Decalcifying effect of 15% EDTA, 15% citric acid, 5% phosphoric acid and 2.5% sodium hypochlorite on root canal dentine

M. Pérez-Heredia¹, C. M. Ferrer-Luque¹, M. P. González-Rodríguez¹, F. J. Martín-Peinado² & S. González-López¹

¹Department of Dental Pathology and Therapeutics, School of Dentistry, University of Granada; and ²Department of Edaphology and Agricultural Chemistry, School of Sciences, University of Granada, Spain

Abstract

Aim To evaluate and compare ex vivo the decalcifying effect of 15% EDTA, 15% citric acid, 5% phosphoric acid and 2.5% sodium hypochlorite on root canal dentine.

Methodology Two 2-mm-thick slices were cut from the coronal third of the root of 10 human incisors. Each slice was sectioned into two equal parts. Specimens were assigned to one of four groups (n = 10) for immersion in 20 mL of either 15% EDTA, or 15% citric acid, 5% phosphoric acid or 2.5% NaOCl, for three time periods (5, 10 and 15 min). The concentration of Ca²⁺ extracted from the dentine was measured by atomic absorption spectrophometry. The amount of calcium extracted was analysed using the Kruskal–Wallis test for global comparisons and the Mann–Whitney U-test for pairwise comparisons.

Results In the three time periods, 15% EDTA and 15% citric acid extracted the largest amount of calcium, with no significant differences between them. The 2.5% NaOCl solution extracted insignificant amounts of calcium, whereas 15% EDTA extracted 86.72% of the calcium in the first 5 min, and 15% citric acid and 5% phosphoric acid had a similar pattern of calcium removal (77.03% and 67.08% in first 5 min, respectively).

Conclusions Solutions of 15% EDTA, 15% citric acid and 5% phosphoric acid decalcify root dentine, with most calcium extracted during the first 5 min of action. The efficacy of 15% citric acid and 15% EDTA solutions was significantly greater than that of 5% phosphoric acid solution at each time period (5, 10 and 15 min).

Keywords: citric acid, decalcification, EDTA, phosphoric acid, sodium hypochlorite, spectrophometry.

Received 7 April 2007; accepted 5 November 2007

Introduction

Many authors have concluded that the smear layer created during root canal preparation should be removed from the dentine surface of the canal wall. The following reasons have been cited: smear layer harbours bacteria and can be detrimental to effective disinfection of dentinal tubules by preventing sodium hypochlorite, calcium hydroxide and other intracanal medicaments from penetrating dentinal tubules (Clark-Holke et al. 2003, Shahravan et al. 2007); and its total removal improves the adaptation of filling materials to the root canal (Karagoz-Kucukay & Bayirli 1994, Sen et al. 1995), increases the bond strength of

Removal of the smear layer requires the use of irrigants that can dissolve both organic and inorganic components. Different irrigants have been recommended to remove the inorganic component of root dentine, e.g. EDTA solutions at a concentration of 15–17% and pH of 7–8 (Garberoglio & Becce 1994, Calt & Serper 2000, Di Lenarda et al. 2000, O’Connell et al. 2000), citric acid at a concentration of 5–50% (Ferrer Luque et al. 1993, Garberoglio & Becce 1994, Di Lenarda et al. 2000, Haznedaroglu 2003) and phosphoric acid at different concentrations and applied in different ways (Garberoglio & Becce 1994, Ayad 2001, Perez-Heredia et al. 2006). Sodium hypochlorite (NaOCl) solutions are used as the main irrigation agent for removing the organic component because of their bactericidal power and capacity to dissolve organic matter and necrotic tissue (Inaba et al. 1996, Zehnder et al. 2002). NaOCl is a halogenated compound used as a nonspecific proteolytic agent capable of removing magnesium and carbonate ions (Sakae et al. 1988). Baumgartner & Mader (1987) and Baumgartner & Cuenin (1992) suggested that its use may expose inorganic material, which would prevent greater dentine dissolution, or may leave a smear layer of mineralized tissue, which would increase the Ca/P ratio on the dentine surface.

Some reports (Hennequin & Douillard 1995, Doğan & Çalt 2001, Scelza et al. 2003, Ari & Erdemir 2005) have demonstrated that the mineral content of root dentine is modified by the use of EDTA and citric acid solutions to remove the inorganic component from instrumented canals alongside the use of sodium hypochlorite to remove the organic component. Phosphoric acid, used daily in conservative dentistry, is a strong acid capable of removing the smear layer from root dentine. Ayad (2001) obtained partial smear layer removal with a 10% concentration of this acid and total removal with a 32% concentration. Garberoglio & Becce (1994) compared 17% EDTA, 3% EDTA and a combination of 24% phosphoric acid plus 10% citric acid for root canal cleaning and obtained similar results amongst the three solutions. A recent study (Perez-Heredia et al. 2006) alternated aqueous solutions of 2.5% sodium hypochlorite with demineralizing solutions of 15% citric acid, 15% EDTA or 5% phosphoric acid, reporting the efficacy of these agents to remove the smear layer during root canal preparation. However, there are no data on the decalcifying capacity of phosphoric acid in root dentine or on its efficacy in comparison with EDTA and citric acid solutions.

The hypothesis tested in this study was that there are no differences in decalcifying capacity of solutions of 15% EDTA, 15% citric acid, 5% phosphoric acid and that 2.5% sodium hypochlorite does not extract calcium from root canal dentine; in three immersion time periods.

The objective of this study was to assess, using atomic absorption spectrometry, the decalcifying capacity of solutions of 15% EDTA, 15% citric acid, 5% phosphoric acid and 2.5% sodium hypochlorite in three immersion time periods.

Materials and methods

Tooth selection

Ten maxillary central incisors, extracted for periodontal reasons from patients within an age range of 40–60 years, were stored in distilled water with thymol crystals until use. Patients were informed that the teeth would be used in this study applying the relevant ethical criteria: all patients consented.

Root canal preparation

Crowns were removed at the cemento-enamel junction level using an Accutom-50 diamond cutter (Accutom Hard Tissue Microtome, Struers, Ballerup, Denmark) under copious water cooling. Root cementum was removed from the root surface using a fine-grained diamond bur (Perio-Set, Intensive, Grancia, Switzerland) at low speed and under low water cooling. Root canals were instrumented under constant water cooling with Peso burs no. 4 to 6, (Dentsply Maillefer, Ballaigues, Switzerland) using a contra-angle handpiece. After each instrument change, root canals were irrigated with 5 mL of distilled water.

Two 2-mm-thick transverse sections were obtained from the coronal third of each root with an Accutom 50 automatic pre-programmed machine (Accutom Hard Tissue Microtome). Each slice was then divided in two equal halves, obtaining a total of four sections of each root (S1, S2, S3 and S4).

Sections were weighed using a HM 202 precision balance (A&D Engineering Inc., San Jose, CA, USA).
equalizing their weight with disks of 600-grit silicon-carbide paper (WS 18-B Struers, Ballerup, Denmark), which were always applied to the same central surface to avoid altering the geometry of the disks. Sections were then labelled and stored in flasks with distilled water at room temperature until use.

Sections of the same root (S1, S2, S3 and S4) had approximately the same weight, geometry and degree of calcification, allowing comparison of the decalcifying capacity of the four irrigation solutions by testing them on comparable specimens.

The 40 specimens obtained were divided into four experimental groups (n = 10) for treatment with different irrigation solutions – group 1 : 15% EDTA, pH 7; group 2 : 15% citric acid, pH 1.6; group 3 : 15% phosphoric acid, pH 1.02; group 4 : 2.5% sodium hypochlorite, pH 11.9. The pH of each solution was determined by using a pH meter equipped with Micro PH 2000 electrode (Crisol, Alella, Spain). The accuracy of the pH meter was ±0.01.

The 2.5% sodium hypochlorite solution was prepared by diluting 10% hypochlorite solution (Panreac, Barcelona, Spain) four times in distilled water; the 15% citric acid solution by dissolving 30 g of monohydrated citric acid (Panreac) in distilled water to a volume of 200 mL; the 15% EDTA solution by dissolving 30 g of disodium EDTA (Panreac) in distilled water to a volume of 200 mL; the 15% phosphoric acid solution by dissolving 10 g of phosphoric acid (Panreac) in distilled water to a volume <200 mL; favouring dissolution with the addition of sodium hydroxide (NaOH) and adding 2 mol L\(^{-1}\) hydrochloric acid (HCl) to obtain a pH of 7; and the 5% phosphoric acid solution by dissolving 10 g of phosphoric acid (Panreac) in distilled water to a volume of 200 mL. All solutions were homogenized by constant stirring at 18–21°C using a magnetic multi-stirrer.

Initially, 20 mL of each solution was prepared as a blank to determine calcium levels without exposure to specimens. Each specimen was immersed in 20 mL of irrigant solution for three immersion times (t\(_1\) = 5 min, t\(_2\) = 10 min and t\(_3\) = 15 min). Every 5 min, 5 mL of irrigant solution was extracted with a graduated pipette, which was then placed in hermetically sealed and labelled glass vessels.

Statistical analysis

First, a full-factorial regression model of repeated measures was used to assess the significance of the interaction between two factors (type of irrigation solution and immersion time in irrigation solution) for the extracted calcium data (mg Ca\(^{2+}\) and % mg Ca\(^{2+}\)). The Kolmogorov–Smirnov test was used to assess the distribution of the extracted calcium data. Because results for each group did not follow a normal distribution, variables were analysed using a nonparametric test. The amount of calcium extracted (mg Ca\(^{2+}\) and % mg Ca\(^{2+}\)) by different irrigating solutions and in different immersion times was analysed using the Mann–Whitney U-test (pairwise comparisons) and the Kruskal–Wallis test (global comparisons). The level of statistical significance was set at P < 0.05.

Results

Full-factorial regression analysis of the influence of the type of irrigation solution (15% EDTA, 15% citric acid, 5% phosphoric acid or 2.5% NaOCl) and of the time of immersion in solution (5, 10 or 15 min) revealed a statistically significant interaction between these two factors in the amount of calcium extracted (P = 0.003) and in the percentage of calcium extracted (P < 0.001). Table 1 shows the amount of calcium extracted (mg Ca\(^{2+}\)) for each type of irrigant solution and immersion time. After a 5-min immersion in irrigant solution, 15% EDTA had extracted the greatest amount of Ca\(^{2+}\), followed by 15% citric acid and 5% phosphoric acid, with a negligible amount of Ca\(^{2+}\) extracted in 2.5% sodium hypochlorite. The differences amongst solutions were significant (P < 0.05) except in the comparison between 15% EDTA and 15% citric acid.
acid (P = 0.820). After a 10-min immersion, there was no significant difference (P = 0.821) between the amounts of Ca²⁺ extracted by 15% EDTA and 15% citric acid, but these were significantly greater than the amounts extracted by 2.5% NaOCl and 5% phosphoric acid. After a 15-min immersion, there was again no significant difference (P = 0.623) between the amounts of Ca²⁺ extracted by 15% EDTA and 15% citric acid but these were significantly greater than the amounts extracted by 2.5% NaOCl and 5% phosphoric acid. The global comparison amongst times shows statistically significant differences (P < 0.001) in the calcium extracted amongst the three immersion periods and amongst the four irrigation solutions. Table 2 shows the % calcium extracted during the three time periods. The most rapid decalcification rate was with 15% EDTA, which extracted 86.72 ± 7.49% of the calcium during the first 5 min, 10.02 ± 6.35% between 5 and 10 min, and 5.75 ± 4.19% between 10 and 15 min. A similar behaviour was shown by 5% citric acid and 5% phosphoric acid, which extracted 77.03 ± 11.98% and 67.08 ± 9.89% during the first 5 min of immersion. No significant differences were found (P = 0.241) in the % calcium extracted by 2.5% NaOCl between the 5-min and 10-min immersions.

Discussion

The efficacy of agents used to remove smear layer and demineralize and soften root dentine during root canal treatment has been examined by various means, including microhardness measurements, micro-radiographic assessments, spectrometry studies (Verdelis et al. 1999, Doğan & Calt 2001, Scełza et al. 2003, Machado-Silveiro et al. 2004, Ari & Erdemir 2005, Gonzalez-Lopez et al. 2006) and, especially, electron microscopy studies (Ferrer Luque et al. 1993, Calt & Serper 2000, Di Lenarda et al. 2000, O’Connell et al. 2000, Ayad 2001, Haznedaroğlu 2003, Perez-Heredia et al. 2006). The decalcifying efficacy of these acid and chelating agents depends on the root length, application time, diffusion in the dentine and, especially, the solution pH (Sen et al. 1995, Doğan & Calt 2001, Serper & Calt 2002). The use of a neutral pH of around 7.3 is recommended for EDTA solutions (Serper & Calt 2002). Citric acid has shown to be effective at pH values of 0.8–1.9 (Hennequin & Douillard 1995, Haznedaroğlu 2003). In the present study, the amount of extracted Ca²⁺ increased with time in all solutions and no significant differences were found between 15% EDTA and 15% citric acid. These findings are consistent with previous studies.
with previous results using 10% and 20% citric acid and 17% EDTA solutions (Scelza et al. 2003, Gonzalez-Lopez et al. 2006). However, in all three immersion times studied, the decalcifying capacity of 15% EDTA and 15% citric acid solutions was higher than that of the 5% phosphoric acid solution (Table 1). The reason for these differences may be that the concentration of phosphoric acid was lower than that of the EDTA and citric acid solutions. Thus, a higher extraction of Ca\(^{2+}\) ions could be expected if higher concentrations of phosphoric acid were used. Decalcification may also be higher at a specific pH, as in the case of citric acid solution at pH 1.1 (Hennequin & Douillard 1995). However, higher concentrations of phosphoric acid could cause repopulation of hydroxyapatite from the calcium phosphate solutions formed by the initial dissolution of root dentine. The formation of new calcium phosphate complexes would reduce the extraction of calcium ions from exposed root dentine (Marshall et al. 1993). An effective irrigation solution must also be able to remove the inorganic component from dentine, and a recent study (Pérez-Heredia et al. 2006) demonstrated that the combined use of 5% phosphoric acid and 2.5% sodium hypochlorite solutions is adequate to remove the smear layer from the root canal. In this study, the % Ca\(^{2+}\) extracted was higher during the first 5 min of immersion in all solutions, with the highest percentage (86.72%) extracted with 15% EDTA solution. These results are in agreement with the report by Cergneux et al. (1987) of total removal of the smear layer after using a 15% EDTA solution for 4 min. Other studies demonstrated that the highest amount of Ca\(^{2+}\) ions is extracted during the first 5 min of immersion in a 17% EDTA solution (Scelza et al. 2003, Gonzalez-Lopez et al. 2006) and during the first 5 min in a 10% citric acid solution (Machado-Silveiro et al. 2004). After 5 min, the decalcification progressively reduced, and significant differences were found between the 10-min and 15-min immersion periods (Table 2). These results agree with those obtained by Gonzalez-Lopez et al. (2006) using the same methodology and could be explained in relation to the acid and chelating solutions studied, by an increase in the organic material exposed on root dentine surfaces after action of the demineralizing agents. The organic matrix of dentine may act as a limiting factor in the dissolution of the inorganic component, thus reducing the decalciying action of chelating agents over time (Inaba et al. 1996, Verdelis et al. 1999, Doğan & Çalt 2001). In the present study, a 2.5% sodium hypochlorite solution had a small decalcifying effect. The extraction of Ca\(^{2+}\) ions was significantly lower than achieved with the acid and chelating solutions assessed. It has been reported that treatment with sodium hypochlorite causes mineral accumulation in human root dentine (Inaba et al. 1996). Sodium hypochlorite dissolves organic material and exposes inorganic material, thereby avoiding a greater dissolution of root dentine and it leaves a smear layer of mineralized tissue (Baumgartner & Mader 1987, Baumgartner & Cuenin 1992). It has been demonstrated that the use of 2.5% sodium hypochlorite as irrigation solution, either alone or combined with a 17% EDTA solution, significantly increases the Ca/P ratio of root dentine (Doğan & Çalt 2001). In this study, 2.5% sodium hypochlorite solution obtained a higher percentage of calcium ion extraction during the first 5 min followed by a slow decrease in the extraction rate, with no significant differences between the 5-min (43.43%) and 10-min (34.04%) immersion times. Changes in hydroxyapatite re-crystallization after sodium hypochlorite treatment (Perdigão et al. 2000) may be responsible for the decrease in calcium and phosphorus found in root dentine (Ari & Erdemir 2005). Furthermore, in removing the organic component from dentine, sodium hypochlorite also eliminates mineralization inhibitors and increases the porosity of residual dentine (Sakae et al. 1988, Inaba et al. 1996). Passage of Ca\(^{2+}\) ions into the irrigation solution would explain the decalcification results obtained with 2.5% sodium hypochlorite solution in the present study.

Conclusions

Within the limitations of the present study, it can be concluded that the use of solutions of 15% EDTA, 15% citric acid or 5% phosphoric acid produces root dentine decalcification, mainly during the first 5 min of action. The efficacy of 15% EDTA and 15% citric acid solutions was significantly higher than that of 5% phosphoric acid solution in all three immersion periods studied. It was also observed that 2.5% sodium hypochlorite solution is capable of extracting small amounts of calcium from root dentine.

References

