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Abstract

We classify the family of spacelike maximal surfaces in Lorentz-Minkowski 3-space L
3

which
are foliated by pieces of circles. This space contains a curve of singly periodic maximal surfaces
R that play the same role as Riemann’s minimal examples in E

3
. As a consequence, we prove

that maximal spacelike annuli in L
3

bounded by two circles in parallel spacelike planes are
pieces of either a catenoid or a surface in R.

1 Introduction and statement of results

In 1867, B. Riemann [19] found a one parameter family of complete minimal surfaces in the three
dimensional Euclidean space E

3 which are fibered by circles and straight lines in parallel planes.
Riemann, furthermore, proved that these surfaces are the only ones with this property besides
the catenoid. In 1870, Enneper [3] proved that if a minimal surface in E

3 is foliated by pieces of
circles, then the planes containing these circles are actually parallel, and so, the surface is a piece
of either a Riemann example or a catenoid. Nowadays, we know more general uniqueness theorems
for Riemann minimal examples: we refer to the works [4], [10] and [14].

In this paper we deal with the same kind of questions for maximal spacelike surfaces in Lorentz-
Minkowski three dimensional space L

3. A smooth immersion of a surface in L
3 is called spacelike

if the induced metric on the surface is a Riemannian metric. A spacelike surface in L
3 is maximal

∗Research partially supported by DGICYT grant number PB97-0785.
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provided its mean curvature vanishes. Spacelike maximal surfaces in L
3 represent a maximum for

the area integral [1]. It is known that the only complete maximal spacelike surfaces are planes (see
[1] and [2] for arbitrary dimension). Hence, it is natural to consider non flat maximal spacelike
immersions with singularities. These singularities correspond to either curves of points where the
immersion is not spacelike or to isolated branch points.

Figure 1: A piece of a maximal surface that is bounded by two spacelike straight lines and con-
taining two cone points of a Riemann type surface in the family R. The whole surface is invariant
under the translation determined by a half of the vector joining orthogonally the two boundary
straight lines.

Some properties of minimal surfaces in E
3 have an analogous version for maximal spacelike

surfaces in L
3. For example, they admit a Weierstrass representation closely related to that of

minimal surfaces in E
3. As a matter of fact, there is a natural method to construct maximal

surfaces in L
3 from minimal ones in E

3
, and vice versa.

Inspired by the above Riemann and Enneper works, we classify maximal spacelike surfaces in
L

3 that are foliated by pieces of circles. Rotational maximal surfaces in L
3 have been studied

in [7]. As in the minimal case in E
3
, a maximal spacelike surface in L

3 is foliated by circles in
parallel planes if and only if a Shiffman type function vanishes at any point of the surface. This
function lies in the kernel of the Lorentzian Jacobi operator of the surface. In this work we prove a
version of Shiffman’s theorem (see [20]) for maximal spacelike annuli bounded by circles in parallel
spacelike planes.

This paper is organized as follows. In Section 2, we introduce the concept of circle in L
3 and

recall the Weierstrass representation for spacelike maximal surfaces. In Section 3, we determine
the family of spacelike maximal surfaces foliated by pieces of circles in parallel planes. To be more
precise, we prove the following:

Let M be a spacelike maximal surface in L
3. If M is foliated by pieces of circles in

parallel planes, then M is one of the surfaces described in

1. Theorem 1, if the planes are spacelike.

2. Theorem 2, if the planes are timelike.

3. Theorem 3, if the planes are lightlike.
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This space of maximal surfaces in L
3 is related to a particular family of singly periodic minimal

annuli in E
3 with parallel embedded ends of Riemann type (see [10]). It includes, besides the

catenoid, a one parameter family of singly periodic examples R (see Remark 3) foliated by circles
in parallel spacelike planes whose set of singularities is mapped under the immersion on a discrete
subset of R

3. In particular, the foliating curves, except the singular ones, are spacelike. Therefore,
these curves are either complete circles or complete straight lines, and any surface in R is like a
Riemann minimal example in R

3.

Figure 2: A piece of a singly periodic Riemann type surface whose level curves are circles or straigth
lines with two singular points in parallel spacelike planes. The immersion folds back at the singular
points and so the foliation curves are pieces of circles or straight lines. The surface contains also
singular cone points.

Figure 3: A piece of a singly periodic Riemann type surface whose level curves are pieces of circles
or straigth lines with two singular points in parallel spacelike planes. At these singular points, the
immersion folds back. In this case there are no singular cone points.

Since maximal spacelike surfaces in L
3 are stable, we have obtained easily the following version

of Shiffman’s theorem:
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A compact maximal spacelike annulus in L
3 whose boundary consists of two circles in

parallel spacelike planes is a piece of either a Lorentzian catenoid or a surface in the
family R.

In fact, we prove a slightly more general version of this theorem for annuli with singularities of
cone type. In Section 4 we prove an Enneper type result for maximal spacelike surfaces in L

3 :

If a maximal spacelike surface in L
3 is foliated by pieces of circles lying in a 1-parameter

family of planes, then the planes in the family are actually parallel.

Finally, we mention that some interesting results on constant mean curvature hypersurfaces
foliated by spheres in different ambient spaces have been recently obtained by Jagy in [5], [6]. See
also the works [11], [12], [13] and [16].

Acknowledgements. We would like to thank A. Ros for helpful discussions related to the
main results in this paper. We are also grateful to F. Martin for drawing our figures. This paper
was prepared while the third author was visiting the Departamento de Geometŕıa y Topoloǵıa,
Universidad de Granada. The third author wishes to thank this institution for its hospitality.

2 Preliminaries

Throughout this paper, L
3 will denote the three dimensional Lorentz-Minkowski space (R3

, 〈, 〉),
where

〈, 〉 = dx2
1 + dx2

2 − dx3
3.

We will also denote the Euclidean metric in R
3 by 〈, 〉0 = dx2

1+dx
2
2+dx

3
3 , and label E

3 = (R3
, 〈, 〉0).

We say that a vector v ∈ R
3 − {0} is spacelike, timelike or lightlike if and only if 〈v,v〉 is

positive, negative or zero, respectively. The vector 0 is spacelike by definition. A plane in L
3 is

spacelike, timelike or lightlike if and only if its Euclidean unit normals are timelike, spacelike or
lightlike, respectively. A curve is called spacelike, timelike or lightlike if and only if the tangent
vector at any point is spacelike, timelike or lightlike. A surface in L

3 is spacelike, timelike or
lightlike if and only if the tangent plane at any point is spacelike, timelike or lightlike, respectively
.

2.1 Circles in L
3

Firstly, we are going to determine the planar curves in L
3 that play the same role as circles in

Euclidean space E
3. To do this, it is necessary to describe the family of planar spacelike curves

with nonzero constant curvature in L
3. Let us examine the concept of nonzero curvature for a

regular planar curve in L
3. Consider Π a plane in L

3 and let α = α(s) be a spacelike curve in Π,
where s denotes the arc-length parameter of α in L

3. Let t(s) = α′(s) be the unit tangent vector
to α. Since we want nonzero curvature, we assume that t′(s) never vanishes. The causal character
of the plane Π leads to three possibilities:

1. Π is spacelike. In this case, (Π, 〈, 〉) is a Riemannian plane and the definition of curvature is
the Riemannian one. Hence, given an orthonormal basis {e1, e2} in Π, the curves in Π with
constant positive curvature k are given by

α(s) = c+
1
k
(cos(ks) e1 + sin(ks) e2), c ∈ Π. (1)
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2. Π is timelike. Since 〈t′, t〉 = 0, t′ is a timelike vector in (Π, 〈, 〉). By definition, the curvature
κ of α is the number κ =

√−〈t′, t′〉. Thus, if {e1, e2} is an orthogonal basis of Π, such that
〈e1, e1〉 = −〈e2, e2〉 = −1, then the spacelike curves in Π with constant curvature k > 0 are
given by

α(s) = c+
1
k
(cosh(ks)e1 + sinh(ks)e2), c ∈ Π. (2)

3. Π is lightlike. Since t′ 	= 0 and t is not lightlike, the equation 〈t′, t〉 = 0 implies that t′ is
a lightlike vector in Π. Fix a constant lightlike field n on α. Then t′ = κn. Obviously, the
function κ depends on the choice of n. However, the fact that κ is a nonzero constant does
not depend on this choice. In other words, κ is constant if and only if t′ is a nonzero constant
field on α. Therefore a spacelike curve with constant nonzero curvature k 	= 0 in Π is given
by:

α(s) = c+ se1 +
k

2
s2e2, c ∈ Π, (3)

where e2 = n is a fixed constant lightlike field on Π and e1 is a constant unit spacelike vector
field on the curve α.

From the Euclidean point of view, the above planar curves can be described as follows. Up to a
linear isometry in L

3
, assume that Π is the plane Πv = {x ∈ R

3 : 〈x,v〉0 = 0}, and v is one of
the next vectors: v = (0, 0, 1), v = (1, 0, 0) or v = 1√

2
(1, 0,−1).

1. Let v = (1, 0, 0). Label e1 = (1, 0, 0), e2 = (0, 1, 0). Then the spacelike curves in Πv of
curvature k > 0 are (see (1)):

α(s) = c+
1
k
(cos(ks), sin(ks), 0), (4)

where c ∈ Πv. These curves are Euclidean circles in horizontal planes.

2. Let v = (1, 0, 0). Label e1 = (0, 0, 1), e2 = (0, 1, 0). Then if k > 0, the curves (2) are given
by

α(s) = c+
1
k
(0, sinh(ks), cosh(ks)), (5)

where c ∈ Πv. These curves are Euclidean hyperbolas in vertical planes.

3. Let v = 1√
2
(1, 0,−1). If we choose the fixed basis of Πv given by e1 = (0, 1, 0) and e2 =

(1, 0, 1), then the curves in (3) are given by:

α(s) = c+ (µs+
k

2
s2, s, µs+

k

2
s2), (6)

where c ∈ Πv , µ ∈ R and κ 	= 0.They are Euclidean parabolas (x−c1) = k
2 (y−c2)2+µ(y−c2),

c1, c2 ∈ R, in the plane Πv.

Summarizing,

Definition 1 A circle in L
3 is a planar curve with nonzero constant curvature.

There is another approach to the the concept of circle. Let l be a straight line in L
3 and consider

G = {Rθ; θ ∈ R} the one-parameter group of linear isometries in L
3 which leave l pointwise fixed.

This group is called the group of rotations with axis l. Let p be a point lying in L
3 − l, and

consider the curve determined by the orbit of p under the action of G. This planar curve has
nonzero constant curvature, and it is contained in a plane orthogonal to l. Hence, an equivalent
definition of circle in L

3 is (see [12] for details):
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Definition 2 A curve α in L
3 is a circle if there exists a straight line l in L

3 such that α describes
the nonlinear orbit of a point p ∈ L

3 − l under the action of the 1-parameter group of motions in
L

3 which fix pointwise l.

2.2 The Weierstrass representation of maximal spacelike surfaces in L
3

To end this section, a few words about the Weierstrass representation of maximal spacelike surfaces
in L

3
. Let X : M −→ L

3 be a spacelike maximal immersion of an orientable surface M in three
dimensional Lorentz-Minkowski space. The Gauss map N of X assigns to each point of M a point
of the spacelike surface H

2 = {(x1, x2, x3) ∈ R
3 : x2

1+x2
2−x2

3 = −1}, which has constant intrinsic
curvature −1 with respect to the induced metric. Note that H

2 has two connected components,
one on which x3 ≥ 1 and one on which x3 ≤ −1.

Throughout this paper, C∗ denotes the extended complex plane C∪{∞}. Define a stereographic
projection σ for H

2 as follows:

σ : C
∗ − {|z| = 1} −→ H

2 ; z →
(−2Re(z)

|z|2 − 1
,
−2Im(z)
|z|2 − 1

,
|z|2 + 1
|z|2 − 1

)
,

where σ(∞) = (0, 0, 1).Using isothermal parameters,M has in a natural way a conformal structure,
and up to a suitable choice of the orientation, the map g

def= σ−1 ◦N is meromorphic.
Moreover, there exists a holomorphic 1-form η on M such that the 1-forms

Φ1 =
i

2
η(1− g2), Φ2 = −1

2
η(1 + g2), Φ3 = ηg (7)

are holomorphic on M and without common zeroes. Furthermore, the 1-forms Φj , j = 1, 2, 3, have
no real periods, and the immersion X is determined, up to a translation, by:

X = Re
∫
(Φ1,Φ2,Φ3). (8)

The induced Riemannian metric ds2 on M is given by:

ds2 = |Φ1|2 + |Φ2|2 − |Φ3|2 =
( |η|

2
(1− |g|2)

)2

. (9)

Conversely, let M, g and η be a Riemann surface, a meromorphic map on M, and an holomorphic
1-form η on M, such that: |g(P )| 	= 1, ∀P ∈ M, the 1-forms defined in (7) are holomorphic, have
no common zeroes and have no real periods. Then (8) defines a conformal spacelike maximal
immersion of M in L

3
, and its Gauss map is σ ◦ g. If we allow that the set {|g| = 1} 	= ∅, we say

that X : M → L
3 is a maximal spacelike immersion with singularities. We also say that X(M) is

a maximal spacelike surface with singularities in L
3
. In this case, the immersion X is not regular

at the nodal set of the harmonic function log(|g|).
We call (M,Φ1,Φ2,Φ3) (or simply (M, g, η)) the Weierstrass representation of X . For more

details see, for instance, [7].

Remark 1 The transformation (M,Φ1,Φ2,Φ3) → (M, iΦ1, iΦ2,Φ3) converts Weierstrass data of
maximal spacelike surfaces in L

3 into Weierstrass data of minimal surfaces in R
3
, and vice versa.

For more details about theory of minimal surfaces, see [18].
Throughout this paper, we say that a maximal immersion in L

3 is complete if and only if the
corresponding minimal one in R

3 do. If the set of singularities of a maximal immersion consists of
cone points (see Definition 3), this concept of completeness agrees with the natural one (divergent
curves have infinite length).
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3 Existence of maximal surfaces of Riemann type

In this section, we classify the family of maximal spacelike surfaces in L
3 which are foliated by

pieces of circles in parallel planes. The main tool used is the Weierstrass representation of maximal
spacelike surfaces in L

3
. At the end of the section, we will introduce the Lorentzian Shiffman type

functions on a maximal surface, and prove a version of Shiffman theorem (see [20]) for maximal
spacelike surfaces in L

3
.

Let X : M → L
3 be a spacelike conformal non planar maximal immersion of a Riemann surface

M. We denote by (η, g) the Weierstrass representation of X, and define Φ = (Φ1,Φ2,Φ3) as in (7).
Let ds2 denote the riemannian metric in M induced by X and 〈, 〉. See equations (7), (8) and (9)
for details.

Let v be a nonzero vector in R
3
, and denote by Πv the plane {x ∈ R

3 : 〈x,v〉0 = 0}. The
vector v can be timelike, spacelike or lightlike. Hence, and up to linear isometries in L

3, we will
assume that v = (0, 0, 1), v = (1, 0, 0) or v = 1√

2
(1, 0,−1).

Throughout this section, we suppose that X(M) is foliated by curves of nonzero constant
curvature (circles in L

3) in parallel planes with normal vector v in E
3. In case v = (0, 0, 1),

this means that X(M) is foliated by pieces of Euclidean circles in horizontal planes. However, in
cases v = (1, 0, 0) and v = 1√

2
(1, 0,−1), it means that the surface X(M) is foliated by pieces of

Euclidean hyperbolas and parabolas, respectively. See the preceding section.
The following three theorems describe, up to linear isometries of L

3
, the Weierstrass representa-

tion of the immersion X . Since these results are local, we will suppose that M is simply connected
and that 〈Re(Φ(P )),v〉0 + i〈Im(Φ(P )),v〉0 	= 0, ∀P ∈ M . Moreover, we will assume that the
holomorphic function z = 〈X,v〉0 + i〈X,v〉0∗ is a conformal parameter on M, where 〈X,v〉0∗ is
the harmonic conjugate of 〈X,v〉0.

3.1 Maximal spacelike surfaces foliated by pieces of circles

We are going to prove the following theorem:

Theorem 1 If X(M) is foliated by pieces of Euclidean circles in parallel planes with normal
Euclidean vector v = (0, 0, 1), then, up to scaling and linear isometries in L

3
, the stereographic

projection g of the Gauss map of X satisfies:

1. dg
dz = g, or

2.
(
dg
dz

)2

= g(g2 + 2rg + 1), where r ∈ R.

Proof : Consider the conformal parameter z = 〈X,v〉0 + i〈X,v〉0∗ = X3 + iX∗
3 . From (7), (8) and

(9), we have:

X(P ) = Re

(∫ P

(
i

2
(
1
g
− g)dz,−1

2
(
1
g
+ g)dz, dz)

)
, (10)

ds2 =
(
1− |g|2
2|g|

)2

|dz|2.

Let α(t) be a curve in (M,ds2) parametrized by the arc length such that X3(α(t)) = C,
i.e., Re(z(α(t))) = C, where C is a constant. For the sake of simplicity, write z(t) = z(α(t)),
X(α(t)) = X(t) and g(t) = g(α(t)). Then we have |1−|g|2|

2|g| |dzdt | = 1, and since Re(dzdt ) = 0, we

deduce that dz
dt = ± 2i|g|

1−|g|2 . Up to the change g → 1/g (which corresponds to the linear isometry in
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L
3 defined by the symmetry with respect to the plane x1 = 0), Φ3 does not change, and we can

assume that
dz

dt
=

2i|g|
|g|2 − 1

. (11)

Since X is spacelike and v = (0, 0, 1), the vectors dX
dt and d2X

dt2 are spacelike. Hence, from (10) and
(11), it is not hard to check that the planar curvature k(t) of the curve X(t) is given by:

k(t) =

√
〈d

2X

dt2
,
d2X

dt2
〉 =

√
〈d

2X

dt2
,
d2X

dt2
〉0 = Im(

d log(g)
dt

).

Since Φ3 = dz, this 1-form does not vanish at any point in M, and the same holds for the map
g. Thus, up to a choice of the branch, the map log(g) is holomorphic and well defined on M .
For simplicity, we write u = Re(log(g)), v = Im(log(g)). At this point, we introduce the new
parameter s(t) determined (up to an additive constant) by the equation ds

dt =
1

sinh(u(α(t)) . Observe

that equation (11) gives dz(α(s))
ds = i, and so, for any constant C, we can choose s(t) = Im(z(t)).

On the other hand, it is clear that k(s) def= k(t(s)) = dv/ds
sinh(u) , and since k(s) is constant, we have

d2v

ds2
− du

ds

dv

ds
coth(u) = 0.

If we define

S1 = Im

((
d(log(g))

dz

)2 3|g|2 − 1
2(|g|2 − 1)

− (
d2g

dz2
)
1
g

)
, (12)

and take into account that s(t) = Im(z(t)), we get:

S1 = 0. (13)

In particular, the function Im(h1) is harmonic, where

h1 =

(
2(
d2g

dz2
)
1
g
− 3

(
d(log(g))

dz

)2
)
|g|2,

and thus
h1

|g|2 − λ1 − µ

g
= 0, (14)

where λ1 ∈ R and µ ∈ C. In particular, Im(h1) = −Im(µg). On the other hand, labelling

h2 = 2(
d2g

dz2
)
1
g
−
(
d(log(g))

dz

)2

,

from (13) we deduce Im(h2) = Im(h1), and thus

h2 + µg + λ2 = 0, (15)

where λ2 ∈ R. From Equations (14), (15) and their derivatives, it is not hard to see that

λ1 = λ2,

(
dg

dz

)2

+
g

2
(µg2 + 2λ1g + µ) = 0.
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Up to a rotation about the x3-axis (which is a linear isometry in L
3 that substitutes g for θg,

|θ| = 1), we can suppose that µ ∈ R and µ ≤ 0. Furthermore, up to a homothety in L
3 (which

corresponds to a homothetical change of variable z → kz, k ∈ R), we can put µ = −2, provided
that µ 	= 0. This leads to 2. In case µ = 0, we deduce that λ1 	= 0 (recall that X is non planar), and
so we can assume that λ1 = ±1. Taking into account that s(t) = Im(z(t)), k(s) = constant 	= 0,
and the above expression for k(t(s)), we deduce that λ1 = 1. Up to the change g → 1/g once again
if necessary, we get 1. This concludes the proof. ✷

Remark 2 Following the proof of Theorem 1, it is easy to see that X(M) is foliated by pieces of
straight lines in planes parallel to Πv, v = (0, 0, 1), if and only if µ = 0 and λ1 = −1, i.e., dg

dz = ig.
In this case, X(M) is a piece of the complete maximal spacelike surface with Weierstrass data:

C
∗
, Φ1 =

1− g2

2g2
dg, Φ2 =

i(1 + g2)
2g2

dg, Φ3 = −idg
g
.

Up to the change of variables g = eiu, these meromorphic data determine, following (8), a well de-
fined maximal spacelike surface with singularities in the u-plane. This surface is the one associated
to the helicoid according to Remark 1.

Let us determine the surfaces arising from cases 1 and 2 in Theorem 1. In case 1 and from (10), we
get that X(M) is a piece of the complete maximal spacelike surface with singularities determined
by the Weirestrass data:(

C
∗
, Φ1 =

i

2
1− g2

g2
dg, Φ2 = −1

2
1 + g2

g2
dg,Φ3 = dg/g

)
.

This rotational surface is the one associated, following Remark 1, to the catenoid with vertical
normal vector at the ends.

To discuss case 2, consider the compact Riemann surface N r = {(u,w) : w2 = u(u2+2ru+1)},
and observe that, except in the degenerate case r2 = 1, this surface is homeomorphic to a torus.
When r2 = 1, Nr is the Riemann sphere. Assume that r2 	= 1. Then, define the Weierstrass data

Nr = N r −
(
u−1(0) ∪ u−1(∞)

)
, g = u, ηg = du/w,

and Φj , j = 1, 2, 3 as in (7). However, these meromorphic data do not define a maximal immersion
because the 1-forms Φj have real periods on certain homology curves (see (8)). Indeed, first observe
that the 1-form Φ1 is exact. Let l denote a closed real interval in the u-plane whose limit points
lie in u(w−1(0)) ∪ {∞} and w|l ≤ 0, and let γ be any closed curve in Nr in the same homology
class of the lift to N r of l. If γ′ is any closed curve, γ′ 	= mγ, m ∈ Z (for instance, a curve in the
same class of homology of the lift of a closed real interval l′ in the u-plane as above, but satisfying
w|l ≥ 0), then it is easy to see that the period

∫
γ′ Φj does not vanish, j = 2, 3. Furthermore, if

p : Ñr → N r is the covering satisfying p∗
(
H1(Ñr,Z)

)
= {mγ : m ∈ Z}, then the lift to Ñr of

the above Weierstrass data gives a new Weierstrass data without real periods, and determines a
complete singly periodic maximal spacelike surface with singularities in L

3. Since Ñr is conformally
equivalent to C

∗
, the lift Mr of Nr to Ñr is conformally diffeomorphic to C

∗ minus infinitely many
points, just the lift of the two ends of Nr. Since dz = du/w, it is clear from (10) that X(M) is a
piece of this surface.

If r2 < 1, the associated minimal surfaces, according to Remark 1, have been recently studied
in [9] and [8].
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In the degenerated case r = ±1, and up to the change g → v2, it is straightforward to check
that X(M) is a piece of the maximal spacelike surface with singularities associated to the following
Weierstrass data:(

C − {0, i√±1,−i√±1}, Φ1 = −i v
2 − (±1)
v2

dv, Φ2 = − v4 + 1
v2(v2 + (±1))dv, Φ3 =

2
v2 + (±1)dv

)
.

Note that in case r = −1, the periods of Φj , j = 1, 2, 3, are imaginary, and so the immersion given
in (8) is well defined onM−1 = C−{0, 1,−1}. In case r = 1, this does not occur and the immersion
is well defined in a suitable covering M1 of C − {0, i,−i}.

Remark 3 If r ≤ 1, it is not hard to see that any level curve x3 = C, C ∈ R, is either non compact
or non spacelike (i.e., contains singular points lying in the set {|g| = 1}). See Figures 2 and 3.
For the one parameter family of surfaces R = {Mr : r > 1}, the set {|g| = 1} has infinitely many
connected components in Mr, all of them homeomorphic to S

1
, and the image under the immersion

of this set of singularities is a discrete subset of L
3. Indeed, any connected component c of {|g| = 1}

is a lift to Mr of one of the two the closed curves in Nr defined by |u| = 1. These two curves are
pointwise invariant under the antiholomorphic transformation in Nr given by T (u,w) = (1/u,w/u),
that satisfies T ∗(Φj) = −Φj , j = 1, 2, 3. Hence, it is not hard to conclude that the points of c are
mapped under the immersion on the same point Pc ∈ L

3
, and the maximal surface is symmetric

with respect to Pc (see Definition 3). In particular, c = x−1
3 (x3(Pc)), c ⊂ {|g| = 1}, are the only

singular level curves, and the other level curves x3 = C, C /∈ {x3(Pc) : c ⊂ {|g| = 1}} are
spacelike, i.e., they are either complete circles or straight lines. See Figure 1.

3.2 Maximal spacelike surfaces foliated by pieces of hyperbolas

Let us study the case v = (1, 0, 0). In this case, the metric induced by 〈, 〉 on Πv is given by
dx2

2 − dx2
3.

We adapt the Weierstrass representation (g, η) of X to this new frame as follows. Define

gh = −i(g + 1)/(g − 1), ηh =
2

(−igh + 1)2
η, (16)

and observe that
Φ1 = ghηh, Φ2 =

1
2
(1 − g2

h)ηh, Φ3 =
−1
2
(1 + g2

h)ηh. (17)

Recall that in this case dz = Φ1.

Theorem 2 If X(M) is foliated by pieces of Euclidean hyperbolas in parallel planes with normal
Euclidean vector v = (1, 0, 0), then, up to scaling and linear isometries in L

3
, the meromorphic

map gh defined in (16) of X satisfies:

1. (dgh

dz )
2 = gh, or

2. (dgh

dz )
2 = ±gh(gh − 1), or

3. dgh

dz = igh, or

4. (dgh

dz )
2 = gh(g2

h + 2rgh + r0), where r ∈ R and r0 ∈ {1,−1}.

10



Proof : Note that 〈X,v〉0 = X1, and so from (16), (8) and (9), we have:

X(P ) = Re

(∫ P

(dz,
1
2
(
1
gh

− gh)dz,−1
2
(
1
gh

+ gh)dz)

)
, (18)

ds2 =
(
Im(gh)
|gh|

)2

|dz|2.

Let α(t) be a curve in (M,ds2) parametrized by the arc length such that X1(α(t)) = C, i.e.,
Re(z(α(t))) = C, where C is a constant. We write z(t) = z(α(t)), X(α(t)) = X(t) and gh(t) =
gh(α(t)). Then we have |Im(gh)|

|gh| |dzdt | = 1, and since Re(dzdt ) = 0, we deduce that dz
dt = ±i |gh|

Im(gh)
.

Up to the change gh → −gh (which corresponds to the linear isometry in L
3 determined by the

reflection about the x1-axis), Φ1 does not change, and we can assume that

dz

dt
= i

|gh|
Im(gh)

. (19)

Since X is spacelike and v = (1, 0, 0), the vectors dX
dt and d2X

dt2 are spacelike and timelike, re-
spectively. Therefore, from (18) and (19), the planar curvature k(t) of the curve X(t) is given
by:

k(t) =

√
−〈d

2X

dt2
,
d2X

dt2
〉 = Re(

d log(gh)
dt

).

Since Φ1 = dz, then the map gh never vanishes on M . Thus, up to a choice of the branch, the map
log(gh) is holomorphic and well defined on M . For simplicity, we write u = Re(log(gh)), v =
Im(log(gh)). At this point, we introduce the new parameter s(t) determined (up to an additive
constant) by the equation:

ds

dt
=

|gh|
Im(gh)

.

Obseve that dz(α(s))
ds = i, and so we can choose s(t) = Im(z(t)), for any constant C. On the other

hand, it is clear that k(s) def= k(t(s)) = du/ds
sin(v) , and since k(s) is constant, we have

d2u
ds2 − du

ds
dv
ds cot(v) =

0. If we define

S2 = Re

((
d(log(gh))

dz

)2(
1− iRe(gh)

2Im(gh)

)
− (

d2gh
dz2

)
1
gh

)
, (20)

and take into account that s(t) = Im(z(t)), we get:

S2 = 0. (21)

In particular, the function Im(h1) is harmonic, where

h1 =

(
(
d2gh
dz2

)
1
gh

− 1
2

(
d(log(gh))

dz

)2
)
gh,

and thus
h1

gh
+ λ1gh − µ = 0, (22)

where λ1 ∈ R and µ ∈ C. In particular, Im(h1) = −Im(µgh). On the other hand, labelling

h2 = −d2gh
dz2

+
3
2

(
d(log(gh))

dz

)2

gh,

11



from (21) we deduce that Im(h2) = −Im(h1), and thus

h2 − µgh + λ2 = 0, (23)

where λ2 ∈ R. From Equations (22), (23) and their derivatives, it is not hard to see that

µ ∈ R,

(
dgh
dz

)2

= gh(−λ1g
2
h + 2µgh − λ2).

As X is non planar, then λ1 = λ2 = 0 implies µ 	= 0. In this case, and up to scaling in L
3
, we

can suppose µ = ± 1
2 . Taking into account that s(t) = Im(z(t)), k(s) = constant 	= 0 and the

above expression for k(s), we get that µ = − 1
2 . Up to the change gh → 1/gh if necessary, we get

3. Assume now that |λ1|+ |λ2| 	= 0. Up to the change gh → 1/gh, which corresponds to the linear
isometry in L

3 given by a symmetry with respect to the plane x2 = 0, we can suppose λ2 	= 0.
Moreover, note that the change gh → ±elgh, l ∈ R, is associated to the linear isometry R in L

3

given by:

R(x1, x2, x3) = (x1,±(cosh(l)x2 + sinh(l)x3),±(cosh(l)x3 + sinh(l)x2)).

Hence, up to this kind of rigid motions in L
3 and homotheties, we can suppose that λ1 = 1 and

λ2 = ±1, provided that λ1 	= 0 too (case 4). Analogously, the case λ1 = 0 and λ2 	= 0 leads to 1
(if µ = 0) and 2 (if µ 	= 0). This concludes the proof. ✷

Remark 4 Following the proof of Theorem 2, it is easy to see that X(M) is foliated by pieces of
straight lines in parallel planes to Πv, v = (1, 0, 0), if and only if µ = 1

2 and λ1 = λ2 = 0, i.e.,
dgh

dz = gh. In this case, X(M) is a piece of the complete maximal spacelike surface with singularities
determined by the Weierstrass data:

C
∗
, Φ1 =

dgh
gh

, Φ2 =
1− g2

h

2g2
h

dgh, Φ3 = −1 + g2
h

2g2
h

dgh.

These meromorphic data determine, following (8), a well defined maximal surface. This surface is
the one associated to the helicoid (viewed in E

3 with horizontal axis) following Remark 1.

Let us determine the surfaces arising from the four cases of Theorem 2. In case 1, and doing
the change gh → u2, it is easy to see that X(M) is a piece of the complete maximal spacelike
surface with singularities determined by the Weierstrass data:(

C
∗
,Φ1 = 2du,Φ2 =

1− u4

u2
du,Φ3 = −1 + u4

u2

)
.

Since the three 1-forms are exacts, the maximal immersion given by (8) is well defined.
In case 2, and up to linear isometries in L

3
, we have two possibilities: either dgh

dz =
√
gh(gh − 1)

or dgh

dz = i
√
gh(gh − 1). Suppose first that dgh

dz =
√
gh(gh − 1). Up to the change gh → 1

1−u2 and
from (18), we obtain that X(M) is a piece of the maximal spacelike surface with singularities
associated to the Weierstrass data(

C − {1,−1}, Φ1 =
2

1− u2
du, Φ2 =

(2 − u2)u2

(u2 − 1)2
du, Φ3 =

u4 − 2u2 + 2
(u2 − 1)2

du

)
.

The three 1-forms have no real periods, and so the immersion X in (8) is well defined. In case
dgh

dz = i
√
gh(gh − 1), we get the conjugate Weierstrass data, and the immersion is well defined in

a suitable covering of C − {1,−1}.

12



Figure 4: A piece of a translational invariant maximal surface foliated by hyperbolas in parallel
timelike planes.

In case 3, and using (18), we get the following Weierstrass data:(
C − {0}, Φ1 =

i

gh
dgh, Φ2 =

i(1− g2
h)

2g2
h

dgh, Φ3 = − i(1 + g2
h)

2g2
h

dgh

)
,

The lift of these meromorphic data to the holomorphic universal covering C leads to a rotational
maximal surface. The associated minimal surface, according to Remark 1, is a catenoid with
horizontal normal vector at the ends.

The discussion of case 4 is similar to that of case 3 in the preceding subsection. Consider the
compact Riemann surface M0 = {(u,w) : w2 = u(u2 + 2ru + r0)}, and observe that, except in
the degenerate case r2 = r0 = 1, this surface is homeomorphic to a torus. When r2 = r0 = 1, M0

is the Riemann sphere. Assume that either r2 	= 1 or r0 	= 1. Then, define the Weierstrass data

M0 =M0 −
(
u−1(0) ∪ u−1(∞)

)
, gh = u, ηhgh = du/w,

and Φj , j = 1, 2, 3 as in (17). However, these meromorphic data do not define a maximal immersion
because the 1-forms Φj have real periods on certain homology curves (see (8)). Indeed, first observe
that from (18) and taking into account that dz = du/w, if r0 = 1 (resp. r0 = −1) then Φ2 (resp. Φ3)
is exact. Let l denote a closed real interval in the u-plane whose limit points lie in u(w−1(0))∪{∞}
and w|l ≤ 0, and let γ be any closed curve in M0 in the same homology class of the lift to M0 of l.
If γ′ is any closed curve, γ′ 	= mγ, m ∈ Z (for instance, a curve in the same class of homology of
the lift of a closed real interval l′ in the u-plane as above, but satisfying w|l ≥ 0), then it is easy
to see that the period

∫
γ′ Φj does not vanish, where j = 1, 3 ( if r0 = 1), or j = 1, 2 (if r0 = −1).

Furthermore, if p : M̃0 → M0 is the covering satisfying p∗
(
H1(M̃0,Z)

)
= {mγ : m ∈ Z}, then

the lift to M̃0 of the above Weierstrass data gives a new Weierstrass data without real periods,
and determines a complete singly periodic maximal surface with singularities in L

3. Since M̃0 is
conformally equivalent to C

∗
, the lift of M0 is conformally diffeomorphic to C

∗ minus infinitely
many points, which are just the lifts of the two ends of M0. It is clear that X(M) is a piece of this
surface. If r2 < 1, and r0 = 1, Remark 1 leads, as in the preceeding subsection, to the examples in
[9] and [8] (but from a different point of view in E

3).
In the degenerated case r = ±1, r0 = 1, and up to the change gh → v2, it is straightforward to

check that X(M) is a piece of the maximal spacelike surface with singularities associated to the
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following Weierstrass data:

C − {0, i
√
(±1),−i

√
(±1)}, Φ1 =

2
v2 + (±1)dv, Φ2 = −v2 − (±1)

v2
dv, Φ2 = − v4 + 1

(v2 + (±1))v2
dv.

Note that in case r = −1, the periods of Φj , j = 1, 2, 3, are imaginary, and so the immersion given
in (8) is well defined. In case r = 1, this does not occur and the immersion is well defined in a
suitable covering of C − {0, i,−i}.

3.3 Maximal spacelike surfaces foliated by pieces of parabolas

Finally, we are going to study the case v = 1√
2
(1, 0,−1). For convenience, we introduce the

following frame in E
3:

e1 = (0, 1, 0), e2 =
1√
2
(1, 0, 1), e3 = v =

1√
2
(1, 0,−1).

We label yj = 〈ej , ·〉0, j = 1, 2, 3, as the three coordinate functions associated to this frame. Write
Yj = 〈ej , X〉0, j = 1, 2, 3,. Since X =

∑3
j=1 Yjej , for simplicity and in what follows we write

X = (Y1, Y2, Y3). Note that the metric induced by 〈, 〉 on Πv, i.e., on the plane y3 = 0, is given by
dy2

1 .
The adapted Weiertrass representation of X is given by Ψj(ξ) =

∂Yj

∂ξ dξ, j = 1, 2, 3, where ξ is
a conformal parameter on M . In other words,

Ψ1 = Φ2, Ψ2 =
1√
2
(Φ1 +Φ3), Ψ3 =

1√
2
(Φ1 − Φ3).

From (7), it is easy to see that
Ψ2

1 + 2Ψ2Ψ3 = 0.

As dz = Ψ3, then defining gp = Ψ1/dz we get

Ψ1 = gpdz, Ψ2 = −1
2
g2
pdz, Ψ3 = dz. (24)

Theorem 3 If X(M) is foliated by pieces of Euclidean parabolas in parallel planes with normal
Euclidean vector v = 1√

2
(1, 0,−1), then, up to scaling and linear isometries in L

3
, the meromorphic

map gp defined in (24) of X satisfies:

1. (dgp

dz )
2 = gp, or

2. (dgp

dz )
2 = ±gp(gp − r), r ∈ R, or

3. dgp

dz = i.

Proof : From (24), (8) and (9), we have:

X(P ) = Re

(∫ P

(gpdz,−
g2
p

2
dz, dz)

)
, (25)

ds2 = (Im(gp))
2 |dz|2.
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Let α(t) be a curve in (M,ds2) parametrized by the arc length such that Y3(α(t)) = C, i.e.,
Re(z(α(t))) = C, where C is a constant. We write z(t) = z(α(t)), X(α(t)) = X(t) and gp(t) =
gp(α(t)). Then we have

|Im(gp)||dz
dt

| = 1,

and since Re(dzdt ) = 0, we deduce that dz
dt = ± i

Im(gp)
. Up to the change gp → −gp (which corre-

sponds to the linear isometry in L
3 determined by the symmetry with respect to the plane y1 = 0),

we can assume that
dz

dt
= − i

Im(gp)
. (26)

Since X is spacelike and v = 1√
2
(1, 0,−1), the vectors dX

dt and d2X
dt2 are spacelike and lightlike,

respectively. Therefore, the planar curvature of the curve X(t) is constant if and only if the
function:

k(t) =

√
〈d

2X

dt2
,
d2X

dt2
〉0 = −Re(dgp

dt
)

is constant. For simplicity, we write u = Re(gp), v = Im(gp).
At this point, we introduce the new parameter s(t) determined (up to an additive a constant)

by the equation: ds
dt = − 1

Im(gp)
. Observe that equation (26) gives dz(α(s))

ds = i, and so we can choose

s(t) = Im(z(t)), for any constant C. On the other hand, it is clear that k(s) def= k(t(s)) = du
ds

1
v ,

and since k(s) is constant, we have

d2u

ds2
− du

ds

dv

ds

1
v
= 0.

If we define

S3 = Re

(
d2gp
dz2

+
(
dgp
dz

)2 1
gp − gp

)
, (27)

and take into account that s(t) = Im(z(t)), we get:

S3 = 0. (28)

In particular, the function Im(h1) is harmonic, where h1 = gp
d2gp

dz2 , and thus

d2gp
dz2

− λ1gp − µ = 0, (29)

where λ1 ∈ R and µ ∈ C. Hence, we deduce that Im(h1) = −Im(µgp). On the other hand,
labelling

h2 = gp
d2gp
dz2

−
(
dgp
dz

)2

,

from (28) we deduce Im(h2) = Im(h1), and thus

h2 + µgh + λ2 = 0, (30)

where λ2 ∈ R.
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From Equations (29), (30) and their derivatives, it is not hard to see that

µ ∈ R,

(
dgp
dz

)2

= λ1g
2
p + 2µgp + λ2.

As X is non planar, then λ1 = µ = 0 implies λ2 	= 0. In this case, and up to scaling in L
3
, we can

suppose λ2 = ±1. Taking into account that s(t) = Im(z(t)), k(s) = constant 	= 0 and the above
expression for k(s), we deduce that λ2 = −1. Up to the change gp → −gp if necessary, we get 3.
Assume now that |λ1|+ |µ| 	= 0. The change gp → gp+ l, l ∈ R, is associated to the linear isometry
R in L

3 given by:

R(y1, y2, y3) = (y1 + ly3,−ly1 + y2 − l2

2
y3, y3).

Hence, up to this kind of rigid motions in L
3 and homotheties, we can suppose that λ2 = 0 and

λ1 = ±1, provided that λ1 	= 0 (case 2). In case λ1 = 0 and µ 	= 0, we take also into account the
change gp → −gp (which corresponds to a symmetry with respect to the plane y1 = 0) to get 1.
This concludes the proof. ✷

Figure 5: A piece of a maximal surface foliated by parabolas in parallel lightlike planes.

Remark 5 Following the proof of Theorem 3, it is easy to see that X(M) is foliated by pieces of
straight lines in parallel planes to Πv, v = 1√

2
(1, 0,−1), if and only if λ1 = µ = 0 and λ2 = 1,

i.e., dgp

dz = 1. In this case, and after the change g → −√
2u, we get that X(M) is a piece of the

complete maximal spacelike surface with singularities associated to the Weierstrass data:

C, Φ1 = (u2 − 1)du, Φ2 = 2udu, Φ3 = (u2 + 1)du.

These meromorphic data determine, following (8), a well defined maximal spacelike surface with
singularities. It is the surface associated, according to Remark 1, to the Enneper surface (viewed
with horizontal normal vector at the end in E

3).

Let us determine the surfaces arising from the three cases of Theorem 3. In case 1, doing the
change g → √

2u2 and up to scaling, it is easy to see from (25) and the definition of Ψj , j = 1, 2, 3,
that X(M) is a piece of the complete maximal spacelike surface with singularities associated to
the Weierstrass data:(

C, Φ1 = (1− u4)du, Φ2 = 2u2du, Φ3 = −(1 + u4)du
)
.
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Since the three 1-forms are exact, the maximal immersion given by (8) is well defined.
In case 2, and up to linear isometries in L

3
, we have two possibilities: either dg

dz =
√
g(g − r)

or dg
dz = i

√
g(g − r). Suppose first that dg

dz =
√
g(g − r). We distinguish two new cases: r 	= 0

and r = 0. Consider r 	= 0. Up to the change g → ru2

u2−1 , and from (25) and the definition of
Ψj , j = 1, 2, 3, we get that X(M) is a piece of the maximal spacelike surface with singularities
associated to the Weierstrass data

C − {1,−1},

Φ1 =
−2 + 4u2 − 2u4 + r2u4

√
2(u2 − 1)3

du, Φ2 = − 2ru2

(u2 − 1)2
du, Φ3 =

2− 4u2 + 2u4 + r2u4

√
2(u2 − 1)3

du.

If r = 0, then, up to the change g → √
2u and scaling, the meromorphic data are(

C − {0}, Φ1 =
1− u2

u
du, Φ2 = 2du, Φ3 = −1 + u2

u
du

)
.

In both cases, there are no real periods and the maximal immersion given in (8) is well defined.
Concerning to the second possibility dg

dz = i
√
g(g − r), a similar argument leads to the conjugate

of the above surfaces. In this case, the immersion defined in (8) has real periods, and so it is well
defined in a suitable covering of C − {1,−1} ( if r 	= 0) or C − {0} (if r = 0).

In case 3, using the change g → i
√
2u, (25) and the definition of Ψj , j = 1, 2, 3, we get the

following Weierstrass data:(
C, Φ1 = (1 + u2)du, Φ2 = −2iudu, Φ3 = (u2 − 1)du

)
.

This rotational maximal surface in L
3 is associated, following Remark 1, to the Enneper surface,

but viewed in E
3 with horizontal normal vector at its end.

3.4 Shiffman type functions and maximal spacelike annuli bounded by
circles.

To end this section, we are going to introduce the Shiffman type functions on a maximal spacelike
surface in L

3
.

Let X : M → L
3 be a maximal spacelike immersion, and let (η, g) denote the Weierstrass

representation of X (see (7)) . Recall that g is the stereographic projection of the Gauss map of
X .

Let ξ be any conformal parameter onM , and let ∆ξξ denote the Laplacian
∂
∂ξ

∂

∂ξ
= 1

4 (
∂2

∂x2 + ∂2

∂y2 ).
Then, the functions Sj , j = 1, 2, 3, given in (12), (20) and (27) satisfy the equation:

∆ξξSj −
2

(1− |g|2)2 |
dg

dξ
|2Sj = 0.

In other words, these functions lie in the kernel of the Jacobi operator

∆− |σ|2

on M. As usually, |σ| represents the norm of the second fundamental form of X in L
3
, and ∆ is

the Laplacian associated to the induced metric on M.
Furthermore, we have proved in Theorems 1, 2 and 3 that a non ruled maximal spacelike

surface in L
3 is foliated in parallel planes by pieces of circles, hyperbolas or parabolas if and only

17



if the function S1, S2 or S3, respectively, vanishes on the surface. It is natural to call these three
functions as the Lorentzian Shiffman functions. See [20].

On the other hand, it will be interesting to note that the function S1 has a good behavior
around singularities of cone type. Let us explain the details starting with the following definition.

Let X : M → L
3 be a maximal spacelike immersion with singularities, and label (η, g) as its

Weierstrass data following (7). Suppose that the set of singularities {|g| = 1} in M contains a
connected component c homeomorphic to S

1
. In particular, the stereographic projection g of the

Gauss map ofX has no branch points on c. Assume also that there is an antiholomorphic involution
T :M → M satisfying

• T ∗(Φj) = −Φj , j = 1, 2, 3.

• T fixes pointwise c.

It is clear from (8) that X(c) is a point, Pc, in L
3
, and that X(M) is invariant under the reflection

about this point.

Definition 3 We call Pc a cone point of X(M). We also say that X(M) has a singularity of cone
type at Pc.

It is not hard to prove the following lemma.

Lemma 1 Let Pc be a cone point in X(M) associated to the curve of singularities c in M. Then,
the Shiffman function S1 extends in a differentiable way to c.

Proof : Let z be a conformal parameter around an arbitrary point in c such that dz = Φ3. Without
loss of generality, we can suppose that z ◦ T = −z, and so locally c becomes the curve Re(z) = 0.
Moreover, equation g ◦ T = 1/g gives that g = ef(z), where f(−z) = −f(z).

From (12), the function S1 extends to c if and only if

G(z) def= Im

((
d(log(g))

dz

)2 1
|g|2 − 1

)
extends to c. To see this, take z0 ∈ iR and observe that f(z) =

∑∞
m=0 am(z0)(z − z0)m, where

Re(a2j(z0)) = 0, and Im(a2j+1(z0)) = 0, j ∈ Z. Since the meromorphic function g has no ramifi-
cation points on c, a1(z0) 	= 0, ∀z0 ∈ c.

On the other hand,

|g(z)| − 1 = eRe(f(z)) − 1 = Re(f(z))H̃1(Re(f(z))),

where H̃1(w) = (ew−1)/w, w ∈ C. In particular, H̃1(0) = 1. Taking into account the above Taylor
series expansion of f, we deduce that Re(f(z)) = Re(z)G1(z), where G1 is a suitable differentiable
function around c. Moreover, using that a1(z0) 	= 0, ∀z0 ∈ c, we infer that |(G1|c)| ≥ ε > 0. Thus,

|g(z)| − 1 = Re(z)H1(z),

where |(H1|c)| ≥ ε′ > 0. Furthermore, a similar argument gives that

Im

((
d(log(g))

dz

)2
)
= Re(z)H2(z),

where H2 is differentiable around c. We conclude that around c,

G(z) =
H2(z)

H1(z)(1 + |g|(z))
is a differentiable function. ✷
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Figure 6: A maximal spacelike annulus bounded by two circles in parallel spacelike planes and
containing a cone point.

Looking at the expression of Jacobi operator, it is straightforward to check that maximal
spacelike surfaces are stable in a strong sense, that is to say, the first eigenvalue of this operator
on any compact domain is positive. As a consequence of this fact and the above lemma, we can
prove the following version of Shiffman theorem for maximal spacelike annuli with singularities of
cone type in L

3
.

Let S denote a slab determined by two spacelike planes Π1 and Π2 in L
3
.

Corollary 1 Let A be a compact maximal spacelike annulus in L
3 whose set of singularities con-

sists of a finite (possibly empty) set of cone points. Suppose that A is bounded by a circle or a cone
point in Π1, and a circle or a cone point in Π2. Then the intersection of A by a plane contained
in S is either a circle or a cone point. Therefore, A is a piece of either a Lorentzian catenoid or
a surface in the family R.

Proof : Up to a linear isometry in L
3
, we can suppose that the Euclidean normal vector of Π1 and

Π2 is (0, 0, 1). We write X : M → L
3 as the maximal immersion such that A = X(M), and label

c1 and c2 as the two boundary closed curves in ∂M.
First, note that the case X(M) bounded by two cone points Pc1 and Pc2 is impossible. Oth-

erwise, by successive reflections about cone points, we get a complete maximal spacelike annulus
X̃ : M̃ → L

3 with infinitely many cone singularities, such that X̃(M̃) is invariant under a transla-
tion. The quotient of M̃ under the holomoprhic transformation induced by this translation gives
a torus T , and the Weierstrass data (Φ1,Φ2,Φ3) of X̃ can be induced on this torus. Furthermore,
Φj is holomorphic, and so Φj = λjτ0, j = 1, 2, 3, where λj ∈ C and τ0 is a nonzero holomorphic
1-form on T. Since Φ2

1 + Φ2
2 − Φ2

3 = 0 and the associated maximal immersion is singly periodic, it
is not hard to see that λj = rjλ, where rj ∈ R, λ ∈ C and r21 + r22 − r23 = 0. In particular, X̃(M̃)
lies in a lightlike straight line in L

3
, which is absurd.

Hence, we can suppose that at least one of the boundary curves c1, c2 is mapped under X onto
a circle. After a reflection about a boundary cone point (if it exists), we can suppose that in fact
both curves c1 and c2 determine circles, and so the set of singularities lies in the interior of M.

Since A is an annulus with boundary lying in horizontal planes, basic Morse theory or complex
analysis imply that the third coordinate function of the immersion has no critical points. Thus,
there are no points in M with vertical normal vector, and so, the stereographic projection of the
Gauss map g (see (7)) has neither zeroes nor poles. Looking at (12) and taking into account
Lemma 1, we infer that S1 is well defined on M. As we have mentioned above, S1 lies in the kernel
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of the Jacobi operator ∆ − |σ|2 on M. Furthermore, since X(c1) and X(c2) are circles in planes
x3 = C, C ∈ R, we deduce that S1 vanishes on ∂M.

On the other hand, if we denote by ds2 the induced metric on M, then the metric ds20 =
1

(|g|−1)2 ds
2 has no singular points, i.e., it is a Riemannian metric onM conformal to ds2. Labelling

∆0 as the Laplacian associated to ds20, we have that ∆ = 1
(|g|−1)2∆0, where ∆ is the Laplacian

associated to ds2. Furthermore, it is clear that

∆0S1 − qS1 = 0,

where q = |σ|2(|g| − 1)2 > 0. Since the first eigenvalue of the operator ∆0 − q on M is positive
and S1 lies in its kernel, we get that S1 vanishes at any point of M, i.e., the surface is foliated by
circles or cone points in horizontal planes. These kind of surfaces have been classified in Theorem
1. Finally, Remark 3 implies that A is a piece of either a catenoid or a surface lying in the family
R. ✷

Figure 7: A translational invariant fundamental piece of a Riemann type example in R. It is
a spacelike annulus bounded by two cone points and with one end asymptotic to a plane. This
annulus is a graph over any spacelike foliation plane.

Remark 6 Recall that the plane is the only spacelike maximal graph in L
3 (in fact, the only com-

plete spacelike maximal surface in L
3). However, any surface in R has a translational fundamental

piece consisting of a spacelike annulus with two boundary cone points and an interior end asymp-
totic to a plane. It can be proved that this piece is in fact a graph on the plane x3 = 0, as occurs
with a half catenoid.

Therefore, the space of spacelike graphs in L
3 with a finite number of cone points is non trivial,

and its study could be an interesting problem.

4 Maximal surfaces foliated by pieces of circles

Consider a spacelike maximal surface foliated by pieces of circles. In this section we show that
the planes of the foliation are actually parallel (see Theorem 4 below). To do this, we use a
similar technique to that developed for the Euclidean case in [15, pp. 85-86]. The main dificulty
in Lorentz-Minkowski space lies in the causal character of the foliation planes: spacelike, timelike
and lightlike. As a matter of fact, each case needs a different discussion.
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Let M be an oriented maximal spacelike surface in L
3 and consider X = X(u, v) a local system

of coordinates in M . We write Xu = ∂X
∂u and Xv = ∂X

∂v . As the mean curvature of X vanishes,
then we have

E[Xu, Xv, Xvv]− 2F [Xu, Xv, Xuv] +G[Xu, Xv, Xuu] = 0, (31)

where
E = 〈Xu, Xu〉 F = 〈Xu, Xv〉 G = 〈Xv, Xv〉

are the coefficients of the first fundamental form with respect to {Xu, Xv}, and where [u1,u2,u3]
denotes the determinant of the vectors u1, u2 and u3 (see, for instance, [17] or [21, Ch. 7]). On
the other hand, since X is spacelike

W 2 = EG− F 2 = 〈Xu, Xu〉〈Xv, Xv〉 − 〈Xu, Xv〉2 > 0. (32)

Let us assume that M is foliated by pieces of circles in L
3
, that is, it is generated by a 1-parameter

family of pieces of circles, each of them contained in a plane of L
3. Denote by u the parameter of

this family. We distinguish the following cases:

1. The planes are spacelike. Choose {e1(u), e2(u)} an orthogonal basis in each u-plane. Then
the surface can be parametrized by (see (1))

X(u, v) = c+ r(cos v e1 + sin v e2), u ∈ I, v ∈ J, (33)

where I and J are real intervals, c = c(u) belongs to the u-plane and r = r(u) > 0 is a
smooth function.

2. The planes are timelike. Let {e1(u), e2(u)} be an orthogonal basis in each u-plane, with
−〈e1, e1〉 = 〈e2, e2〉 = 1. Following (2)

X(u, v) = c+ r(cosh v e1 + sinh v e2), u ∈ I, v ∈ J, (34)

where c, I, J and r are given as in the above case.

3. The planes are lightlike. Following (3),

X(u, v) = c+ ve1 + rv2 e2, u ∈ I, v ∈ J (35)

where I, J, c and r 	= 0 are as above and where, for each u, e1(u) and e2(u) are vectors in
the u-plane such that 〈e1, e1〉 = 1, 〈e2, e2〉 = 0.

In cases 1 and 2, let N(u) denote the unit orthogonal vector to the u-plane in R
3 (the lightlike

case 3 has a different treatement). Notice that N(u) is not a lightlike vector and N(u) does not
belong to the u-plane.

Let us explain the global strategy. Reasoning by contradiction, suppose that the planes con-
taining the pieces of circles are not parallel. This means that N′(u) 	= 0 for u in some real interval,
hence the curve C having N(u) as unit tangent field is not a straight line. We will construct a
moving frame adapted to the foliation which comes actually from the Frenet frame of the curve
C and we will express (33) and (34) in terms of this frame. Later, we shall compute (31). We
will obtain either a real trigonometric polynomial or just a polynomial in one variable which van-
ishes in some interval of R. The fact that the coefficients of this polynomial vanish will give the
contradiction.

Theorem 4 Let M be a maximal spacelike surface in the Lorentz-Minkowski space L
3 foliated by

pieces of circles. Then the planes containing these pieces of circles must be parallel.
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Proof : As we have mentioned before, the proof is by contradiction. We say that a set I ⊂ R is
spacelike, timelike or lightlike if and only if, for any u ∈ I, the associated plane in the foliation is
spacelike, timelike or lightlike, respectively. In the next three paragraphs, we are going to prove
that the planes in the foliation are parallel on spacelike, timelike and lightlike intervals. Since the
set of points of R whose corresponding plane in the foliation is spacelike (resp., timelike) is open,
it is not hard to see that the union of the spacelike, timelike and lightlike open intervals is an open
and dense subset of R. As the map that takes every u on its corresponding plane in the foliation
is continuous, we deduce that the foliation must be by circles in parallel planes.

Hence, we can split the proof into three parts.

1. The surface is foliated by pieces of circles in spacelike planes.

In this case, N(u) is a timelike vector: 〈N(u),N(u)〉 = −1. Consider {t,n,b} the Frenet frame of
the integral curve C (N = t). Write the velocity vector c′ as follows

c′ = αt+ βn+ γb, (36)

where α, β, γ are smooth functions of u. Up to a change of coordinates in (33) given by a translation
on v, and taking into account that n and b are spacelike, we can put

X(u, v) = c+ r cos v n+ r sin v b.

Up to signs, let κ and σ be respectively the curvature and the torsion of the curve C. Notice that
κ 	= 0 because N′ 	= 0, where the symbol ′ denotes the derivative with respect to u. Moreover, t′

is a spacelike vector. Frenet equations for C are:

t′ = κn
n′ = κt+ σb
b′ = −σn.

From (31), a straightforward computation yields

0 = a cos 3v + b sin 3v + c cos 2v + d sin 2v + e cos v + f sin v + g, (37)

where

a = −1
2
r3κ(r2κ2 − β2 + γ2)

b = r3κβγ

c =
1
2
r3(−5rκ2α+ 6r′κβ + rκ′β − rκβ′).

From a = b = 0, we deduce that γ = 0 and β = ±rκ. Moreover, c = 0 implies that α = ±r′.
Therefore, it is not hard to see that W = 0, getting a contradiction. Thus, κ = 0 and C is a
straight line.

2. The surface is foliated by pieces of circles in timelike planes.

In this situation, N is a unit spacelike vector: 〈N(u),N(u)〉 = 1. Let t = N the unit tangent
vector of C. Since we are assuming the planes are not parallel, N′ = t′ 	= 0. Moreover, it is clear
that 〈t′, t〉 = 0. We distinguish three possibilities:
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First case: 〈t′, t′〉 > 0. Let n be the unit spacelike vector field along C such that t′ = κn, for
some smooth function κ 	= 0. Take b = t ∧ n, where ∧ stands for the cross product in L

3. Notice
that 〈b,b〉 = −1. Up to a change of coordinates by translations on v, we can write (34) as follows:

X(u, v) = c+ r sinh vn+ r cosh vb.

In this case, Frenet equations are
t′ = κn
n′ = −κt+ σb
b′ = σn.

The formula (31) is

0 = a cosh 3v + b sinh 3v + c cosh 2v + d sinh 2v + e coshv + f sinh v + g,

where, with the same notation of (36),

a = −r3κβγ
b =

1
2
r3κ(−r2κ2 + β2 + γ2)

c =
1
2
r3(5rκ2α− 6r′κβ − rκ′β + rκβ′)

d =
1
2
r3(rκ′γ − rκγ′ − 6r′κγ).

From a = 0, we have that βγ = 0. Furthermore,

1. Suppose β = 0. Then, b = 0 implies that γ2 = r2κ2, and from c = 0 we get that α = 0.
Finally, d = 0 yields r′ = 0. Then W 2 = −r4κ2 < 0, which is a contradiction.

2. Suppose γ = 0. Then, b = 0 gives β = ±rκ, and c = 0 implies that α = ±r′. We deduce
that W = 0, a contradiction.

Second case: 〈t′, t′〉 < 0. Let n be the unit timelike vector field along C such that t′ = κn. The
parametrization of X is given by

X(u, v) = c+ r cosh vn+ r sinh vb,

where b = t ∧ n. The corresponding Frenet equations are:

t′ = κn
n′ = κt+ σb
b′ = σn.

Hence, we can write (31)

0 = a cosh 3v + b sinh 3v + c cosh 2v + d sinh 2v + e coshv + f sinh v + g,

where

a = −1
2
r3κ(r2κ2 − β2 − γ2)

b = −r3κβγ
c =

1
2
r3(−5rκ2α+ 6r′κβ + rκ′β − rκβ′)

d =
1
2
r3(−rκ′γ + rκγ′ − 6r′κγ).

From b = 0, we deduce βγ = 0. Moreover,
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1. Suppose β = 0. From a = 0, it follows that γ2 = r2κ2, and using that c = 0 we get α = 0.
Hence, d = 0 implies r′ = 0. Therefore, the coefficient e can be computed now easily, and it
is −3r5κ3 = 0, getting a contradiction.

2. Therefore, γ = 0. Taking into account that a = 0, we have β = ±rκ. Moreover, c = 0 gives
α = ±r′. With these data, one can check that W = 0, which is absurd.

Third case: 〈t′, t′〉 = 0. Since we are assuming that the foliation planes are not parallel, then
t′ 	= 0. So, t′ is a lightlike vector lying in the u-plane. Let n = t′. For each u, let b be the unique
vector orthogonal to t such that

〈b,b〉 = 0, 〈b,n〉 = 1.

In fact, from (34)

n = λ(u)(−e1 + e2) b =
1

λ(u)
(e1 + e2)

where λ is a differentiable function of u. We may choose as a new parameter − ev

2λ(u) instead of v
and then, still denoting the new parameter by v, (34) becomes:

X(u, v) = c+ rvn − r

2v
b,

with r, v 	= 0. Now, Frenet equations are

t′ = n
n′ = σn
b′ = −t− σb.

Equation (31) gives:

0 = a
1
v6

+ b
1
v5

+ c
1
v4

+ d
1
v3

+ e
1
v2
,

where

a = −r5

4
+
r3β2

4

b =
r3

4
(−5rα+ 6r′β − rβ′)

c = −2r3α2 − r3αβ′

2
− r3σαβ

2
+
r3α′β
2

+
3r3r′2

2
+
r4r′σ
2

− r4r′′

2
− 3r3βγ

2
+ r2r′αβ.

From a = 0, we have β = ±r. Moreover, b = 0 implies that α = ±r′, and from c = 0 we infer that
γ = 0. Hence, it is not hard to check that W = 0, which is a contradiction.

3. The surface is foliated by pieces of circles in lightlike planes.

With a change of notation, (35) becomes

X(u, v) = c+ vn+ rv2t,

where c, t,n lie in the u-plane, r > 0, v ∈ I, 〈t, t〉 = 〈n, t〉 = 0 and 〈n,n〉 = 1. Let, for each u,
b(u) be the unique lightlike vector orthogonal to n such that 〈t,b〉 = 1 and [t,n,b] = 1. Note
that, since a lightlike plane is the orthogonal plane to any lightlike vector that belongs to it, the
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planes are parallel if and only if the field t is constant, i.e doesn’t depend on the parameter u. We
may assume that t′ = κn. Indeed, it is easily seen that one can always determine a function µ of u
such that the field t̃ = µt satisfies the preceding requirement (accordingly, one has to change r into
r̃ = r

µ). Since we are assuming that the planes are non parallel, we have κ 	= 0. The corresponding
Frenet equations are

t′ = κn
n′ = σt − κb
b′ = −σn.

The vector field c′ is given in (36). The hypothesis H = 0 means here that

0 = av4 + bv3 + cv2 + dv + e,

where

a = 7rκ2(2r2γ − r′)
b = 16r2κ2β + 4rr′κγ − 2r2κγ′ − r′κ′ + 2r2κ′γ − 8rκ2σ + r′′κ− 16r3κγ2

c = −2rκβ′ − 9rκ2α+ 2rκ′β − 20r2κβγ + r′γ′ − 3r′κβ + 4rr′γ2 − r′′γ
− κ′σ + 11rκσγ + κσ′.

From a = 0, it follows that r′ = 2r2γ. Equation b = 0 gives σ = 2rβ. A computation of c with
these data gives α = 0. Therefore, it is easy to prove that W = 0, which is absurd. ✷
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[13] R. López, ’Cyclic hypersurfaces of constant curvature’, to appear in Advances Studies in
Pure Mathematics.
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