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1. Introduction
Current motion estimation methods use very sophisti-

cated techniques that require high computational complex-
ity, with low time performance, and large resources. The
current framework is considered exhausted. DVSs (Dy-
namic Visual Sensors) efficiently encode and transmit mo-
tion signals (Fig. 1). They are valuable to study the early
visual motion providing motion boundaries that are salient.
Furthermore, new sensors that provide both, frame-based
and event-based information, allow us even more accurate
estimates. Current motion estimation methods are based on
the OFC (Optical Flow Constraint) that assumes the con-
stancy of the intensity. The problem is ill-posed and the
solution usually consists in adding more assumptions about
the flow that increase the error. As DVS provides motion
contours, we compute the contour or normal flow: the pro-
jection of the motion onto the spatial gradient. It does not
require additional constraints and allows us to compute the
3D pose estimation.

Since the absolute intensity is not available the gradient
reconstruction is not possible. Thus, the DVS estimation
is based on the thickness of the motion contours: thicker
boundaries intuitively mean higher velocities. The first step
consists in locating the boundaries, estimate their width, and
finally set the motion direction. Locally, we define a group
of connected pixels that belong to the same boundary C(p)
(horizontally and vertically), with p the point for which we
are estimating the speed (usually the position in the bound-
ary for which the first event was fired). The velocity is esti-
mated as the ratio of the total number of events of connected
pixels and the median number of events E(q) for every con-
nected pixel q (see Eq. (1)).
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The speed estimation is initially performed by accumu-
lating all the events during a fixed interval of time ti. Since
we are constantly receiving new events, it is not obvious

Figure 1. Dynamic Visual Sensor and contour motion estimation.

DVS EPE rel EPE rel Density
Translation 0.003 7.5 9.72%
Diverging 15.4 19.4 5.4%
Yosemite 12.8 11.7 1.37%
Rubberwhale 25.2 40.1 0.53%
Dimetrodon 7.2 9.1 0.78%
Satellite 9.6 26.1 4.17%

Table 1. Relative EPE results for Middlebury sequences.

how to find the beginning and end points of the intensity
variations. We are using a bio-inspired technique collecting
for different amounts of time [0− t1], [0− t2], ..., [0− tn]
and combining the different estimates into the final one.

2. Solving frame-based method problems
Until now, large motions have been solved with compu-

tationally expensive multi-resolution strategies and due to
the scale-to-scale error propagation, not very accurate. Ad-
ditionally, occlusions have to be handled separately and it-
eratively. DVS sensor provide data with a super temporal
resolution. In this case occlusions are not a problem any-
more, and large motions are handled as temporal integra-
tion of smaller ones. Moreover, due to its dynamic range,
motion blurring or light artifacts disappear.

3. Results
We estimate EPE (end-point error) for different se-

quences from Middlebury obtaining in general, better re-
sults than the classic+Nl-fast algorithm from Sun et al.,
2014 for the Table 1. In this case we are integrating in-
tensity and DVS data, and comparing only contour motion.

1


