foto del profesor



ESTRUCTURAS ARQUITECTÓNICAS III

1. - ESTRUCTURAS DE NUDOS RÍGIDOS (I). Método de la pendiente-deformación.

  • Estructuras reticulares de nudos rígidos.
  • Viga empotrada elásticamente.
  • Ecuaciones del método de la pendiente-deformación.

2. - ESTRUCTURAS DE NUDOS RÍGIDOS (II). Método de Cross.

  • Fundamentos del método de Cross.
  • Sistemas intraslacionales.

3. - ESTRUCTURAS DE NUDOS RÍGIDOS (III). Método de Cross.

  • Método de Cross.
  • Sistemas traslacionales.
  • Método indirecto.
  • Pórticos con barras ortogonales.
  • Vigas Vierendeel.

4. - ESTRUCTURAS DE NUDOS RÍGIDOS (IV). Método de Cross.

  • Simplificaciones del método de Cross cuando la estructura es simétrica: carga simétrica y carga antimétrica.

5. - ESTRUCTURAS DE NUDOS RÍGIDOS (V). Métodos aproximados de cálculo de pórticos.

  • Caso de cargas gravitatorias.
  • El método americano.
  • El método de dos ciclos de distribución de momentos.
  • Métodos semiempíricos de las normas EH-91 y ACI 318.

6. - ESTRUCTURAS DE NUDOS RÍGIDOS (VI). Métodos aproximados de cálculo de pórticos.

  • Caso de cargas horizontales: el método del portal o del pórtico y el método de la ménsula o baricéntrico.
  • Comparación entre los métodos del portal y baricéntrico.

7. - ESTRUCTURAS DE NUDOS RÍGIDOS (VII)

  • Pórticos con barras inclinadas.
  • Pórticos a dos aguas.
  • Vigas continuas y pórticos con apoyos elásticos.
  • Pórticos con tirante.

8. - CALCULO MATRICIAL (I)

  • Discretización de la estructura.
  • Elementos y nodos.
  • Grados de libertad.
  • Concepto de rigidez y flexibilidad. Sistemas de coordenadas: sistema de referencia, sistema global o general, sistema local de coordenadas, sistema nodal de coordenadas.
  • Rotación de ejes de coordenadas.
  • Matriz de rigidez de elemento en ejes globales o generales.
  • Método de la rigidez.
  • Aplicación a celosías: matriz de rigidez de barras, ensamblaje de la matriz de rigidez de la estructura y cálculo de la misma.

9. - CALCULO MATRICIAL (II)

  • Estructuras planas de nudos rígidos: matriz de rigidez de elemento en ejes locales, matriz de rigidez de elemento en ejes generales, ensamblaje de la matriz de rigidez de la estructura.
  • Cargas aplicadas sobre los elementos. Ejemplos.
  • Fuerzas de fijación y fuerzas equivalentes en los nodos.

10. - CALCULO MATRICIAL (III)

  • Desplazamiento de apoyos.
  • Cargas térmicas.
  • Apoyos no concordantes: ejes nodales.
  • Barras con libertades.
  • Pórtico triarticulado.

11. - HORMIGÓN ARMADO. Iniciación. Características de los materiales (1).

  • Ventajas e inconvenientes de este material.
  • Normativa oficial.
  • Cálculos por ordenador.
  • Características resistentes del hormigón.
  • Resistencia a compresión: fc, fck, fc,real, fest.
  • Diagrama tensión-deformación.
  • Módulo de deformación.
  • Coeficiente de Poisson.
  • Resistencia a tracción: directa e indirecta.
  • Resistencia a flexotracción.
  • Factores de conversión.
  • Características reológicas del hormigón.
  • Deformaciones atensionales: retracción e hinchamiento. Deformaciones tensionales: instantáneas y fluencia.

12. - HORMIGÓN ARMADO. Características de los materiales (2).

  • Características resistentes del acero.
  • Tipos del mismo.
  • Resistencia característica del acero y capacidad mecánica de las armaduras.
  • Adherencia entre el hormigón y el acero.
  • Distancias entre barras y recubrimientos.
  • Doblado de las armaduras.
  • Anclaje de las armaduras.
  • Anclaje de cercos y estribos.
  • Empalme de armaduras.

13.- HORMIGÓN ARMADO. Teorías sobre la seguridad. Bases de cálculo.

  • Proceso de cálculo de una estructura.
  • Cálculo de esfuerzos.
  • Cálculo de secciones: métodos deterministas y probabilistas.
  • Teoría de los estados límites.
  • Definición de los mismos: estados límites últimos y de servicio.
  • Interdependencia entre control de calidad y probabilidad de ruina.
  • Coeficientes de seguridad de la Instrucción española.
  • Coste generalizado mínimo.
  • Valores característicos y de cálculo de los materiales.
  • Diagramas tensión-deformación de cálculo del hormigón y del acero.
  • Inconvenientes del método de las tensiones admisibles para el cálculo del hormigón armado.
  • Clasificación de las Acciones.
  • Valores característicos y de cálculo.
  • Hipótesis de carga.
  • Combinación de hipótesis.

1 4. - HORMIGÓN ARMADO. Estado L.U. Solicitaciones normales (1).

  • Distintas formas de rotura de secciones de hormigón armado por tensiones normales.
  • Hipótesis para el cálculo de secciones sometidas a solicitaciones normales.
  • Definición de estados de deformación de agotamiento: dominios de deformación.
  • Cuantías mínimas mecánica y geométrica.

15. - HORMIGÓN ARMADO. Estado L.U. Solicitaciones normales (2).

  • Dimensionamiento y comprobación de secciones rectangulares en flexión simple por el método del diagrama rectangular sin tope.

1 6. - HORMIGÓN ARMADO. Estado L.U. Solicitaciones normales (3).

  • Dimensionamiento y comprobación de secciones rectangulares en flexión compuesta o compresión compuesta rectas.
  • Excentricidad mínima.
  • Diagrama de interacción.

17. - HORMIGÓN ARMADO. Estado L.U. Solicitaciones normales (4).

  • Flexión esviada simple o compuesta.
  • Fórmulas simplificadas.
  • Diagramas de roseta.
  • Pilares de hormigón armado: disposición de armaduras.
  • Compresión simple en piezas zunchadas.
  • Pilares compuestos.

18. - HORMIGÓN ARMADO. Estado L.U. Cortante y Torsión.

  • Distribución de tensiones tangenciales en rotura, cuando no hay armadura transversal.
  • Función de la armadura de cortante: analogía de Mörsch.
  • Regla de cosido.
  • Elementos lineales.
  • Placas y losas.
  • Decalaje de la ley de esfuerzos de la armadura de tracción.
  • Disposiciones relativas a las armaduras.
  • Principios fundamentales de la torsión.
  • Torsión de equilibrio y torsión de compatibilidad.
  • Cálculo práctico a torsión: disposición de las armaduras, comprobaciones relativas al hormigón y armaduras.

19. - HORMIGÓN ARMADO. Estado L.U. de pandeo.

  • Momentos de primer y segundo orden.
  • Longitud de pandeo de soportes aislados y de pilares de pórticos.
  • Sistemática del cálculo a pandeo según la Instrucción española.
  • Método aproximado de comprobación de soportes aislados: excentricidad equivalente.
  • Método general de comprobación de soportes aislados.
  • Efecto de la fluencia.
  • Pandeo en flexión esviada compuesta.

20. - HORMIGÓN ARMADO. Estado L.S. de fisuración y deformaciones .

  • Estado límite de fisuración controlada.
  • Limitación del tamaño de fisuras en función del ambiente.
  • Método simplificado.
  • Estado límite de deformación: flechas instantáneas y diferidas.
  • Método de la sección transformada.
  • Concepto y cálculo de la flecha instantánea, total y activa.
  • Condiciones luz-canto útil para omitir el cálculo de la flecha.

21. - CIMENTACIONES SUPERFICIALES (I)

  • Generalidades.
  • Zapatas aisladas.
  • Zapatas corridas bajo muro.
  • Zapatas de medianería con tirante.
  • Zapatas de medianería con viga centradora: dimensionamiento y cálculo de la viga.
  • Zapatas de esquina.

22. - CIMENTACIONES SUPERFICIALES (II)

  • Zapatas combinadas.
  • Zapatas continuas bajo más de dos pilares: viga flotante.
  • Emparrillados de cimentación.
  • Losas de cimentación.

23. - MUROS DE CONTENCIÓN

  • Generalidades.
  • Determinación del empuje: teorías de Rankine y de Coulomb (NBE EC-88).
  • Distintos tipos de muros.
  • Cálculo de los muros: vuelco, deslizamiento, presión de la zapata sobre el terreno.
  • Cálculo de muros en ménsula de hormigón armado.
  • Muros de contrafuertes.
  • Muros de sótano.

BIBLIOGRAFIA RECOMENDADA A LOS ALUMNOS

  • ESTRUCTURAS HIPERESTÁTICAS DE NUDOS RÍGIDOS. M. Guzmán. Granada.*
  • ANÁLISIS ELEMENTAL DE ESTRUCTURAS. Norris, Wilbur y Utku. Mc Graw-Hill.*
  • ANÁLISIS ESTRUCTURAL. Ghali y Neville. Ed. Diana, México.*
  • TEORÍA DE LAS ESTRUCTURAS. Timoshenko y Young. Ed. Urmo, Bilbao.
  • EL MÉTODO DE CROSS Y EL CÁLCULO PRÁCTICO DE LAS CONSTRUCCIONES HIPERESTÁTICAS. Charon. Ed. Aguilar, Madrid.
  • CÁLCULO DE ESTRUCTURAS RETICULARES. Fernández Casado. Ed. Dossat, Madrid.*
  • INICIACIÓN AL CÁLCULO MATRICIAL DE ESTRUCTURAS. M. Guzmán. Granada*
  • INTRODUCCIÓN AL ANÁLISIS ESTRUCTURAL CON MATRICES. Kardestuncer. Mc Graw-Hill.*
  • ANÁLISIS DE ESTRUCTURAS RETICULARES. J.M. Gere y W. Weaver, Jr. Ed. C.E.C.S.A. México.*
  • CÁLCULO DE HORMIGÓN ARMADO. M. Guzmán. Granada.*
  • HORMIGÓN ARMADO. Jiménez Montoya, Meseguer y Morán. Ed. G. Gili, Madrid.
  • PROYECTO Y CALCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO PARA EDIFICIOS. Calavera. Intemac, Madrid. (2 Tomos).*
  • CÁLCULO DE ESTRUCTURAS DE CIMENTACIÓN. J. Calavera. Intemac, Madrid.
  • CIMENTACIONES DE ESTRUCTURAS. Dunham. Mc Graw-Hill, Madrid.
  • TABLAS PARA EL CÁLCULO DE CIMENTACIONES SUPERFICIALES Y MUROS DE SÓTANO. Fiol Femenia. Burgos.
  • MUROS DE CONTENCIÓN Y MUROS DE SÓTANO. J. Calavera. Intemac, Madrid
  • RAZÓN Y SER DE LOS TIPOS ESTRUCTURALES. E. Torroja. C.S.I.C., Madrid
  • PROBLEMAS DE ESTRUCTURAS DE NUDOS RIGIDOS Y HORMIGON ARMADO. F. Lazo. Fotocopias CLEMOT. Granada, 1999 (Actualizado EHE)*

(*): Libros especialmente adaptados a las explicaciones dadas en clase.