \geq a_{0}$ sufficiently large so that $g\left(U_{a}^{i}\right)$ does not intersect the equator $\{z \in \overline{\mathbb{C}}||z|=1\}$.
Taking into account that $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$ and the definition of U_{a}^{i}, it is not hard to see that $\left.\mathfrak{p}_{3}\right|_{X\left(U_{a}^{i}\right)}$ is a local diffeomorphism onto Ω_{a}^{i}, where Ω_{a}^{i} is the exterior unbounded domain in the plane $\left\{x_{3}=0\right\}$ determined by the curve $\mathfrak{p}_{3}\left(\ell_{i}^{+}\right) \cup \mathfrak{p}_{3}\left(\ell_{i}^{-}\right) \cup \mathfrak{p}_{3}\left(\sigma_{a}^{i}\right)$. As X is proper, the same occurs for the map $\left.\mathfrak{p}_{3} \circ X\right|_{U_{a}^{i}}$. So, $\left.\mathfrak{p}_{3} \circ X\right|_{U_{a}^{i}}$ is a covering map, and taking into account that Ω_{a}^{i} is simply connected we deduce that $\left.\mathfrak{p}_{3} \circ X\right|_{U_{a}^{i}} ^{a}$ is one-to-one. This concludes the proof.

3.2 The symmetries of the surface.

3.2.1 The horizontal symmetry.

The purpose of the present paragraph is to prove that $\left\{x_{3}=0\right\}$ is a plane of symmetry of $X(M)$. The method for the proof is based on Alexandrov's reflection method and consists of a generalization of Schoen's ideas (see [12]) to our particular case of non compact boundary. For a precise presentation of our result the following notation is required. Recall that $\delta_{t}=X^{-1}\left(X(M) \cap\left\{x_{3}=t\right\}\right)$. We also denote for $t \geq-1 / 2$:

$$
\begin{aligned}
& M_{+}(t)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in X(M) / x_{3} \geq t\right\} \\
& M_{-}(t)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in X(M) / x_{3} \leq t\right\}
\end{aligned}
$$

$$
\begin{aligned}
& M_{+}^{*}(t)=\left\{\left(x_{1}, x_{2}, 2 t-x_{3}\right) /\left(x_{1}, x_{2}, x_{3}\right) \in M_{+}(t)\right\}, \\
& M_{-}^{*}(t)=\left\{\left(x_{1}, x_{2}, 2 t-x_{3}\right) /\left(x_{1}, x_{2}, x_{3}\right) \in M_{-}(t)\right\} .
\end{aligned}
$$

Moreover, if $A \subset \mathbb{R}^{3}$, we denote by $A_{+}(t)$ (resp. $\left.A_{-}(t)\right)$ the elements of A on and above (resp. below) $\left\{x_{3}=t\right\}$, and $A_{+}^{*}(t)$ (resp. $A_{-}^{*}(t)$) its reflection about the plane $\left\{x_{3}=t\right\}$.

If $A, B \subset \mathbb{R}^{3}$, we say that $A \succeq B$ provided for every $x \in \mathbb{R}^{3}$ for which $\mathfrak{p}_{3}^{-1}(\{x\}) \cap A \neq \emptyset$ and $\mathfrak{p}_{3}^{-1}(\{x\}) \cap B \neq \emptyset$, we have

$$
\text { Infimum }\left[x_{3}\left(\mathfrak{p}_{3}^{-1}(\{x\}) \cap A\right)\right] \geq \text { Supremum }\left[x_{3}\left(\mathfrak{p}_{3}^{-1}(\{x\}) \cap B\right)\right]
$$

For the sake of simplicity and in the particular case $A=M_{+}^{*}(t) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$and $B=M_{-}(t) \backslash$ $\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)\left(\right.$resp. $A=M_{+}(t) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$and $\left.B=M_{-}^{*}(t) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)\right)$, we write that $M_{+}^{*}(t) \succeq M_{-}(t)$ (resp. $\left.M_{+}(t) \succeq M_{-}^{*}(t)\right)$ instead of $A \succeq B, t \in[0,1 / 2]$ (resp. $t \in[-1 / 2,0]$). Then, we have:

Proposition $4 X(M)$ is symmetric with respect the plane $\left\{x_{3}=0\right\}$. Furthermore, $M_{+}(0) \backslash\left(\ell_{0}^{+} \cup\right.$ $\left.\ell_{0}^{-}\right)$and $M_{-}(0) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$are graphs over $\left\{x_{3}=0\right\}$.

A thorough reading of the paragraph 3.2.2 of [8] will convince the reader that, sharpening some arguments, the proof of Theorem 3.24 still works in the case $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$. For completeness we include a brief sketch of the crucial points of the proof of Proposition 4 where we treat in deep those aspects in which the proof of Theorem 3.24 in [9] must be changed.

1. Define the set

$$
\mathcal{J}_{2}=\left\{t \in \left[0, \frac{1}{2}\left[\mid M_{+}(t) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right) \text {is a graph over the plane }\left\{x_{3}=0\right\} \text { and } M_{+}^{*}(t) \succeq M_{-}(t)\right\}\right.\right.
$$

2. $\mathrm{J}_{2} \neq \emptyset$.

Define $\mathcal{G}=\{P \in M| | g(P) \mid=1\}$, and observe that \mathcal{G} is a one dimensional real analytic variety such that $\gamma_{0}^{+} \cup \gamma_{0}^{-} \subset \mathcal{G}$. This variety consists of the critical points of the projection on the plane $\left\{x_{3}=0\right\}$.
Label $Q_{i}^{+}=\gamma_{0}^{+} \cap \gamma_{i}^{+}$and $Q_{i}^{-}=\gamma_{0}^{-} \cap \gamma_{i}^{-}, i=1,2$. Then, taking into account $X(M) \subset$ $((S \backslash \mathcal{E}(\Gamma)) \cup \Gamma)$ and Theorem $1, Q_{i}^{+}$and Q_{i}^{-}are not branch points of $g, i=1,2$.
Then, γ_{0}^{+}(resp. γ_{0}^{-}) is the only curve of \mathcal{G} which approaches to Q_{i}^{+}(resp. Q_{i}^{-}) ; $i=1,2$. Moreover, using again that $X(M) \subset((S \backslash \mathcal{E}(\Gamma)) \cup \Gamma)$ and Theorem 1 , we check $|g(P)| \neq 1$, $\forall P \in \gamma_{i}^{+} \cup \gamma_{i}^{-}, i=1,2$.
These facts and Proposition 3 imply the existence of $t_{1}>0$ satisfying $M_{+}\left(t_{1}\right) \cap X(\mathcal{G})=$ $M_{+}\left(t_{1}\right) \cap\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$and then by using a symmetric argument, we deduce that \mathcal{G} is compact. Now, we claim that there exists $\left.t^{\prime} \in\right] 0, \frac{1}{2}\left[\right.$ such that $M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$is a graph over the plane $\left\{x_{3}=0\right\}$.
We denote $E=\mathfrak{p}_{3}(S \backslash \mathcal{E}(\Gamma)), E_{t}=\mathfrak{p}_{3}\left(M_{+}(t) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-} \cup X\left(\delta_{t}\right)\right)\right.$ and E_{t}^{1}, E_{t}^{2} the bounded and unbounded connected component of $E \backslash \mathfrak{p}_{3}\left(X\left(\delta_{t}\right)\right)$, respectively.
Let $t^{\prime}>t_{1}$. Since $X(\partial(M))=\Gamma, X(M \backslash \partial(M)) \cap \partial(\mathcal{E}(\Gamma))=\emptyset, X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$ and $\left(M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)\right) \cap X(\mathcal{G})=\emptyset$, then $\left.\mathfrak{p}_{3}\right|_{M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)}$is an immersion and \mathfrak{p}_{3} is injective along $\left(\ell_{1}^{+} \cup \ell_{1}^{-} \cup \delta_{t^{\prime}}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$. Hence, $E_{t^{\prime}}$ is an open subset of E. Moreover, $\left.\mathfrak{p}_{3}\right|_{X(M)}$ is proper, and so $E_{t^{\prime}} \cap E_{t^{\prime}}^{i}$ is a closed subset of $E_{t^{\prime}}^{i}, i=1,2$. Therefore, either $E_{t^{\prime}}^{i} \subset E_{t^{\prime}}$ or $E_{t^{\prime}} \cap E_{t^{\prime}}^{i}=\emptyset$, for $i=1,2$. Assume $E_{t^{\prime}} \cap E_{t^{\prime}}^{1}=\emptyset$. Then $E_{t^{\prime}}^{2} \subset E$ and so $E_{t^{\prime}}^{2}=E$. Hence, $\left.\mathfrak{p}_{3}\right|_{M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)}$is a proper local homeomorphism onto $E \cup \mathfrak{p}_{3}\left(X\left(\delta_{t^{\prime}}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)\right)$, that is
$\left.\mathfrak{p}_{3}\right|_{M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)}$is a covering map. Taking into account that $E \cup \mathfrak{p}_{3}\left(X\left(\delta_{t^{\prime}}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)\right)$is simply connected, then $\left.\mathfrak{p}_{3}\right|_{M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)}$is a homeomorphism, and so $M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$is a graph over $\left\{x_{3}=0\right\}$.
Consequently, it is sufficient to find $t^{\prime}>t_{1}$ such that $E_{t^{\prime}} \cap E_{t^{\prime}}^{1}=\emptyset$. At this point, we recall that the possibilities for the curve $\beta=X^{-1}\left(X(M) \cap\left\{x_{2}=0\right\}\right)$ were described in the proof of Proposition 1. Anyway, there are only two curves in β, α and α^{\prime}, diverging to E_{1} and $X(\alpha) \subset B^{+}$and $X\left(\alpha^{\prime}\right) \subset B^{-}$, where B^{+}and B^{-}were defined in the aforementioned proposition. Then it is possible to find $t^{\prime}>t_{1}$ such that $\left(l_{0}^{+} \cup l_{0}^{-}\right) \cap X\left(\alpha \cup \alpha^{\prime}\right) \cap M_{+}\left(t^{\prime}\right)=\emptyset$ and $X^{-1}\left(X\left(\alpha \cup \alpha^{\prime}\right) \cap M_{+}\left(t^{\prime}\right)\right) \subset U_{a}^{1}$, for a satisfying Corollary 4. Hence, it is not difficult to prove that there exists $\varepsilon>0$ such that $\mathfrak{p}_{3}\left(E_{t^{\prime}}\right) \cap\left\{\left(x_{1}, 0,0\right) \mid-\varepsilon \leq x_{1} \leq \varepsilon\right\}=\emptyset$. Obviously, $E_{t^{\prime}} \cap E_{t^{\prime}}^{1}=\emptyset$ for such a t^{\prime}.
3. Clearly, \mathfrak{J}_{2} is closed.
4. The minimum of \mathcal{J}_{2} is 0 .

In order to prove this assertion is it sufficient to see for $t_{0}>0$ in \mathcal{J}_{2} that there exists $\epsilon>0$ such that $\left[t_{0}-\epsilon, t_{0}\right] \subset \mathcal{J}_{2}$. Firstly, observe that since $M_{+}\left(t_{0}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$is a graph over $\left\{x_{3}=0\right\}$ and $M_{+}^{*}\left(t_{0}\right) \succeq M_{-}\left(t_{0}\right)$, then $M_{+}\left(t_{0}\right) \cap X(\mathcal{G}) \subset \ell_{0}^{+} \cup \ell_{0}^{-}$. Otherwise, $\delta_{t_{0}} \backslash\left\{X\left(\delta_{t_{0}} \cap \gamma_{0}^{+}\right), X\left(\delta_{t_{0}} \cap \gamma_{0}^{-}\right)\right\}$ would contain a point of $X(\mathcal{G})$, and so the maximum principle at the boundary would imply that $M_{+}^{*}\left(t_{0}\right)=M_{-}\left(t_{0}\right)$, which is absurd. Moreover, using Corollaries 1 and 3 one can prove that there are no branch points of g in $\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right) \cap\left\{x_{3}>0\right\}$. Hence, taking into account both facts and that \mathcal{G} is compact, there exists $\epsilon>0$ sufficiently small such that $t_{0}-\epsilon>0$ and $M_{+}\left(t_{0}-\epsilon\right) \cap X(\mathcal{G}) \subset\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$. Recall that then $\left.\mathfrak{p}_{3}\right|_{M_{+}\left(t^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)}$is an immersion. Therefore, for each $p \in X\left(\delta_{t_{0}}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$there exists a neighbourhood V_{p} of p in $X(M)$ such that V_{p} is a graph over the plane $\left\{x_{3}=0\right\}$. Then, it is possible to find $\epsilon^{\prime}<\epsilon$ such that $M_{+}\left(t_{0}-\epsilon^{\prime}\right) \backslash\left(M_{+}\left(t_{0}\right) \cup \ell_{0}^{+} \cup \ell_{0}^{-}\right)$is a graph over $\left\{x_{3}=0\right\}$. Finally, it is not difficult to prove that $M_{+}\left(t_{0}-\epsilon^{\prime}\right) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$is a graph over the plane $\left\{x_{3}=0\right\}$. The remainder of the assertion may be proved as in CLaim 3.28 in [8].
5. The former points proves that $\mathcal{J}_{2}=\left[0, \frac{1}{2}\left[\right.\right.$ and this implies that $M_{+}(0) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$is a graph over $\left\{x_{3}=0\right\}$ and $M_{+}^{*}(0) \succeq M_{-}(0)$.
Analogously, we can get that $M_{-}(0) \backslash\left(\ell_{0}^{+} \cup \ell_{0}^{-}\right)$is a graph over $\left\{x_{3}=0\right\}$ and $M_{-}^{*}(0) \succeq M_{+}(0)$ and this proves the proposition.

Now, we recover two consequences of the above proposition that we need in what follows.
Corollary 5 There are only two branch points $R_{0}^{+} \in \gamma^{+}$and $R_{0}^{-} \in \gamma^{-}$of g along $\gamma_{0}^{+} \cup \gamma_{0}^{-}$, g has multiplicity two at these points and $R_{0}^{+}, R_{0}^{-} \in \delta_{0}$. Furthermore, the set \mathcal{G} consists of $\gamma_{0}^{+} \cup \gamma_{0}^{-} \cup \delta_{0}$.

Corollary 6 The limit normal vectors at the ends are opposite.
In the remainder of the paper and without loss of generality, we assume that

$$
\begin{equation*}
g\left(E_{1}\right)=0, \quad g\left(E_{2}\right)=\infty \tag{2}
\end{equation*}
$$

3.2.2 The vertical symmetry in case $d=0$.

Next we prove that if $d=0$ then $\left\{x_{1}=0\right\}$ is a plane of symmetry of $X(M)$. As in the horizontal symmetry case, the proof is inspired on Alexandrov's reflection method. However, the argument exhibited here is slightly different from classical Alexandrov's technique which uses a family of
parallel planes. In this case we use the pencil of vertical planes that contains the vertical segment $\ell_{0}=\ell_{0}^{+}=\ell_{0}^{-}$.

For the sake of simplicity, in this paragraph we consider a new set of Cartesian coordinates obtained from the old one by a rotation of $-\frac{\pi}{2}$ around the x_{3}-axis. Observe that in the new coordinate the x_{1}-axis is the inner bisector of the orthogonal projection of ℓ_{i}^{+}and ℓ_{i}^{-}to the plane $\left\{x_{3}=0\right\}, i=1,2$, and $\Gamma^{+} \subset\left\{x_{2} \geq 0\right\}$ (see Fig. 9). Moreover, we need to introduce some notation.

Figure 9:

For $\left.\left.\xi \in\left[0, \pi-\frac{\theta}{2}\right], t \in\right]-\infty, 0\right]$ and a set $A \subset \mathbb{R}^{3}$ we define:

$$
\begin{aligned}
& H_{\xi}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid \operatorname{Arg}\left(x_{1}+\mathrm{i} x_{2}\right)=\xi\right\} \\
& P_{\xi}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, \operatorname{Arg}\left(x_{1}+\mathrm{i} x_{2}\right)=\xi-\frac{\pi}{2}\right.\right\} \\
& H_{\xi, t}=H_{\xi}+(t, 0,0) \\
& P_{\xi, t}=P_{\xi}+(t, 0,0) \\
& H_{\xi}^{+}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, \operatorname{Arg}\left(x_{1}+\mathrm{i} x_{2}\right) \in\left[\xi, \pi-\frac{\theta}{2}\right]\right.\right\} \\
& H_{\xi}^{-}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, \operatorname{Arg}\left(x_{1}+\mathrm{i} x_{2}\right) \in\left[-\pi+\frac{\theta}{2}, \xi\right]\right.\right\}, \\
& \delta(\xi)=X(M) \cap H_{\xi}, \\
& \delta(\xi, t)=X(M) \cap H_{\xi, t}, \\
& A_{+}(\xi)=A \cap H_{\xi}^{+}, \\
& A_{+}(\xi, t)=A \cap\left(H_{\xi}^{+}+(t, 0,0)\right), \\
& A_{-}(\xi)=A \cap H_{\xi}^{-}, \\
& A_{-}(\xi, t)=A \cap\left(H_{\xi}^{-}+(t, 0,0)\right),
\end{aligned}
$$

where $\operatorname{Arg}: \mathbb{C} \backslash]-\infty, 0] \longrightarrow \mathbb{R}$ denotes the principal argument. Note that $H_{\xi} \perp P_{\xi}$. In addition we label $\mathfrak{s}_{\xi}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ and $\mathfrak{s}_{\xi, t}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ as the orthogonal symmetries respect to the planes containing H_{ξ} and $H_{\xi, t}$, respectively. In the same way, we label $\mathfrak{p}_{\xi}: \mathbb{R}^{3} \longrightarrow H_{\xi}$ as the orthogonal projection. With this definitions we denote $A_{+}^{*}(\xi)=\mathfrak{s}_{\xi}\left(A_{+}(\xi)\right)$ and $A_{+}^{*}(\xi, t)=\mathfrak{s}_{\xi, t}\left(A_{+}(\xi, t)\right)$. In particular we denote $M_{+}(\xi)=X(M)_{+}(\xi), M_{+}(\xi, t)=X(M)_{+}(\xi, t), M_{-}(\xi)=X(M)_{-}(\xi)$, $M_{-}(\xi, t)=X(M)_{-}(\xi, t)$ and $\Delta_{\xi}=M_{+}^{*}(\xi) \cap M_{-}(\xi)$. If $\xi \in\left[\frac{\pi}{2}, \pi-\frac{\theta}{2}\right]$ we also consider $\Delta_{\xi, t}=$ $M_{+}^{*}(\xi, t) \cap M_{-}(\xi, t)$.

Since the following argument is valid for all $\xi \in\left[\frac{\pi}{2}, \pi-\frac{\theta}{2}\right]$ and $\left.\left.t \in\right]-\infty, 0\right]$ we omit the parameters ξ and t in the description of the different sets.

With the above notations, it is not difficult to see that

$$
\begin{equation*}
\Delta \cap\left(\Gamma_{+}^{*} \cup \Gamma_{-}\right)=\delta \cap \Gamma \tag{3}
\end{equation*}
$$

¿From Proposition 3 and Corollary 4 we can also consider a_{1} sufficiently large so that $a_{1} \geq a_{0}$, $X\left(U^{i}\right)=X\left(U_{a_{1}}^{i}\right)$ is a graph over the plane $\left\{x_{3}=0\right\}, i=1,2$ and $\left.x_{3}\right|_{X\left(U^{1}\right)}>0$ and $\left.x_{3}\right|_{X\left(U^{2}\right)}<0$, where a_{0} is as in Lemma 1 and $U_{a_{1}}^{i}$ is defined in Subsection 3.1.

Now, we can prove the following assertion.
Claim 1 : If $X^{-1}(\Delta \backslash \delta) \subset U^{1} \cup U^{2}$, then $\Delta=\delta$.
The proof of this claim is similar to the proof of CLAIM 3.19 in [8]. For completeness, we recall the reasoning.

Suppose that $\Delta \backslash \delta \neq \emptyset$ and $X^{-1}(\Delta \backslash \delta) \cap U^{1} \neq \emptyset$. Since Δ is locally the intersection of distinct minimal surfaces, it follows that Δ is a one-dimensional real analytic variety, properly immersed in \mathbb{R}^{3}. Hence, there exist no curves in $\Delta \backslash \delta$ diverging to an interior point in $\sigma_{a_{1}}^{i}, i=1,2$. Moreover, taking into account (3), we have

$$
X^{-1}(\Delta \backslash \delta) \subset\left(U^{1} \backslash \partial(M)\right)
$$

Therefore, $(\Delta \backslash \delta) \cap U^{1}$ is a set of compact analytic curves and curves diverging to E_{1} in U_{1}.
On the other hand, from the definition of U^{1} we obtain that

$$
X^{-1}(\Delta) \cap U^{1}=X^{-1}\left(X\left(U^{1}\right)_{+}^{*} \cap X\left(U^{1}\right)_{-}\right)
$$

Hence, taking into account that $X^{-1}(\Delta \backslash \delta) \cap U^{1} \neq \emptyset$ we have that

$$
X^{-1}\left(X\left(U^{1}\right)_{+}^{*} \cap X\left(U^{1}\right)_{-}\right) \backslash \partial(M) \neq \emptyset .
$$

Therefore, it is not hard to see that there exist two simply connected closed regions $\Omega_{1} \subset X\left(U^{1}\right)_{-}$ and $\Omega_{2} \subset X\left(U^{1}\right)_{+}^{*}$ bounded by the same curve in Δ.

Summarizing, Ω_{1} and Ω_{2} are bounded graphs over its common orthogonal projection Ω_{0} onto the plane $\left\{x_{3}=0\right\}$, and $\partial\left(\Omega_{1}\right)=\partial\left(\Omega_{2}\right)$.

If Ω_{0} is compact, then the interior maximum principle gets a contradiction.
If Ω_{0} is unbounded, then observe that the functions on Ω_{0} which determine the graphs Ω_{1} and Ω_{2} are asymptotic to the same finite value at infinity. The maximum principle at infinity for minimal graphs leads to a contradiction once again. This proves the claim.

Now we define the set

$$
\mathcal{I}=\left\{\left.\xi_{1} \in\left[0, \pi-\frac{\theta}{2}\right] \right\rvert\,\left[M_{+}^{*}(\xi) \cap\left\{x_{3} \geq 0\right\}\right] \succeq\left[M_{-}(\xi) \cap\left\{x_{3} \geq 0\right\}\right], \pi-\frac{\theta}{2} \leq \xi \leq \xi_{1}\right\}
$$

Our objective is to prove that $\mathcal{I}=\left[0, \pi-\frac{\theta}{2}\right]$. We divide the proof of this fact in several points:
Claim $\left.2:] \frac{\pi}{2}, \pi-\frac{\theta}{2}\right] \subset \mathcal{I}$.

Let $A, B \subset \mathbb{R}^{3}$, we say that $A \geq_{\xi} B$ provided for every $x \in \mathbb{R}^{3}$ for which $\mathfrak{p}_{\xi}^{-1}(\{x\}) \cap A \neq \emptyset$ and $\mathfrak{p}_{\xi}^{-1}(\{x\}) \cap B \neq \emptyset$, we have that the orthogonal coordinate to $H_{\xi, t}$ of any point in $\mathfrak{p}_{\xi}^{-1}(\{x\}) \cap A$ is equal to or greater than the respective orthogonal coordinate of any point in $\mathfrak{p}_{\xi}^{-1}(\{x\}) \cap B$.

Given $\left.\xi \in] \frac{\pi}{2}, \pi-\frac{\theta}{2}\right]$, we define the set

$$
\left.\left.\mathcal{I}_{\xi}=\{t \in]-\infty, 0\right] \mid M_{+}(\xi, t) \quad \text { is a graph over } \quad H_{\xi, t} \quad \text { and } \quad M_{+}^{*}(\xi, t) \leq_{\xi} M_{-}(\xi, t)\right\}
$$

Our purpose is to show that $\left.\left.\mathcal{I}_{\xi}=\right]-\infty, 0\right]$, for all $\left.\left.\xi \in\right] \frac{\pi}{2}, \pi-\frac{\theta}{2}\right]$. Note that this fact implies $\left.] \frac{\pi}{2}, \pi-\frac{\theta}{2}\right] \subset \mathcal{I}$.

First, we are going to see that $\mathcal{I}_{\xi} \neq \emptyset$. To do this, let $t^{\prime}<0$ such that $X^{-1}\left(M_{+}(\xi, t)\right) \subset U^{1} \cup U^{2}$, where U^{i} are defined as above, $\forall t \leq t^{\prime}$ (observe that $X^{-1}\left(\Delta_{\xi, t}\right) \subset U^{1} \cup U^{2}$). Hence from Claim 1, $\Delta_{\xi, t}=\delta_{\xi, t}, t \leq t^{\prime}$.

Then, it is clear that $X^{-1}\left(M_{+}(\xi, t)\right)$ consists of two simply connected components, one of them in U^{1} and the other one in $U^{2}, \forall t \geq t^{\prime}$, and thus $M_{+}(\xi, t)$ is the union of two disjoint graphs $G_{+}^{1}(\xi, t)$ and $G_{+}^{2}(\xi, t)$ over the same simply connected domain $G_{+}(\xi, t)$ in the plane $\left\{x_{3}=0\right\}$.
¿From the definition of U^{1} and U^{2}, we have that $\mathfrak{p}_{\xi}\left(G_{+}^{1}\left(t^{\prime}\right)\right) \cap \mathfrak{p}_{\xi}\left(G_{+}^{2}\left(t^{\prime}\right)\right)=\emptyset$.
Let us see that $M_{+}(\xi, t)$ is a graph over the halfplane $H_{\xi, t}, t \leq t^{\prime}$.
First, observe that \mathfrak{p}_{ξ} is injective on $\delta_{\xi, t}, t \leq t^{\prime}$. Indeed, note that $\delta_{\xi, t} \subset H_{\xi, t}$ is a graph over a connected piece of a straight line, and so the \mathfrak{p}_{ξ} is injective.

Moreover, a similar argument gives that the set $P_{\xi, s} \cap M_{+}\left(\xi, t^{\prime}\right)$ is a connected curve, for sufficiently large s. Furthermore, the function x_{3} is monotone over $P_{\xi, s} \cap M_{+}\left(\xi, t^{\prime}\right)$. Otherwise, there would exist some points in $M_{+}\left(\xi, t^{\prime}\right)$ whose normal vector lie in $\left\{x_{1}=0\right\} \cap \mathbb{S}^{2}$. Thus, we could take $t \leq t^{\prime}$ in such a way that δ_{t} contains a point with normal vector in $P_{\xi} \cap \mathbb{S}^{2}$. Hence, from Theorem 1 and taking into account that $X\left(U^{i}\right)$ are graphs over the plane $x_{3}=0, i=1,2$, we deduce that $\Delta_{\xi, t}-\delta_{\xi, t} \neq \emptyset$, which is contrary to Claim 1.

This proves that $M_{+}\left(\xi, t^{\prime}\right)$ is a graph over the plane H_{ξ}, and so the same holds for $M_{+}(\xi, t)$, $t \leq t^{\prime}$.

Taking into account that $\Delta_{\xi, t}=\delta_{\xi, t}$, for $t \leq t^{\prime}$ and $X(M) \in(S \backslash \mathcal{E}(M)) \cup \Gamma$, we deduce that $M_{+}^{*}(\xi, t) \leq_{\xi} M_{-}(\xi, t), t \leq t^{\prime}$. Thus, $\left.]-\infty, t^{\prime}\right] \subset \mathcal{I}_{\xi}$.

It is obvious that \mathcal{I}_{ξ} is closed in] $-\infty, 0$].
Next, we shall see that $0=\operatorname{Maximum}\left(\mathcal{I}_{\xi}\right)$. We proceed by contradiction. Assume $t_{0}=$ $\operatorname{Maximum}\left(\mathcal{I}_{\xi}\right)<0$. Let $K=X\left(M \backslash\left(U^{1} \cup U^{2}\right)\right)$. Since $t_{0} \in \mathcal{I}_{\xi}, K_{+}\left(\xi, t_{0}\right)$ is a graph over the plane H_{ξ}. Using the interior maximum principle and the maximum principle at the boundary, it is not hard to see that there exists $\varepsilon>0$ such that $K_{+}(\xi, t)$ is a graph over H_{ξ} and $\Delta_{\xi, t} \cap K=\delta_{\xi, t} \cap K$ for $\left.t \in] t_{0}, t_{0}+\varepsilon\right]$ (for details, see CLAIM 3.21 in [8]). Hence, using Claim 1, we deduce that $\Delta_{\xi, t}=\delta_{\xi, t}$. However, the maximality of t_{0} leads us to $\Delta_{\xi, t} \backslash \delta_{\xi, t} \neq \emptyset$, which is absurd. This finishes the proof of the claim.

Claim 3 : The set \mathcal{I} is closed in $\left[0, \pi-\frac{\theta}{2}\right]$ and its minimum is 0 .
Obviously, \mathcal{I} is closed. To prove $\operatorname{Minimum}(\mathcal{I})=0$ we proceed by contradiction. Let us assume that $\operatorname{Minimum}(\mathcal{I})=\xi_{0}>0$. As in the preceding claim, we consider $K=X\left(M \backslash\left(U^{1} \cap U^{2}\right)\right)$. Taking into account that $\xi_{0} \in \mathcal{I}$ we have

$$
\begin{equation*}
\left[M_{+}^{*}\left(\xi_{0}\right) \cap\left\{x_{3} \geq 0\right\}\right] \succeq\left[M_{-}\left(\xi_{0}\right) \cap\left\{x_{3} \geq 0\right\}\right] . \tag{4}
\end{equation*}
$$

Hence, since $K_{+}\left(\xi_{0}\right)$ is compact, there exists $\varepsilon_{0}>0$ sufficiently small so that $\left[K_{+}^{*}\left(\xi_{0}-\varepsilon\right) \cap\left\{x_{3} \geq 0\right\}\right] \succeq$ [$\left.K_{-}\left(\xi_{0}-\varepsilon\right) \cap\left\{x_{3} \geq 0\right\}\right]$, for all $0 \leq \varepsilon \leq \varepsilon_{0}$. Otherwise, we could find sequences $\left\{\xi_{n}\right\}$, with $\xi_{n} \in\left[0, \xi_{0}\left[\right.\right.$, and $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in K, fulfilling the following conditions:
i) $\left\{\xi_{n}\right\} \nearrow \xi_{0}$,
ii) $x_{n} \in K_{+}\left(\xi_{n}\right), y_{n} \in K_{-}\left(\xi_{n}\right)$ and $\mathfrak{s}_{\xi_{n}}\left(x_{n}\right)=y_{n}, \forall n \in \mathbb{N}$.
iii) $\left\{x_{n}\right\} \rightarrow x \in K_{+}\left(\xi_{0}\right),\left\{y_{n}\right\} \rightarrow y \in K_{-}\left(\xi_{0}\right)$.
¿From ii) and iii) we deduce that $\mathfrak{s}_{\xi_{0}}(x)=y$. On the other hand, (3) implies that any point lying in $\Delta_{\xi_{0}} \backslash \delta_{\xi_{0}}$ is an interior point of contact between $M_{+}^{*}\left(\xi_{0}\right)$ and $M_{-}\left(\xi_{0}\right)$. Assume $\Delta_{\xi_{0}} \backslash \delta_{\xi_{0}} \neq \emptyset$. Then, making use of the interior maximum principle we deduce $M_{+}^{*}\left(\xi_{0}\right)=M_{-}\left(\xi_{0}\right)$, which is absurd because, since $\xi_{0}>0, \Gamma$ is not symmetric with respect to the plane $H_{\xi_{0}}$.

Therefore $x=y \in K \cap \delta_{\xi_{0}}$. Hence, taking into account ii) and iii), we have that $N\left(X^{-1}(x)\right)=$ $\mathfrak{s}_{\xi_{0}}\left(N\left(X^{-1}(x)\right)\right)$ and so $N\left(X^{-1}(x)\right)$ is parallel to $H_{\xi_{0}}$. Therefore, by Theorem 1 we have that $x \in K \cap\left(\delta_{\xi_{0}} \backslash\left(\delta_{\xi_{0}} \cap \ell_{0}\right)\right)$ and $x \notin\left\{q_{1}^{+}=q_{1}^{-}, q_{2}^{+}=q_{2}^{-}\right\}$. ¿From this fact and taking into account (4), the maximum principle at the boundary can be applied to a neighbourhood of the point x. We get $M_{+}^{*}\left(\xi_{0}\right)=M_{-}\left(\xi_{0}\right)$, which is as above a contradiction.

By the preceding reasoning, we have $\Delta_{\xi} \backslash \delta_{\xi} \subset X\left(U^{1} \cup U^{2}\right)$ for $\xi \geq \xi_{0}-\varepsilon_{0}$. From Claim 1 we conclude that $\Delta_{\xi}=\delta_{\xi}$ for $\xi \geq \xi_{0}-\varepsilon_{0}$. Clearly this implies $\left[M_{+}^{*}(\xi) \cap\left\{x_{3} \geq 0\right\}\right] \succeq\left[M_{-}(\xi) \cap\left\{x_{3} \geq 0\right\}\right]$ for $\xi \geq \xi_{0}-\varepsilon_{0}$ and so $\xi_{0}-\varepsilon_{0} \in \mathcal{I}$, which contradicts that ξ_{0} is a minimum.

Summarizing we have $\left[M_{+}^{*}(0) \cap\left\{x_{3} \geq 0\right\}\right] \succeq\left[M_{-}(0) \cap\left\{x_{3} \geq 0\right\}\right]$. We can repeat the above argument starting from Γ^{-}instead of Γ^{+}and obtain $\left[M_{-}^{*}(0) \cap\left\{x_{3} \geq 0\right\}\right] \succeq\left[M_{+}(0) \cap\left\{x_{3} \geq 0\right\}\right]$ and so $X(M) \cap\left\{x_{3} \geq 0\right\}$ is symmetric respect to the plane $\left\{x_{2}=0\right\}$. Finally, by the horizontal symmetry seen in 3.2 .1 we have that $X(M)$ is symmetric respect to the plane $\left\{x_{2}=0\right\}$.

3.3 Determination of conformal structure and Weierstrass data of M

This subsection is devoted to determine the Weierstrass data associated to the minimal immersion $X: M \longrightarrow \mathbb{R}^{3}$.

We define

$$
n=\frac{2 \pi}{3 \pi-\theta}
$$

Observe that $n \in\left[\frac{2}{3}, 1\right]$. As M is simply-connected, the map $(-\mathrm{i} g)^{\frac{n}{2}}$ has a well-defined branch on M. Let f be the branch of $(-\mathrm{i} g)^{\frac{n}{2}}$ such that $\operatorname{Arg}(f(p))=0$, whenever $-\mathrm{i} g(p) \in \mathbb{R}^{+}$.

As before, $Q_{j}^{+}=\gamma_{0}^{+} \cap \gamma_{j}^{+}, Q_{j}^{-}=\gamma_{0}^{-} \cap \gamma_{j}^{-}, j=1,2$. Observe that $f\left(Q_{j}^{+}\right)=\mathrm{i}$ and $f\left(Q_{j}^{-}\right)=-\mathrm{i}$, $j=1,2$. Moreover, since $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$ it is easy to see that $f(p) \neq f\left(Q_{j}^{ \pm}\right)$for all $p \in \gamma_{j}^{ \pm}$, $j=1,2$. Then, taking into account that $g\left(E_{1}\right)=0$ and $g\left(E_{2}\right)=\infty$, one has:

$$
\begin{gathered}
f\left(\gamma_{1}^{-}\right)=s_{1}^{-}=\left\{\lambda \mathrm{i} \mid \lambda \in\left[-1,0[\}, \quad f\left(\gamma_{2}^{-}\right)=s_{2}^{-}=\{\lambda \mathrm{i} \mid \lambda \in]-\infty,-1\right]\right\}, \\
\left.\left.f\left(\gamma_{1}^{+}\right)=s_{1}^{+}=\{\lambda \mathrm{i} \mid \lambda \in] 0,1\right]\right\}, \quad f\left(\gamma_{2}^{+}\right)=s_{2}^{+}=\{\lambda \mathrm{i} \mid \lambda \in[1, \infty[\}
\end{gathered}
$$

Using Corollary 5, we deduce that $\left.f\right|_{\left[Q_{j}^{ \pm}, R_{0}^{ \pm}\right]}$are injective for $j=1,2$. Hence, if we write $f\left(R_{0}^{+}\right)=$ $\mathrm{e}^{\mathrm{i} \frac{t_{0}}{2}}$ and $f\left(R_{0}^{-}\right)=\mathrm{e}^{\mathrm{i} \frac{t_{1}}{2}}$, it is not hard to check that

$$
\begin{equation*}
f\left(\gamma_{0}^{-}\right)=s_{0}^{-}=\left\{\left.\mathrm{e}^{\mathrm{i} \frac{t}{2}} \right\rvert\, t \in\left[-\pi, t_{1}\right]\right\}, \quad f\left(\gamma_{0}^{+}\right)=s_{0}^{+}=\left\{\left.\mathrm{e}^{\mathrm{i} \frac{t}{2}} \right\rvert\, t \in\left[t_{0}, \pi\right]\right\} \tag{5}
\end{equation*}
$$

Using again that $X(M) \subset(S \backslash \mathcal{E}(\Gamma)) \cup \Gamma$, the fact that there are at most two points on $\gamma_{0}^{ \pm}$where the Gauss map achieves the values $\pm \vec{a}_{2}$ (see the proof of Proposition 1) and Corollary 5 , one deduces that $-\pi<t_{1}<0<t_{0}<\pi$.

Let Λ denote the connected component of $\mathbb{C} \backslash(f(\partial(M)) \cup\{0\})$ containing the point $\{1\}$ (see Figure 10). We have the following result:

Lemma 5 The map $f: M \rightarrow \mathbb{C}$ fulfills that
(i) $f(M \backslash \partial(M))=\Lambda$ and

Figure 10: The domain Λ.
(ii) $\left.f\right|_{M \backslash \partial(M)}: M \backslash \partial M \rightarrow \Lambda$ is a biholomorphism.

Proof: In order to prove (i) we note that f is holomorphic and non constant, and so $f(M \backslash \partial(M))$ is an open subset of \mathbb{C}^{*} (note that no points in M have vertical normal vector). On the other hand, taking into account that $\bar{M}=M \cup\left\{E_{1}, E_{2}\right\}$ is compact, $f(\bar{M})$ is a closed subset of $\overline{\mathbb{C}}$. Therefore the set $W=f(M \backslash \partial(M)) \cap(\mathbb{C} \backslash(f(\partial(M)) \cup\{0\}))=f(\bar{M}) \cap(\mathbb{C} \backslash(f(\partial(M)) \cup\{0\}))$ is a closed subset of $\mathbb{C} \backslash(f(\partial(M)) \cup\{0\})$. Then, either $W=\mathbb{C} \backslash(f(\partial(M)) \cup\{0\})$ or W is a connected component of $\mathbb{C} \backslash(f(\partial(M)) \cup\{0\})$. To see that the first possibility does not occur we proceed by contradiction. Assume $W=\mathbb{C} \backslash(f(\partial(M)) \cup\{0\})$. Observe that $f(p) \in \mathbb{S}^{1}$ if and only if $g(p) \in \mathbb{S}^{1}$. Hence, taking into account Corollary 5 and (5) we infer that $\left\{\mathrm{e}^{\mathrm{i} \frac{t}{2}}, t \in\left[t_{1}, t_{0}\right] \cup\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]\right\} \subset f\left(\delta_{0}\right)$. Moreover, since there are no ramification points in $\delta_{0} \backslash\left\{R_{0}^{+}, R_{0}^{-}\right\}$, we deduce that $\operatorname{Arg}(f)$ is a monotone function in δ_{0} and $f\left(\delta_{0}\right)=\mathbb{S}^{1}$. Since $\left\{1, \mathrm{e}^{\frac{1}{2} n \pi \mathrm{i}}, \mathrm{e}^{n \pi \mathrm{i}}, \mathrm{e}^{\frac{3}{2} n \pi \mathrm{i}}\right\} \subset \mathbb{S}^{1}$, we have that there are at least four points in $\delta_{0} \cap N^{-1}\left(\left\{\vec{a}_{2},-\vec{a}_{2}\right\}\right)$. But it is contrary to Proposition 2. Since $f\left(\gamma_{0}^{+}\right)$and $f\left(\gamma_{0}^{-}\right)$lie in the boundary of W, we easily obtain that $W=\Lambda$ and so $f(M \backslash \partial(M))=\Lambda$.

The same argument presented above gives us that $f\left(\delta_{0}\right)=\left\{\left.\mathrm{e}^{\mathrm{i} \frac{t}{2}} \right\rvert\, t \in\left[t_{1}, t_{0}\right]\right\}$ and $\left.f\right|_{\delta_{0}}: \delta_{0} \longrightarrow$ $\left\{\left.\mathrm{e}^{\mathrm{i} \frac{t}{2}} \right\rvert\, t \in\left[t_{1}, t_{0}\right]\right\}$ is a one-to-one function.

To finish the proof, we define $\gamma=\partial(\bar{M})$. Since \bar{M} is conformally a closed disk with piecewise analytic boundary, then γ is a piecewise analytic curve homeomorphic to \mathbb{S}^{1}. Note that since $\left.g\right|_{M}$ has no poles and g extends continously to \bar{M}, we can assert the same for f. Then, we know that for any $w \in \Lambda=f(M \backslash \partial(M))$,

$$
\sharp\left(f^{-1}(w)\right)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{d f}{f-w} \in \mathbb{Z} .
$$

Thus, if we define $h: \Lambda \longrightarrow \mathbb{Z}$ by $h(w)=\sharp\left(f^{-1}(w)\right)$, the function h is continuous on Λ, and so it is constant. From the above arguments we have that $h(w)=1, \forall w \in f\left(\delta_{0} \backslash\left\{R_{0}^{+}, R_{0}^{-}\right\}\right)$and this concludes the proof.

Let $\mathcal{N}_{t_{0}}^{t_{1}}$ the following four-punctured torus:

$$
\mathcal{N}_{t_{0}}^{t_{1}}=\left\{(u, v) \in \mathbb{C}^{*} \times \mathbb{C} \left\lvert\, v^{2}=\left(u-\mathrm{e}^{\mathrm{i} \frac{t_{0}}{2}}\right)\left(u+\mathrm{e}^{-\mathrm{i} \frac{t_{0}}{2}}\right)\left(u-\mathrm{e}^{\mathrm{i} \frac{t_{1}}{2}}\right)\left(u+\mathrm{e}^{-\mathrm{i} \frac{t_{1}}{2}}\right)\right.\right\}
$$

Consider $\mathcal{U}_{t_{0}}^{t_{1}} \subset \mathcal{N}_{t_{0}}^{t_{1}}$ as the connected component of $u^{-1}(\mathbb{C} \backslash f(\partial(M)))$ containing the point

$$
P_{0}=\left(1,2 \sqrt{-\sin \left(\frac{t_{0}}{2}\right) \sin \left(\frac{t_{1}}{2}\right)}\right)
$$

Define $\mathcal{N}^{\prime}=\overline{\mathcal{U}_{t_{0}}^{t_{1}}}$. At this point we prove the following proposition.
Proposition $5 M$ is biholomorphic to \mathcal{N}^{\prime}. Furthermore, the Weierstrass data are given on \mathcal{N}^{\prime} by

$$
g(u)=\mathrm{i} u^{\frac{2}{n}}, \quad \Phi_{3}=\lambda \frac{d u}{v}
$$

where $\lambda \in \mathbb{R}^{+}$and we choose the branch of $u^{\frac{2}{n}}$ satisfying $1^{\frac{2}{n}}=1$.
Proof: Consider $f: M \backslash \partial(M) \longrightarrow \Lambda$, the biholomorphism defined in Lemma 5. Observe that the u projection is a biholomorphism from $\mathcal{N}^{\prime} \backslash \partial\left(\mathcal{N}^{\prime}\right)$ onto Λ and so $F=f^{-1} \circ u: \mathcal{N}^{\prime} \backslash \partial\left(\mathcal{N}^{\prime}\right) \longrightarrow M \backslash \partial(M)$ is a biholomorphism. Since $\mathcal{N}^{\prime} \backslash \partial\left(\mathcal{N}^{\prime}\right)$ and $M \backslash \partial(M)$ are conformally equivalent to Jordan regions in \mathbb{C}, a well-known result of complex analysis asserts that F can be extended to a biholomorphism from \mathcal{N}^{\prime} onto M. For the sake of simplicity, in what follows we identify M with \mathcal{N}^{\prime}.

Now, we consider the holomorphic function $\omega=\frac{\Phi_{3} v}{d u}$ on \mathcal{N}^{\prime}. Let $p_{0} \in s_{0}^{+} \cup s_{0}^{-}$and $\left\{p_{0}^{1}, p_{0}^{2}\right\}=$ $u^{-1}\left(p_{0}\right)$. Since the surface is symmetric respect to the plane $\left\{x_{3}=0\right\}$ (see 3.2.1), we have that $\Phi_{3}\left(p_{0}^{1}\right)=-\Phi_{3}\left(p_{0}^{2}\right)$. But this is also the behaviour of v. Consequently, $\widetilde{\omega}=\omega \circ u^{-1}$ is a holomorphic function in Λ that can be extended to $s_{0}^{+} \cup s_{0}^{-}$.

As Φ_{3} and v extends to the punctured in a natural way, $\widetilde{\omega}$ can be seen as a holomorphic function on $\{z \in \mathbb{C} \mid \operatorname{Re}(z) \geq 0\}$. Furthermore, $\widetilde{\omega}$ is real on $\{z \in \mathbb{C} \mid \operatorname{Re}(z)=0\}$ and so, using Schwarz Principle, $\widetilde{\omega}$ extends to the whole \mathbb{C}. Then, $\widetilde{\omega}$ is a holomorphic function on \mathbb{C} without neither zeroes nor poles and therefore $\widetilde{\omega}=\lambda \in \mathbb{C}^{*}$. Finally, using again that $\widetilde{\omega}$ is real on $\{z \in \mathbb{C} \mid \operatorname{Re}(z)=0\}$ we deduce $\lambda \in \mathbb{R}^{*}$. Observe that, up to a rigid motion, we can assume that $\lambda \in \mathbb{R}^{+}$.

As we announced, we now prove that $X(M)$ also inherits the vertical symmetry of its boundary when $d>0$.

Proposition 6 In the above setting, $t_{1}=-t_{0}$.
Proof: First of all, observe that the result in paragraph 3.2.2 implies $t_{1}=-t_{0}$ if $d=0$. We shall see that this fact suffices to prove the general case.

Since $X: M \longrightarrow \mathbb{R}^{3}$ is a solution of Problem 1 we have that $X_{1}\left(R_{0}^{-}\right)=-\frac{d}{2}$ and $X_{1}\left(R_{0}^{+}\right)=\frac{d}{2}$. Thus

$$
d=X_{1}\left(R_{0}^{+}\right)-X_{1}\left(R_{0}^{-}\right)=\operatorname{Re} \int_{\widehat{\delta}} \Phi_{1},
$$

where $\widehat{\delta}$ is the lift to M of the curve $\mathrm{e}^{\mathrm{i} \frac{t}{2}}, t_{1} \leq t \leq t_{0}$, in the u-plane. Taking into account the expressions for g and Φ_{3} given in Proposition 5, it is not difficult to obtain that

$$
d=\frac{\lambda}{4} f_{1}\left(t_{0}, t_{1}\right)=\frac{\lambda}{4} \int_{t_{1}}^{t_{0}} \frac{\cos \left(\frac{t}{n}\right)}{v\left(t, t_{0}, t_{1}\right)} d t
$$

where $v\left(t, t_{0}, t_{1}\right)=\sqrt{\left(\sin \left(\frac{t_{0}}{2}\right)-\sin \left(\frac{t}{2}\right)\right)\left(\sin \left(\frac{t}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)\right)}$. Furthermore, we have that $X_{2}\left(R_{0}^{+}\right)=$ $X_{2}\left(R_{0}^{-}\right)$. Thus

$$
X_{2}\left(R_{0}^{+}\right)-X_{2}\left(R_{0}^{-}\right)=\operatorname{Re} \int_{\widehat{\delta}} \Phi_{2}=0
$$

Figure 11: The graphs of f_{1} and f_{2} on the points where they are positive.

A direct computation using again the expressions of g and Φ_{3} given in Proposition 5 gives

$$
\operatorname{Re} \int_{\widehat{\delta}} \Phi_{2}=\frac{\lambda}{4} f_{2}\left(t_{0}, t_{1}\right)=\frac{\lambda}{4} \int_{t_{1}}^{t_{0}} \frac{\sin \left(\frac{t}{n}\right)}{v\left(t, t_{0}, t_{1}\right)}
$$

¿From the definitions of the functions f_{1} and f_{2} we have

$$
\begin{equation*}
f_{1}\left(t_{0}, t_{1}\right)=f_{1}\left(-t_{1},-t_{0}\right) \quad, \quad f_{2}\left(t_{0}, t_{1}\right)=-f_{2}\left(-t_{1},-t_{0}\right) \tag{6}
\end{equation*}
$$

for all $\left(t_{0}, t_{1}\right) \in[0, \pi[\times]-\pi, 0]$. Observe that if $X: M \longrightarrow \mathbb{R}^{3}$ is the solution of Problem 1 given in Proposition 5 , then $\left(t_{0}, t_{1}\right)$ must satisfy

$$
f_{1}\left(t_{0}, t_{1}\right) \geq 0 \quad \text { and } \quad f_{2}\left(t_{0}, t_{1}\right)=0
$$

¿From the properties of f_{1} and f_{2} given in (6), it suffices to study the zeros of the functions f_{1} and f_{2} in the triangle given by

$$
T=\left\{\left(t_{0}, t_{1}\right) \in[0, \pi[\times]-\pi, 0] \mid t_{0} \leq-t_{1}\right\} .
$$

Let us denote by $L_{1}=\{0\} \times[-\pi, 0], L_{2}=\left\{\left(t_{0}, t_{1}\right) \in[0, \pi] \times[-\pi, 0] \mid t_{0}=-t_{1}\right\}$ and $L_{3}=[0, \pi] \times\{0\}$ the sides of the triangle T. We also define the sets

$$
C_{1}=\left\{\left(t_{0}, t_{1}\right) \in T \mid f_{1}\left(t_{0}, t_{1}\right)=0\right\}, C_{2}=\left\{\left(t_{0}, t_{1}\right) \in T \mid f_{2}\left(t_{0}, t_{1}\right)=0\right\}
$$

It is clear from (6) that $L_{2} \subset C_{2}$. Furthermore, by paragraph 3.2 .2 we deduce that C_{1} can only intersect C_{2} in points of L_{2}. For the sake of clarity, we divide the rest of the proof in several steps.

Step 1: The objective of the present step is to show that C_{i} is a set of analytic curves in T, for $i=1,2$.

Consider the meromorphic 1-form given by $\Phi=\frac{u^{\frac{2}{n}}}{v} d u$. Note that $-f_{2}$ and f_{1} are the real and imaginary part of $4 \int_{\widehat{\delta}} \Phi$. By deriving, one has

$$
\begin{equation*}
\mathcal{L}(\Phi)=\frac{\partial^{2} \Phi}{\partial t_{0}^{2}}+\frac{\partial^{2} \Phi}{\partial t_{1}^{2}}+a_{1}^{1} \frac{\partial \Phi}{\partial t_{0}}+a_{1}^{2} \frac{\partial \Phi}{\partial t_{1}}+a_{0}^{0} \Phi=d(F) \tag{7}
\end{equation*}
$$

where

$$
a_{1}^{1}=\frac{\cos \left(t_{0}\right)+\sin \left(\frac{t_{0}}{2}\right) \sin \left(\frac{t_{1}}{2}\right)}{2 \cos \left(\frac{t_{0}}{2}\right)\left(\sin \left(\frac{t_{0}}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)\right)}, a_{1}^{2}=-\frac{\cos \left(t_{1}\right)+\sin \left(\frac{t_{0}}{2}\right) \sin \left(\frac{t_{1}}{2}\right)}{2 \cos \left(\frac{t_{1}}{2}\right)\left(\sin \left(\frac{t_{0}}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)\right)}, a_{0}^{0}=\frac{4-n^{2}}{4 n^{2}}
$$

and F is the following meromorphic function:

$$
F=\frac{u^{\frac{2}{n}+1}\left(a u^{4}+b u^{3}+c u^{2}+d u+e\right)}{4 n v^{3}},
$$

where $a=2+n, b=-\mathrm{i}(4+n)\left(\sin \left(\frac{t_{0}}{2}\right)+\sin \left(\frac{t_{1}}{2}\right)\right), c=-4\left(1+2 \sin \left(\frac{t_{0}}{2}\right) \sin \left(\frac{t_{1}}{2}\right)\right), d=-\mathrm{i}(-4+$ $n)\left(\sin \left(\frac{t_{0}}{2}\right)+\sin \left(\frac{t_{1}}{2}\right)\right)$ and $e=2-n$.

Integrating by parts in (7), we have that f_{1} and f_{2} are zeroes of the second order elliptic operator given by \mathcal{L}. As C_{1} and C_{2} are the nodal sets of f_{1} and f_{2}, respectively, we can assert (see [2]) that C_{i} is a set of regular curves and the critical points on the nodal lines are isolated. Furthermore, when the nodal lines meet, they form an equiangular system. Moreover, by the Maximum Principle for elliptic operators, C_{i} cannot contain closed curves.

Step 2: The purpose of this step is to study the behaviour of the curves in C_{1} at the boundary of the triangle T. We shall see that $C_{1} \cap L_{1}=\left(0, \widetilde{t}_{1}\right), C_{1} \cap L_{2}=\left(\widetilde{t}_{0},-\widetilde{t}_{0}\right)$ and that there are no curves in C_{1} approaching L_{3}.

First, we shall prove that $\frac{\partial f_{1}}{\partial t_{1}}\left(t_{0}, t_{1}\right)>0$, for all $\left(t_{0}, t_{1}\right) \in T$. It is not difficult to see that

$$
\frac{\partial}{\partial t_{1}}\left(\frac{\cos \left(\frac{t}{n}\right)}{v\left(t, t_{0}, t_{1}\right)}\right)=\frac{\cos \left(\frac{t}{n}\right) \cos \left(\frac{t_{1}}{2}\right)-\cos \left(\frac{t}{2}\right) \cos \left(\frac{t_{1}}{n}\right)}{4 v\left(t, t_{0}, t_{1}\right)\left(\sin \left(\frac{t}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)\right)}-\frac{\cos \left(\frac{t_{1}}{n}\right)}{\sin \left(\frac{t_{0}}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)} d\left(\frac{\sin \left(\frac{t_{0}}{2}\right)-\sin \left(\frac{t}{2}\right)}{v\left(t, t_{0}, t_{1}\right)}\right) .
$$

Thus integrating by parts in the above equality we obtain

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial t_{1}}\left(t_{0}, t_{1}\right)=\int_{t_{1}}^{t_{0}} \frac{\cos \left(\frac{t}{n}\right) \cos \left(\frac{t_{1}}{2}\right)-\cos \left(\frac{t}{2}\right) \cos \left(\frac{t_{1}}{n}\right)}{4 v\left(t, t_{0}, t_{1}\right)\left(\sin \left(\frac{t}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)\right)} \tag{8}
\end{equation*}
$$

In order to prove $\frac{\partial f_{1}}{\partial t_{1}}\left(t_{0}, t_{1}\right)>0$ we shall see that the function

$$
h(t, n)=\cos \left(\frac{t}{n}\right) \cos \left(\frac{t_{1}}{2}\right)-\cos \left(\frac{t}{2}\right) \cos \left(\frac{t_{1}}{n}\right) \geq 0
$$

for $t \in\left[t_{1}, t_{0}\right]$. Since $h(-t, n)=h(t, n)$ and $t_{0} \leq-t_{1}$, it suffices to prove that $h(t, n) \geq 0$ for $t \in\left[t_{1}, 0\right]$. Moreover, taking into account $h\left(t_{1}, n\right)=0$, it is enough to see that $\frac{\partial h}{\partial t}(t, n)=$ $-\frac{1}{n} \sin \left(\frac{t}{n}\right) \cos \left(\frac{t_{1}}{2}\right)+\frac{1}{2} \sin \left(\frac{t}{2}\right) \cos \left(\frac{t_{1}}{n}\right) \geq 0$ for $t \in\left[t_{1}, 0\right]$.

Assume first $t_{1} \in\left[-\frac{n \pi}{2}, 0\right]$. As $n \in\left[\frac{2}{3}, 1\right]$ we have $0 \leq-\sin \left(\frac{t}{2}\right) \leq-\sin \left(\frac{t}{n}\right)$ and $0 \leq \cos \left(\frac{t_{1}}{n}\right) \leq$ $\cos \left(\frac{t_{1}}{2}\right)$. Hence $\frac{\partial h}{\partial t}(t, n) \geq 0$.

If $t_{1} \in\left[-n \pi,-\frac{n \pi}{2}\right]$, the study of the signs in the expression of $\frac{\partial h}{\partial t}$ gives directly that this partial is non negative.

Finally, we consider the case $t_{1} \in[-\pi,-n \pi]$. As in the former case, studying the signs in the expression of $\frac{\partial h}{\partial t}$ we obtain that $\frac{\partial h}{\partial t}(t, n) \geq 0$ for $t \in[-n \pi, 0]$. Otherwise, it is not difficult to see that $\frac{\partial^{2} h}{\partial n \partial t}(t, n) \geq 0$ for $t \in\left[t_{1},-n \pi\right]$. As $\frac{\partial h}{\partial t}\left(t, \frac{2}{3}\right)=2 \cos \left(\frac{t_{1}}{2}\right) \sin \left(\frac{t}{2}\right)\left(-2 \cos \left(\frac{t}{2}\right)^{2}+\left(\cos \left(\frac{t_{1}}{2}\right)^{2}-\cos \left(\frac{t}{2}\right)^{2}\right)\right) \geq$ 0 for $t \in\left[t_{1},-n \pi\right]$, we conclude that $\frac{\partial h}{\partial t}(t, n) \geq 0$.

Our next objective is to prove that $f_{1}(0,-n \pi)<0$. Indeed, making the change of variable $s=t+n \pi / 2$ one has:

$$
f_{1}(0,-n \pi)=\int_{\frac{-n \pi}{2}}^{\frac{n \pi}{2}} \frac{\sin \left(\frac{s}{n}\right)}{\sqrt{-\sin \left(\frac{-n \pi+2 s}{4}\right)\left(\sin \left(\frac{n \pi}{2}\right)+\sin \left(\frac{-n \pi+2 s}{4}\right)\right)}} d s=
$$

$=\int_{0}^{\frac{n \pi}{2}} \sin \left(\frac{s}{n}\right) \frac{\sqrt{\left(\sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{n \pi+2 s}{4}\right)\right) \sin \left(\frac{n \pi+2 s}{4}\right)}-\sqrt{\left(\sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{n \pi-2 s}{4}\right)\right) \sin \left(\frac{n \pi-2 s}{4}\right)}}{\sqrt{\left(\sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{n \pi-2 s}{4}\right)\right) \sin \left(\frac{n \pi-2 s}{4}\right)} \sqrt{\left(\sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{n \pi+2 s}{4}\right)\right) \sin \left(\frac{n \pi+2 s}{4}\right)}} d s$.
An easy computation gives us that the numerator in the last integral is always non positive, and then $f_{1}(0,-n \pi)<0$. ¿From the definition of f_{1} we also have $f_{1}\left(0,-\frac{n \pi}{2}\right)>0$. Then, taking into account that $\frac{\partial f_{1}}{\partial t_{1}}\left(0, t_{1}\right)>0$, we have that there exists a unique $\left.\tilde{t}_{1} \in\right]-n \pi,-\frac{n \pi}{2}[$ such that $f_{1}\left(0, \widetilde{t}_{1}\right)=0$.

We now consider the function $\tilde{f}_{1}\left(t_{0}\right)=f_{1}\left(t_{0},-t_{0}\right)$, that is the function f_{1} restricted to the side L_{2}. Taking into account (6) one has

$$
\begin{equation*}
\frac{\partial \widetilde{f}_{1}}{\partial t_{0}}\left(t_{0}\right)=\frac{\partial f_{1}}{\partial t_{0}}\left(t_{0},-t_{0}\right)-\frac{\partial f_{1}}{\partial t_{1}}\left(t_{0},-t_{0}\right)=-2 \frac{\partial f_{1}}{\partial t_{1}}\left(t_{0},-t_{0}\right)<0 . \tag{9}
\end{equation*}
$$

According to the definition of f_{1} we have $\widetilde{f}_{1}\left(\frac{n \pi}{2}\right)=f_{1}\left(\frac{n \pi}{2},-\frac{n \pi}{2}\right)>0$. Our next purpose is to see that $\widetilde{f}_{1}(n \pi)=f_{1}(n \pi,-n \pi)<0$. Note that

$$
\tilde{f}_{1}(n \pi)=2 \sqrt{2} \int_{-n \pi}^{0} \frac{\cos \left(\frac{t}{n}\right)}{\sqrt{\cos (t)-\cos (n \pi)}} .
$$

A direct computation gives

$$
\tilde{f}_{1}(n \pi)=2 \sqrt{2} \int_{0}^{\frac{n \pi}{2}} \frac{\sin \left(\frac{s}{n}\right)\left(\sqrt{\cos \left(s+\frac{n \pi}{2}\right)-\cos (n \pi)}-\sqrt{\cos \left(s-\frac{n \pi}{2}\right)-\cos (n \pi)}\right)}{\sqrt{\cos \left(s+\frac{n \pi}{2}\right)-\cos (n \pi)} \sqrt{\cos \left(s-\frac{n \pi}{2}\right)-\cos (n \pi)}} .
$$

It is not hard to see that the numerator in the above integrand is non positive, in particular $\tilde{f}_{1}(n \pi)<0$.

Therefore there exists $\left.\widetilde{t}_{0} \in\right] \frac{n \pi}{2}, n \pi\left[\right.$ such that $f_{1}\left(\widetilde{t}_{0},-\widetilde{t}_{0}\right)=0, f_{1}$ is positive in $\left\{\left(t_{0},-t_{0}\right) \in T \mid\right.$ $\left.0<t_{0}<\widetilde{t}_{0}\right\}$ and negative in $\left\{\left(t_{0},-t_{0}\right) \in T \mid \widetilde{t}_{0}<t_{0}<\pi\right\}$.

Now, we prove that $\lim _{t_{1} \rightarrow-\pi} f_{1}\left(t_{0}, t_{1}\right)=-\infty$. In order to do this we consider a new set of parameters

$$
\begin{equation*}
s\left(t_{0}, t_{1}\right)=\sin \left(\frac{t_{0}}{2}\right) \quad, \quad r\left(t_{0}, t_{1}\right)=\sin \left(\frac{t_{1}}{2}\right) . \tag{10}
\end{equation*}
$$

Note that $r\left(t_{0},-\pi\right)=-1$. Our next objective is to see that $\lim _{r \rightarrow-1} f_{1}(s, r)=-\infty$. In order to do this, we derive again the 1 -form Φ defined in the former step and we obtain the following equality

$$
\begin{equation*}
\frac{\partial^{4} \Phi}{\partial r^{4}}+b_{3} \frac{\partial^{3} \Phi}{\partial r^{3}}+b_{2} \frac{\partial^{2} \Phi}{\partial r^{2}}+b_{1} \frac{\partial \Phi}{\partial r}+b_{0} \Phi=d(\varphi), \tag{11}
\end{equation*}
$$

where

$$
\begin{array}{ll}
b_{3}=\frac{2\left(5 r^{3}+2 s-8 r^{2} s+r\left(-2+3 s^{2}\right)\right)}{\left(-1+r^{2}\right)(r-s)^{2}} & , \quad b_{2}=\frac{-16(r-s)^{2}+n^{2}\left(-8+99 r^{2}-116 r s+25 s^{2}\right)}{4 n^{2}\left(-1+r^{2}\right)(r-s)^{2}}, \\
b_{1}=\frac{\left(-48+57 n^{2}\right) r+\left(48-39 n^{2}\right) s}{4 n^{2}\left(-1+r^{2}\right)(r-s)^{2}} & , \quad b_{0}=\frac{3\left(n^{2}-4\right)}{4 n^{2}\left(-1+r^{2}\right)(r-s)^{2}}
\end{array}
$$

and φ is the following meromorphic function:

$$
\varphi(u)=\frac{u^{\frac{2}{n}+1}\left(a^{\prime} u^{4}+b^{\prime} u^{3}+c^{\prime} u^{2}+d^{\prime} u+e^{\prime}\right)\left(u^{2}-1-2 \operatorname{si} u\right)^{\frac{1}{2}}}{4 n^{2}\left(-1+r^{2}\right)(r-s)^{2}\left(u^{2}-1-2 \text { riu } u\right)^{\frac{7}{2}}},
$$

with $a^{\prime}=-3 n(2+n), b^{\prime}=-3 \operatorname{in} n((-4+3 n) r-(4+5 n) s), c^{\prime}=12 n(1+2 r s), d^{\prime}=-3 \mathrm{in} n((4+3 n) r+$ $(4-5 n) s)$ and $e^{\prime}=3 n(n-2)$. Integrating by parts in (11), we have that f_{1} is a solution of the fourth order ordinary differential equation given by

$$
\begin{equation*}
\frac{\partial^{4} f_{1}}{\partial r^{4}}+b_{3} \frac{\partial^{3} f_{1}}{\partial r^{3}}+b_{2} \frac{\partial^{2} f_{1}}{\partial r^{2}}+b_{1} \frac{\partial f_{1}}{\partial r}+b_{0} f_{1}=0 \tag{12}
\end{equation*}
$$

Observe that this equation presents a regular singular point in $r=-1$ and then we can use the Frobenius method to compute the limit of f_{1} when r tends to -1 (see $\S 4.8$ in [3]). Taking into account the coefficients of the equation (12) and the aforementioned method, we deduce that

$$
f_{1}(s, r)=c_{1} \log (1+r) \phi_{1}(s, r)+c_{2} \phi_{2}(s, r)+c_{3}(r+1) \phi_{3}(s, r)+c_{4}(r+1)^{2} \phi_{4}(s, r),
$$

where $c_{i} \in \mathbb{R}, \phi_{1}(s,-1) \neq 0$ and ϕ_{i} are analytic at the points $(s,-1), i \in\{1,2,3,4\}$. A direct computation using (8) and (10) proves that $\lim _{r \rightarrow-1} \frac{\partial f_{1}}{\partial r}=+\infty$. Thus $c_{1} \neq 0$ and $\lim _{r \rightarrow-1} f_{1}(s, r)=-\infty$.

Step 3: With regard to C_{2}, we shall check that $C_{2} \cap\left\{\left(0, t_{1}\right) \in T \mid \widetilde{t}_{1} \leq t_{1}<0\right\}=\emptyset$ and that if $\left(\widehat{t_{0}},-\widehat{t}_{0}\right)$ is a critical point of C_{2} in L_{2}, then $\widehat{t_{0}}>\widetilde{t}_{0}$.

Clearly, from the definition of f_{2} one has $f_{2}\left(0, t_{1}\right)<0$ for $t_{1} \in[-n \pi, 0[$. Thus we obtain the first assertion in the present step.

In order to prove the second one we need an apropriate expression for $\frac{\partial f_{2}}{\partial t_{0}}$. Observe that

$$
\frac{\partial \Phi}{\partial t_{0}}=u^{2 / n} \tau-\frac{2 a}{n} u^{2 / n-1} \psi d u+a d\left(u^{2 / n} \psi\right)
$$

where

$$
\tau=\frac{-\mathrm{i}\left(-1+\mathrm{e}^{\mathrm{i} \frac{t_{0}}{2}} u\right)}{4\left(1+\mathrm{e}^{\mathrm{i} \frac{t_{0}}{2}} u\right)} \frac{d u}{v}, \quad \psi=\frac{\left(u+\mathrm{e}^{-\mathrm{i} \frac{t_{1}}{2}}\right)\left(u-\mathrm{e}^{\mathrm{i} \frac{t_{1}}{2}}\right)}{v}, \quad a=\frac{1}{4\left(\sin \left(\frac{t_{1}}{2}\right)-\sin \left(\frac{t_{0}}{2}\right)\right)} .
$$

Integrating by parts once again in the above equality and computing the real part, we get:

$$
\begin{array}{r}
\frac{\partial f_{2}}{\partial t_{0}}\left(t_{0}, t_{1}\right)=\int_{t_{1}}^{t_{0}}\left(\frac{\cos \left(\frac{t}{n}\right) \sin \left(\frac{t}{2}\right)}{n v\left(t, t_{0}, t_{1}\right)\left(\sin \left(\frac{t_{0}}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)\right)}+\frac{\sin \left(\frac{t}{n}\right) \tan \left(\frac{t+t_{0}}{4}\right)}{4 v\left(t, t_{0}, t_{1}\right)}\right) d t- \\
\frac{\sin \left(\frac{t_{1}}{2}\right)}{n\left(\sin \left(\frac{t_{0}}{2}\right)-\sin \left(\frac{t_{1}}{2}\right)\right)} f_{1}\left(t_{0}, t_{1}\right)
\end{array}
$$

In particular, if $t_{1}=-t_{0}$ one has that the integral of the first summand vanishes, and so

$$
\frac{\partial f_{2}}{\partial t_{0}}\left(t_{0},-t_{0}\right)=\int_{-t_{0}}^{t_{0}} \frac{\sin \left(\frac{t}{n}\right) \tan \left(\frac{t+t_{0}}{4}\right)}{4 v\left(t, t_{0}, t_{1}\right)} d t+\frac{1}{2 n} f_{1}\left(t_{0},-t_{0}\right)
$$

Taking into account that $\tilde{t}_{0}<n \pi$, it is not difficult to see that $\int_{-t_{0}}^{t_{0}} \frac{\sin \left(\frac{t}{n}\right) \tan \left(\frac{t+t_{0}}{4}\right)}{4 v\left(t, t_{0}, t_{1}\right)} d t>0$, for $0<t_{0} \leq \widetilde{t}_{0}$, and so $\frac{\partial f_{2}}{\partial t_{0}}\left(t_{0},-t_{0}\right)$ is positive in the points where the function f_{1} is non negative. This concludes the assertion.

By Steps 1, 2 and 3 we deduce that there are no points $\left(t_{0}, t_{1}\right)$ in T with $f_{1}\left(t_{0}, t_{1}\right) \geq 0$ and $f_{2}\left(t_{0}, t_{1}\right)=0$ apart from the points $\left\{\left(t_{0},-t_{0}\right) \mid 0 \leq t_{0} \leq \widetilde{t}_{0}\right\}$.

Corollary $7 M$ is invariant under the antiholomorphic involution $S_{v}(u)=\bar{u}$ which corresponds to the reflection in the plane $\left\{x_{1}=0\right\}$.

4 The existence results

In the former section we have seen that if $X: M \longrightarrow \mathbb{R}^{3}$ is a solution of Problem 1 satisfying $X(M) \subset\left(\left(S \backslash \mathcal{E}\left(\Gamma_{\theta d}\right)\right) \cup \Gamma_{\theta d}\right)$ then M is biholomorphic to $\mathcal{N}^{\prime}=\overline{\mathcal{U}_{t_{0}}^{-t_{0}}}$ and their Weierstrass data are given by

$$
g=\mathrm{i} u^{\frac{2}{n}}, \quad \Phi_{3}=\lambda \frac{d u}{v}, \quad v=\sqrt{u^{4}-2 u^{2} \cos \left(t_{0}\right)+1}, \quad n \in\left[\frac{2}{3}, 1\right] .
$$

At this point, we observe that, up an easy conformal transformation, the above Weierstrass data for $n \in[1,2[$ correspond to a López-Martín example, it is to say, solutions of Problem 1 verifying $X(M) \subset \mathcal{E}\left(\Gamma_{\theta d}\right)$. For the existence of this examples we refer the reader to [9].

Moreover, if $n=2$ then the surface is a Jenkins-Serrin graph (see Figure 4). Extension by Schwarz reflection of these surfaces gives embedded doubly periodic examples with two orthogonal planes of symmetry between adjacent saddle towers. These examples were studied by H. Karcher in [6].

Therefore, to complete the existence part of the Main Theorem it suffices to prove that indeed for $n \in\left[\frac{2}{3}, 1\right]$ the above conformal representation leads to a solution of Problem 1 which lies in the exterior of the convex hull of its boundary and this is the purpose of the present section.

In what follows we denote $M=\mathcal{N}^{\prime}$ and $\gamma_{i}^{+}=u^{-1}\left(s_{i}^{+}\right), \gamma_{i}^{-}=u^{-1}\left(s_{i}^{-}\right), i=0,1,2$, where s_{i}^{+}and s_{i}^{-}are those defined in Sect. 3 corresponding to $t_{1}=-t_{0}$ for $i=0,1,2$ (see Fig. 12). Moreover, we label $\gamma^{+}=\cup_{i=0}^{2} \gamma_{i}^{+}$and $\gamma^{-}=\cup_{i=0}^{2} \gamma_{i}^{-}$. We use the notation $\ell_{i}^{ \pm}$introduced in Sect. 1 for the half-lines in the polygonal $\Gamma_{\theta d}$. Furthermore, recall that the set of Cartesian coordinates was introduced at the beginning of Sect. 3.

Now, we consider the curve γ_{0}^{+}which consists of two copies, δ_{1}^{+}and δ_{2}^{+}, of s_{0}^{+}. We can assume that $\delta_{1}^{+}(t)$ and $\delta_{2}^{+}(t)$ are the two lifts to M of the curve $\mathrm{e}^{\mathrm{i} \frac{t}{2}}, t \in\left[t_{0}, \pi\right]$, in the u-plane, satisfying $\delta_{1}^{+}(\pi) \in \gamma_{1}^{+}$and $\delta_{2}^{+}(\pi) \in \gamma_{2}^{+}$, respectively. Define $\left.\widetilde{h}:\right] 0, \pi[\longrightarrow \mathbb{R}$ as

$$
\widetilde{h}\left(t_{0}\right)=2 \operatorname{Re}\left(\int_{\delta_{2}^{+}} \tau\right)
$$

where $\tau=\frac{d u}{v}$. A direct computation gives

$$
\widetilde{h}\left(t_{0}\right)=\frac{\sqrt{2}}{2} \int_{t_{0}}^{\pi} \frac{d t}{\sqrt{\cos \left(t_{0}\right)-\cos (t)}}>0
$$

As we are assuming that the immersion $X: M \longrightarrow \mathbb{R}^{3}$ is normalized so that the distance between the planes π_{1} and π_{2} is 1 , we have $\lambda=\frac{1}{h\left(t_{0}\right)}$. As usual, we define

$$
\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)=\frac{1}{2}\left(-\mathrm{i}\left(u^{-\frac{2}{n}}+u^{\frac{2}{n}}\right), u^{-\frac{2}{n}}-u^{\frac{2}{n}}, 1\right) \Phi_{3} .
$$

Since M is homeomorphic to a closed disc minus two boundary points, we have that $X: M \longrightarrow \mathbb{R}^{3}$ given by $X(p)=\int_{p_{0}}^{p}\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)$ is a well-defined conformal minimal immersion verifying condition $i)$ in the statement of Problem 1. Let us see that $\left(M, g, \Phi_{3}\right)$ fulfill also the other conditions.

Denote S_{h}, S_{v} the antiholomorphic transformations on M given by

$$
S_{h}((u, v))=\left(1 / \bar{u}, \bar{v} / \bar{u}^{2}\right), \quad S_{v}((u, v))=(\bar{u}, \bar{v}) .
$$

Observe that the point $P_{0}=\left(1,2 \sin \left(\frac{t_{0}}{2}\right)\right)$ is invariant under S_{h} and S_{v}. Moreover, we have

$$
\begin{align*}
g \circ S_{h} & =1 / \bar{g}, \quad g \circ S_{v}=-\bar{g} \\
S_{h}^{*}\left(\phi_{3}\right) & =-\overline{\phi_{3}}, \quad S_{v}^{*}\left(\phi_{3}\right)=\overline{\phi_{3}} . \tag{13}
\end{align*}
$$

Figure 12: a) The domain $u(M)$. b) The surface M.

Hence elementary arguments imply that S_{h} (resp. S_{v}) induces on $X(M)$ a symmetry with respect to the plane $\left\{x_{3}=0\right\}$ (resp. $\left\{x_{1}=0\right\}$).

First, notice that

$$
\begin{gather*}
S_{v}\left(\gamma_{i}^{+}\right)=\gamma_{i}^{-}, i=0,1,2 \tag{14}\\
S_{h}\left(\gamma_{1}^{+}\right)=\gamma_{2}^{+}, S_{h}\left(\gamma_{1}^{-}\right)=\gamma_{2}^{-}, S_{h}\left(\gamma_{0}^{+}\right)=\gamma_{0}^{+}, S_{h}\left(\gamma_{0}^{-}\right)=\gamma_{0}^{-} \tag{15}
\end{gather*}
$$

Let us check that conditions on the boundary are satisfied. Actually, we prove the following.
Lemma 6 The maps $\left.X\right|_{\gamma^{+}},\left.X\right|_{\gamma^{-}}$are injective, $X\left(\gamma_{i}^{+}\right)=\ell_{i}^{+}$and $X\left(\gamma_{i}^{-}\right)=\ell_{i}^{-}$, for $i=0,1,2$, it is to say, $X(\partial(M))=\Gamma_{\theta d}$ for $\theta=(3 n-2) \pi / n$.

Proof: On γ_{1}^{+}, put $\left.\left.u=\mathrm{i} t, t \in\right] 0,1\right]$. Hence, we have

$$
\begin{gathered}
\Phi_{1}(t)=-\frac{\mathrm{i}}{2}\left(\left(t^{-\frac{2}{n}}+t^{\frac{2}{n}}\right) \cos (\pi / n)+\mathrm{i}\left(-t^{-\frac{2}{n}}+t^{\frac{2}{n}}\right) \sin (\pi / n)\right) \Phi_{3}(t) \\
\Phi_{2}(t)=\frac{1}{2}\left(\left(t^{-\frac{2}{n}}-t^{\frac{2}{n}}\right) \cos (\pi / n)-\mathrm{i}\left(t^{-\frac{2}{n}}+t^{\frac{2}{n}}\right) \sin (\pi / n)\right) \Phi_{3}(t) \\
\Phi_{3}(t)=\mathrm{i} \lambda \frac{d t}{\sqrt{t^{4}+2 t^{2} \cos \left(t_{0}\right)+1}} .
\end{gathered}
$$

These equations imply that $X\left(\gamma_{1}^{+}\right)$is a half-line contained in a straight line $\left\{x_{3}=k, x_{2}-\right.$ $\left.\tan (\pi / n) x_{1}=k^{\prime}\right\}$, for suitable $k, k^{\prime} \in \mathbb{R}$. Note that this straight line meets the straight line $\left\{x_{3}=k, x_{1}=0\right\}$ at an angle of $\frac{(3 n-2) \pi}{2 n}$. Notice also that $\operatorname{Re}\left(\phi_{1}(t) / d t\right)>0$, and so $\left.X\right|_{\gamma_{1}^{+}}$is injective.

Moreover, it is clear that $\left.X_{1}\right|_{\gamma_{1}^{+}}$diverges to $+\infty$. If $n<1$, then $\left.X_{2}\right|_{\gamma_{1}^{+}}$diverges to $+\infty$, and $n=1$ implies that $\left.X_{2}\right|_{\gamma_{1}^{+}}$is constant.

Let $\delta(t)$ be the lift to M of the curve $\mathrm{e}^{\mathrm{i} \frac{t}{2}}, t \in\left[0, t_{0}\right]$, in the u-plane. Observe $\delta(0)=P_{0}$ and $\delta\left(t_{0}\right)=\delta_{1}^{+}\left(t_{0}\right)=\delta_{2}^{+}\left(t_{0}\right)$. Taking into account our determination of the branch of v, elementary analytic continuation argument gives $\operatorname{Re}\left(\Phi_{i}\left(\frac{d \delta_{j}}{d t}\right)\right)=0, i, j=1,2$, and so $X\left(\gamma_{0}^{+}\right)$is a vertical segment.

Furthermore, note that $\operatorname{Re}\left(\Phi_{3}\left(\frac{d \delta}{d t}\right)\right)=0, \Phi_{3}\left(\frac{d \delta_{1}}{d t}\right) \in \mathbb{R}^{-}, \Phi_{3}\left(\frac{d \delta_{2}}{d t}\right) \in \mathbb{R}^{+}$, and this implies that $k>0$ and $\left.X\right|_{\gamma_{0}^{+}}$is injective.

Applying a suitable translation we can assume $X_{1}\left(\delta_{1}^{+}(\pi)\right)=-X_{1}\left(S_{v}\left(\delta_{1}^{+}(\pi)\right)\right)$ and $X_{2}\left(\delta_{1}^{+}(\pi)\right)=$ 0 . Taking into account the symmetries induced by S_{h} and $S_{v},(14)$ and (15), we obtain $X\left(\gamma_{i}^{ \pm}\right)=\ell_{i}^{ \pm}$ for $i=0,1,2$.

Taking into account Lemma 6, the expression of the oriented distance $d:] 0, \pi\left[\longrightarrow \mathbb{R}\right.$ between ℓ_{0}^{+} and ℓ_{0}^{-}is

$$
d\left(t_{0}\right)=\operatorname{Re}\left(\int_{\widehat{\delta}} \Phi_{1}\right)
$$

where now $\widehat{\delta}$ is the lift of the oriented curves $\mathrm{e}^{\mathrm{i} \frac{t}{2}}, t \in\left[-t_{0}, t_{0}\right]$, in the u-plane. Since $\left(S_{h}\right)_{*}(\widehat{\delta})=\widehat{\delta}$, $\left(S_{v}\right)_{*}(\widehat{\delta})=-\widehat{\delta}$ and taking into account (13) we deduce that

$$
\int_{\widehat{\delta}} \Phi_{1}=\overline{\int_{\widehat{\delta}} \Phi_{1}}=\frac{\lambda}{4} \widetilde{f}_{1}\left(t_{0}\right)
$$

where, as in Sect. 3, $\Phi=\frac{u^{\frac{2}{n}}}{v} d u$ and $\widetilde{f}_{1}\left(t_{0}\right)=f_{1}\left(t_{0},-t_{0}\right)$. Hence we have

$$
\begin{equation*}
d\left(t_{0}\right)=\frac{1}{4} \frac{\widetilde{f}_{1}\left(t_{0}\right)}{\widetilde{h}\left(t_{0}\right)} . \tag{16}
\end{equation*}
$$

A thoughtful study of the function d will be very useful in order to prove the rest of the conditions on the immersion $X: M \longrightarrow \mathbb{R}^{3}$. In this context we shall see:

Lemma 7 The function $d:] 0, \pi[\rightarrow \mathbb{R}$ satisfies:

1. It vanishes at only one point $\left.\widetilde{t}_{0} \in\right] \frac{n \pi}{2}$, $n \pi[$. Furthermore, d is positive in $] 0, \widetilde{t}_{0}[$ and negative in $] \widetilde{t}_{0}, \pi[$.
2. $\lim _{t_{0} \rightarrow 0} d\left(t_{0}\right)=0$. In particular, d is bounded in $] 0, \widetilde{t}_{0}[$.
3. It has only a critical point $\left.t_{0}^{\prime} \in\right] 0, \widetilde{t}_{0}\left[\right.$ which is a maximum. In particular, $\sharp\left[d^{-1}(\{x\})\right]=$ $2, \forall x \in] 0, d\left(\widetilde{t}_{0}\right)[$.

Proof: We had seen (see Step 2 in Proposition 6) that there exists a unique $\left.\widetilde{t}_{0} \in\right] \frac{n \pi}{2}, n \pi[$ such that $\widetilde{f}_{1}\left(\widetilde{t}_{0}\right)=0, \widetilde{f}_{1}\left(t_{0}\right)>0$ in $] 0, \widetilde{t}_{0}\left[\right.$ and $\widetilde{f}_{1}\left(t_{0}\right)<0$ in $] \widetilde{t}_{0}, \pi[$. Note that this proves the first assertion.

In order to prove the second statement, observe that

$$
\begin{array}{r}
\lim _{t_{0} \rightarrow 0} \widetilde{f}_{1}\left(t_{0}\right)=\lim _{t_{0} \rightarrow 0} \sqrt{2} \int_{-t_{0}}^{t_{0}} \frac{\cos \left(\frac{t}{n}\right)}{\sqrt{\cos (t)-\cos \left(t_{0}\right)}} d t=\lim _{t_{0} \rightarrow 0} \sqrt{2} \int_{-1}^{1} \frac{t_{0} \cos \left(\frac{t_{0} s}{n}\right)}{\sqrt{\cos \left(t_{0} s\right)-\cos \left(t_{0}\right)}} d s= \\
2 \int_{-1}^{1} \frac{d s}{\sqrt{1-s^{2}}}=2 \pi \tag{17}
\end{array}
$$

Moreover, it is clear that $0 \leq \sqrt{\cos \left(t_{0}\right)-\cos (t)} \leq \sqrt{1-\cos (t)}, t \in\left[t_{0}, \pi\right]$, then

$$
\widetilde{h}\left(t_{0}\right) \geq \frac{\sqrt{2}}{2} \int_{t_{0}}^{\pi} \frac{d t}{\sqrt{1-\cos (t)}}=-\log \left[\tan \left(\frac{t_{0}}{4}\right)\right]
$$

and so

$$
\begin{equation*}
\lim _{t_{0} \rightarrow 0} \widetilde{h}\left(t_{0}\right) \geq \lim _{t_{0} \rightarrow 0}\left(-\log \left[\tan \left(\frac{t_{0}}{4}\right)\right]\right)=+\infty \tag{18}
\end{equation*}
$$

$\underset{\sim}{\text { Both (17) and (18) give Assertion 2. Concerning Assertion 3, we shall prove that the functions }}$ $\widetilde{f}_{1}, \widetilde{h}$ satisfy the following differential equations:

$$
\begin{align*}
\widetilde{f}_{1}^{\prime \prime}\left(t_{0}\right)+\cot \left(t_{0}\right) \widetilde{f}_{1}^{\prime}\left(t_{0}\right)+\frac{4-n^{2}}{4 n^{2}} \widetilde{f}_{1}\left(t_{0}\right) & =0 \tag{19}\\
\widetilde{h}^{\prime \prime}\left(t_{0}\right)+\cot \left(t_{0}\right) \widetilde{h}^{\prime}\left(t_{0}\right)-\frac{1}{4} \widetilde{h}\left(t_{0}\right) & =0 \tag{20}
\end{align*}
$$

The above ordinary differential equations can be obtained from the following equalities integrating by parts:

$$
\begin{aligned}
\frac{\partial^{2} \Phi}{\partial t_{0}^{2}}+\cot \left(t_{0}\right) \frac{\partial \Phi}{\partial t_{0}}+\frac{4-n^{2}}{4 n^{2}} \Phi & =d(\widetilde{G}) \\
\frac{\partial^{2} \tau}{\partial t_{0}^{2}}+\cot \left(t_{0}\right) \frac{\partial \tau}{\partial t_{0}}-\frac{1}{4} \tau & =d(\widetilde{H})
\end{aligned}
$$

where $\widetilde{G}(u)=\frac{u^{\frac{2+n}{n}}\left(n\left(-1+u^{4}\right)+2\left(1+u^{4}\right)-4 u^{2} \cos \left(t_{0}\right)\right)}{4 n\left(1+u^{4}-2 u^{2} \cos \left(t_{0}\right)\right)^{\frac{3}{2}}}$ and $\widetilde{H}(u)=\frac{u\left(-1+u^{4}\right)}{4\left(1+u^{4}-2 u^{2} \cos \left(t_{0}\right)\right)^{\frac{3}{2}}}$.
Let t_{0}^{\prime} a critical point of d in $] 0, \widetilde{t}_{0}\left[\right.$. This implies that $d^{\prime}\left(t_{0}^{\prime}\right)=0$ and so $\left(\widetilde{f}_{1}^{\prime} \widetilde{h}-\widetilde{f}_{1} \widetilde{h}^{\prime}\right)\left(t_{0}^{\prime}\right)=0$. Therefore we have the following expression for the second derivative of d at the point t_{0}^{\prime} :

$$
d^{\prime \prime}\left(t_{0}^{\prime}\right)=\frac{1}{4} \frac{\widetilde{f}_{1}^{\prime \prime} \widetilde{h}-\widetilde{f}_{1} \widetilde{h}^{\prime \prime}}{\widetilde{h}^{2}}\left(t_{0}^{\prime}\right)
$$

Hence, using (19) and (20), we obtain that $d^{\prime \prime}\left(t_{0}^{\prime}\right)=-\cot \left(t_{0}\right) d^{\prime}\left(t_{0}^{\prime}\right)-\frac{1}{n^{2}} d\left(t_{0}^{\prime}\right)<0$. Consequently, there exists only one critical point of d, t_{0}^{\prime}, in $] 0, \widetilde{t}_{0}\left[\right.$ and it is a maximum. Obviously, $d\left(t_{0}^{\prime}\right)=$ Maximum $\left\{d\left(t_{0}\right) \mid t_{0} \in\right] 0, \widetilde{t}_{0}[\}$.

Hence, it is clear that $\left.\sharp\left[d^{-1}(\{x\})\right] \geq 2, \forall x \in\right] 0, d\left(t_{0}^{\prime}\right)\left[\right.$. If $\sharp\left[d^{-1}(\{x\})\right]>2$, for some $\left.x \in\right] 0, d\left(t_{0}^{\prime}\right)[$, then it implies the existence of a local minimum of d in $] 0, \widetilde{t}_{0}[$, which is absurd. This concludes the proof.

Remark 2 For each $n \in\left[\frac{2}{3}, 1\right]$, we denote either by d_{n} or by d_{θ}^{\prime} the maximum of the distance function $\left.\left.d\left(t_{0}\right), t_{0} \in\right] 0, \widetilde{t}_{0}\right]$. Observe that the function $d\left(n, t_{0}\right)$ is a differentiable function on $\left.\left[\frac{2}{3}, 1\right] \times\right] 0, \pi[$. Let us check that $\frac{\partial d}{\partial n}>0$.

Taking into account that $\widetilde{t_{0}}<n \pi$ and the definition of the function \widetilde{f}_{1}, we obtain

$$
\frac{\partial d}{\partial n}=\frac{1}{4 \widetilde{h}} \frac{\partial \widetilde{f}_{1}}{\partial n}=\frac{\sqrt{2}}{4 n^{2} \widetilde{h}} \int_{-t_{0}}^{t_{0}} \frac{t \sin \left(\frac{t}{n}\right)}{\sqrt{\cos (t)-\cos \left(t_{0}\right)}}>0
$$

Then $n \rightarrow d_{n}$ is a continuous increasing function in $\left[\frac{2}{3}, 1\right]$, equivalently the function $\theta \rightarrow d_{\theta}^{\prime}$ is increasing in $[0, \pi]$. Therefore, $d_{\theta_{0}}^{\prime}<d_{\theta_{1}}^{\prime}$ for $0 \leq \theta_{0}<\theta_{1} \leq \pi$.

At this point, we recall that the distance function for the examples which lies in the convex hull of their boundary coincides with our function d for $n \in[1,2]$ (see [9]). As $\frac{\partial d}{\partial n}>0$ we have that $d_{n_{0}}<d_{n_{1}}$ for $\frac{2}{3} \leq n_{0}<n_{1} \leq 2$. Hence, we infer that $d_{\theta}^{\prime}<d_{\theta}$, for $\theta \in[0, \pi]$, where d_{θ} is the maximum of the distance function for the López-Martín examples (see Remark 4 in [9]).

Next lemma is devoted to study some topological and algebraic properties of the immersion $X: M \longrightarrow \mathbb{R}^{3}$.
Lemma 8 The minimal immersion $X: M \rightarrow \mathbb{R}^{3}$ is proper and $X(M)$ is contained in the slab S.

Proof: Firstly, we are going to study the behaviour of X around $E_{1}=(0,1)=u^{-1}(0)$. One has that

$$
\Phi_{3}=\lambda\left(1+u^{2} A(u)\right) d u
$$

where $A(u)$ is a holomorphic function on a neighbourhood of E_{1} in M. So

$$
\frac{\Phi_{3}}{g}=-\mathrm{i} u^{-\frac{2}{n}} \Phi_{3}=-\mathrm{i} \lambda\left(u^{-\frac{2}{n}}+u^{-\frac{2}{n}+2} A(u)\right) d u, \quad g \Phi_{3}=\mathrm{i} u^{\frac{2}{n}} \Phi_{3}=\mathrm{i} \lambda\left(u^{\frac{2}{n}}+u^{\frac{2}{n}+2} A(u)\right) d u
$$

We define

$$
\begin{aligned}
F(z) & =\frac{1}{2} \int \frac{\Phi_{3}}{g}=\mathrm{i} \frac{n \lambda}{2(2-n)} u^{-\frac{2}{n}+1}\left(1+u F_{1}(u)\right) \\
G(z) & =\frac{1}{2} \int g \Phi_{3}=\mathrm{i} \frac{n \lambda}{2(2+n)} u^{\frac{2}{n}+1}\left(1+u^{2} G_{1}(u)\right) \\
H(z) & =\int \Phi_{3}=\lambda u\left(1+u^{2} H_{1}(u)\right)
\end{aligned}
$$

where $F_{1}(u), G_{1}(u)$ and $H_{1}(u)$ are holomorphic functions on a neigbourhood of E_{1} in M. Then, X can be expressed locally around E_{1} as

$$
\begin{gather*}
X(z)=\left(X_{1}(z), X_{2}(z), X_{3}(z)\right)=(\overline{F(z)}-G(z), \operatorname{Re}(H(z)))= \\
\left(-\mathrm{i} \frac{n \lambda}{2(2-n)} \bar{u}^{1-\frac{2}{n}}\left(1+O_{1}(u)+\mathrm{i} O_{2}(u)\right), O_{3}(u)\right) \tag{21}
\end{gather*}
$$

where $O_{i}(u) /|u|$ is a bounded function in a neighbourhood of $E_{1}, i=1,2,3$. Equation (21) implies that for any sequence $\left\{p_{m}\right\}$ in M converging E_{1}, the sequence $\left\{X\left(p_{m}\right)\right\}$ diverges in \mathbb{R}^{3}. Taking this and the symmetry S_{h} into account, the same occurs for sequences converging to $E_{2}=(\infty, \infty)=u^{-1}(\infty)$. Hence, we obtain that X is proper.

On the other hand, (21) yields that the limits $\lim _{p \rightarrow E_{1}} X_{3}(p)$ and $\lim _{p \rightarrow E_{2}} X_{3}(p)$ exist. From Lemma 6 we obtain

$$
\begin{equation*}
\lim _{p \rightarrow E_{1}} X_{3}(p)=\frac{1}{2}, \quad \lim _{p \rightarrow E_{2}} X_{3}(p)=-\frac{1}{2} \tag{22}
\end{equation*}
$$

As $\Gamma_{\theta d} \subset S$, using (22) one can deduce (see Lemma 2.1 in [11]) that $X(M)$ is contained in this slab.

Let us consider $M_{1}=\{(u, v) \in M| | u \mid \leq 1\}$ and $M_{2}=\{(u, v) \in M| | u \mid \geq 1\}$. We recall that we had denoted by $\widehat{\delta}$ and δ_{i}^{+}the lifts to M of the curves of $u(M)$ given by ${ }^{\mathrm{i} \frac{t}{2}}$, for $t \in\left[-t_{0}, t_{0}\right]$ and $t \in\left[t_{0}, \pi\right]$, respectively satisfying $\delta_{i}^{+}(\pi) \in \gamma_{i}^{+}, i=1,2$. Clearly, the surfaces M_{1} and M_{2} are topologically a closed disk minus one boundary point. Moreover,

$$
M=M_{1} \cup M_{2}, \quad M_{1} \cap M_{2}=\widehat{\delta}
$$

and

$$
\partial\left(M_{1}\right)=\widehat{\delta} \cup \gamma_{1}^{+} \cup \gamma_{1}^{-} \cup \delta_{1}^{+} \cup \delta_{1}^{-}, \quad \partial\left(M_{2}\right)=\widehat{\delta} \cup \gamma_{2}^{+} \cup \gamma_{2}^{-} \cup \delta_{2}^{+} \cup \delta_{2}^{-}
$$

where $\delta_{i}^{-}=S_{v}\left(\delta_{i}^{+}\right)$for $i=1,2$.
Our next objective is to prove the following assertion:
Claim $\left.4 X\right|_{\widehat{\delta}}$ is injective and $X(\widehat{\delta}) \subset\left\{x_{2} \leq 0, x_{3}=0\right\}$.

Proof: To see this we observe that

$$
X_{2}(\hat{\delta}(t))=X_{2}(\hat{\delta}(t))-X_{2}\left(\hat{\delta}\left(-t_{0}\right)\right)=-\sqrt{2} \int_{-t_{0}}^{t} \frac{\sin (s / n)}{\sqrt{\cos (s)-\cos \left(t_{0}\right)}} d s
$$

Since $0<t_{0} \leq n \pi$ we have that $X_{2} \circ \widehat{\delta}$ is a non positive decreasing function for $t \in\left[-t_{0}, 0\right]$. This fact and the vertical symmetry S_{v} prove the assertion.

Let us denote $M^{+}=\{(u, v) \in M \quad \mid \operatorname{Im}(u) \geq 0\}$ and $M^{-}=\{(u, v) \in M \quad \operatorname{Im}(u) \leq 0\}$, and define ρ as the lift to M of the divergent curve $] 0,+\infty[$ in the u-plane. We parametrize ρ as follows:

$$
\left.\rho(t)=u^{-1}(t), \quad t \in\right] 0,+\infty[.
$$

Obviously, the surfaces M^{+}and M^{-}are topologically a closed disk minus two boundary points. Furthermore,

$$
M=M^{+} \cup M^{-}, \quad M^{+} \cap M^{-}=\rho
$$

and

$$
\partial\left(M^{+}\right)=\rho \cup \gamma_{1}^{+} \cup \gamma_{2}^{+} \cup \gamma_{0}^{+}, \quad \partial\left(M^{-}\right)=\rho \cup \gamma_{1}^{-} \cup \gamma_{2}^{-} \cup \gamma_{0}^{-}
$$

Next we prove that
Claim $5 X(\rho(t)) \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=0, x_{2} \leq-\varepsilon,-\frac{1}{2}<x_{3}<\frac{1}{2}\right\}$, where $\varepsilon=-X_{2}\left(P_{0}\right)>0$.
Proof: By the symmetry S_{h}, it suffices to prove the assertion for $\left.\left.X(\rho(] 0,1]\right)\right)$. From the Weierstrass data de deduce that:

$$
X_{2}(\rho(t))=-\varepsilon-\int_{t}^{1} \frac{s^{-\frac{2}{n}}-s^{\frac{2}{n}}}{\sqrt{s^{4}-2 \cos \left(t_{0}\right) s^{2}+1}} d s
$$

According to Claim 4 we have $\varepsilon=-X_{2}\left(P_{0}\right)>0$. So $X_{2} \circ \rho$ is decreasing and non positive in]0, 1].

Moreover, taking (21) and the symmetry S_{h} into account, we obtain that

$$
\lim _{t \rightarrow 0} X_{2}(\rho(t))=\lim _{t \rightarrow+\infty} X_{2}(\rho(t))=-\infty
$$

At this point we can prove the following lemma.
Lemma 9 The minimal immersion $X: M \longrightarrow \mathbb{R}^{3}$ verifies:

1. $X(M) \subset\left(\left(S \backslash \mathcal{E}\left(\Gamma_{\theta d}\right)\right) \cup \Gamma_{\theta d}\right)$.
2. The surfaces $X\left(M_{1} \backslash\left(\delta_{1}^{+} \cup \delta_{1}^{-}\right)\right)$and $X\left(M_{2} \backslash\left(\delta_{2}^{+} \cup \delta_{2}^{-}\right)\right)$are graphs on the plane $\left\{x_{3}=0\right\}$.
3. $d>0$ implies that X is an embedding. If $d=0$, then $\left.X\right|_{M \backslash \gamma^{+}}$and $\left.X\right|_{M \backslash \gamma^{-}}$are injective.

Proof: As in Sect. 3 denote by \mathfrak{p}_{3} the orthogonal projection on the plane $\left\{x_{3}=0\right\}$. Using (21) once again and the symmetries, it is not hard to see that $X\left(M^{+}\right)$and $X\left(M^{-}\right)$are contained in a wedge of the slab S. Then we can apply statement (ii) in Theorem 2 to conclude that $X\left(M^{+}\right)$ and $X\left(M^{-}\right)$lies in the convex hull of their boundary.

In case $d=0$, taking into account Lemma 6, Claim 5 and the interior maximum principle we have the proof of Assertion 1. Moreover, in this case the interior maximum principle also gives us that

$$
X\left(M^{+}\right) \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0,-\varepsilon<x_{2}<0\right\}=\emptyset
$$

Figure 13:
and so, taking into account the symmetry S_{v}, we deduce that

$$
\begin{equation*}
\mathfrak{p}_{3}(X(M)) \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0,-\varepsilon<x_{2}<0\right\}=\emptyset \tag{23}
\end{equation*}
$$

In case $d>0$ the above reasoning implies

$$
\begin{equation*}
X(M) \subset S \backslash\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0, x_{2}>0\right\} . \tag{24}
\end{equation*}
$$

Next, we prove Assertion 1 for $d>0$ and Assertion 2. In what follows we denote $\alpha=\mathfrak{p}_{3}\left(\partial\left(X\left(M_{1}\right)\right)\right)$. We also introduce the following notation:
(A) If $d=0, W_{0}$ will denote the bounded connected component of $\mathbb{R}^{2} \backslash \alpha$, whereas W_{1} will denote the unbounded connected component which is disjoint from $\mathfrak{p}_{3}\left(\mathcal{E}\left(\Gamma_{\theta d}\right)\right)$ (see Fig. 13-(a)).
(B) If $d>0$, observe that α is a connected simple curve. In this case we denote W_{0} as the connected component of $\mathbb{R}^{2} \backslash \alpha$ containing the point $(0,0)$ and W_{1} the other one (see Fig. 13-(b)).

In both cases $\mathfrak{p}_{3}\left(M_{1}\right) \subset W_{0} \cup W_{1} \cup \alpha$. Since $\mathfrak{p}_{3}\left(X\left(\partial\left(M_{1}\right)\right)\right)=\alpha$ and $\mathfrak{p}_{3} \circ X$ is proper on M_{1} (see Lemma 8), then $\mathfrak{p}_{3} \circ X\left(M_{1} \backslash \partial\left(M_{1}\right)\right) \cap W_{0}$ is closed in W_{0}. Furthermore, $g\left(M_{1} \backslash \partial\left(M_{1}\right)\right) \cap \mathbb{S}^{1}=\emptyset$ and so $\left.\left(\mathfrak{p}_{3} \circ X\right)\right|_{M_{1} \backslash \partial\left(M_{1}\right)}$ is a local diffeomorphism. In particular, $\mathfrak{p}_{3} \circ X\left(M_{1} \backslash \partial\left(M_{1}\right)\right) \cap W_{0}$ is an open set of W_{0}. Hence we deduce that either $\mathfrak{p}_{3} \circ X\left(M_{1} \backslash \partial\left(M_{1}\right)\right) \cap W_{0}=\emptyset$ or $\mathfrak{p}_{3} \circ X\left(M_{1} \backslash \partial\left(M_{1}\right)\right) \cap W_{0}=W_{0}$. According to (23) and (24) we have that $\mathfrak{p}_{3} \circ X\left(M_{1} \backslash \partial\left(M_{1}\right)\right) \cap W_{0}=\emptyset$. A similar argument yields $\mathfrak{p}_{3}\left(X\left(M_{1}\right)\right) \cap W_{1}=W_{1}$, i.e., $\mathfrak{p}_{3}\left(X\left(M_{1}\right)\right)=W_{1} \cup \alpha$. Hence, using the symmetry S_{h} and the interior maximum principle we conclude the proof of Assertion 1.
¿From the above reasoning we have that $\mathfrak{p}_{3} \circ X: M_{1} \backslash\left(\delta_{1}^{+} \cup \delta_{1}^{-}\right) \longrightarrow W_{1} \cup \alpha$ is a proper local diffeomorphism and so $\mathfrak{p}_{3} \circ X$ is a covering map. Since $\left.\left(\mathfrak{p}_{3} \circ X\right)\right|_{\gamma_{1}^{+}}$is one-to-one we obtain that $X\left(M_{1} \backslash\left(\delta_{1}^{+} \cup \delta_{1}^{-}\right)\right)$is a graph on the plane $\left\{x_{3}=0\right\}$.

Using that $\partial\left(X\left(M_{1}\right)\right) \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, 0 \leq x_{3} \leq \frac{1}{2}\right.\right\}$ and Lemma 2.1 in [11] we infer that

$$
\begin{equation*}
X\left(M_{1}\right) \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, 0 \leq x_{3} \leq \frac{1}{2}\right.\right\} \tag{25}
\end{equation*}
$$

Then, taking into account the symmetry S_{h}, we obtain Assertion 2.
Finally, Assertion 2 and (25) give us Assertion 3.

References

[1] R.B. BURCKEL. An introduction to classical analysis. Vol. 1 (Birkhäuser, Basel, 1979).
[2] S.Y. CHENG. Eigenfunctions and Nodal Sets. Comment. Math. Helvetici 51, 43-55 (1976).
[3] E. A. CODDINGTON, N. LEVINSON. Theory of Ordinary Differential Equations. Mc GrawHill Book Company, New York, 1955.
[4] P. COLLIN, R. KUSNER, W.H. MEEKS, H. ROSENBERG. The topology, geometry and conformal structures of properly embedded minimal surfaces, preprint.
[5] H. JENKINS, J. SERRIN. Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation. Arch. Rat. Mech. Anal., 21, 321-342 (1966).
[6] H. KARCHER. Construction of minimal surfaces. Surveys in Geometry 1989/90, University of Tokyo 1989. Also: Vorlesungsreihe Nr. 1, SFB 256, Bonn, 1989.
[7] F. J. LOPEZ. Minimal surfaces in a cone. Ann. Global Anal. Geom. 20 no. 3, 253-299 (2001).
[8] F. J. LOPEZ, F. MARTIN. A uniqueness theorem for properly embedded minimal surfaces bounded by straight lines. Australian Mathemetical Society (Series A) 69, 362-402 (2000).
[9] F. J. LOPEZ, F. MARTIN. Minimal surfaces in a wedge of a slab. Communications in Analysis and Geometry 9 no. 4, 683-723 (2001).
[10] F. J. LOPEZ, F. WEI. Properly immersed minimal disks bounded by straight lines. Mathematische Annalen 318, 667-706 (2000).
[11] W.H. MEEKS, H. ROSENBERG. The geometry and conformal structure of properly embedded minimal surfaces of finite topology in \mathbb{R}^{3}. Invent. Math. 114, 625-639 (1993).
[12] R. SCHOEN. Uniqueness, symmetry and embeddedness of minimal surfaces. J. Differential Geom. 18, 791-809 (1983).
[13] M. WEBER. The genus one helicoid is embedded. 1999. Habilitationsschrift, Bonn.
Departamento de Geometría y Topología
Universidad de Granada
18071 Granada, Spain
e-mails: lferrer@ugr.es, fmartin@ugr.es

[^0]: *Research partially supported by MCYT grant number BFM2001-3489.

