Gradient bounds for elliptic problems singular at the boundary

Tommaso Leonori

Granada, 24 de Enero 2012
Let us consider the following class of second order Hamilton Jacobi equations:

$$-\alpha \Delta u + u + H(x, \nabla u) = 0 \quad \text{in } \Omega,$$

where Ω is a smooth (say C^2) bounded domain in \mathbb{R}^N, $N \geq 2$, $\alpha > 0$ and $H(x, p)$ is a Caratheodory function.
Let us consider the following class of second order Hamilton Jacobi equations:

$$-\alpha \Delta u + u + H(x, \nabla u) = 0 \quad \text{in} \ \Omega,$$

where Ω is a smooth (say C^2) bounded domain in \mathbb{R}^N, $N \geq 2$, $\alpha > 0$ and $H(x, p)$ is a Caratheodory function.

We are interested in considering nonlinear Hamiltonians that are singular at the boundary.
Let us consider the following class of second order Hamilton Jacobi equations:

\[-\alpha \Delta u + u + H(x, \nabla u) = 0 \quad \text{in } \Omega,
\]

where \(\Omega\) is a smooth (say \(C^2\)) bounded domain in \(\mathbb{R}^N, N \geq 2\), \(\alpha > 0\) and \(H(x, p)\) is a Caratheodory function.

We are interested in considering nonlinear Hamiltonians that are singular at the boundary.

Our aim is to prove gradient bounds for such class of equations.
The typical structure:

\[-\alpha \Delta u + u + F(x) \cdot \nabla u + g(x, \nabla u) = f(x) \quad \text{in } \Omega,\]

\(F(x) \cdot \nabla u\) is a singular transport term, \(|F(x)| \sim \sigma \text{dist}(x, \partial \Omega)\) with \(F(x)\) "directed outward".

\(g(x, \nabla u)\) is a nonlinear term with "natural growth".

\(f(x)\) is a locally Lipschitz function (possibly singular at \(\partial \Omega\)).

Rmk.: No boundary conditions are prescribed!
The typical structure:

\[-\alpha \Delta u + u + F(x) \cdot \nabla u + g(x, \nabla u) = f(x) \quad \text{in } \Omega ,\]

- \(F(x) \cdot \nabla u\) is a singular transport term,
The typical structure:

\[-\alpha \Delta u + u + F(x) \cdot \nabla u + g(x, \nabla u) = f(x) \quad \text{in} \; \Omega ,\]

- \(F(x) \cdot \nabla u\) is a singular transport term,

\[|F(x)| \sim \frac{\sigma}{\text{dist}(x,\partial\Omega)} \quad \text{with} \; F(x) \text{ “directed outward”}\]
The typical structure:

\[-\alpha \Delta u + u + F(x) \cdot \nabla u + g(x, \nabla u) = f(x) \quad \text{in } \Omega,\]

- $F(x) \cdot \nabla u$ is a singular transport term,

 $$|F(x)| \sim \frac{\sigma}{\text{dist}(x, \partial \Omega)} \text{ with } F(x) \text{ “directed outward”}$$

- $g(x, \nabla u)$ is a nonlinear term with ”natural growth”
The typical structure:

$$-\alpha \Delta u + u + F(x) \cdot \nabla u + g(x, \nabla u) = f(x) \quad \text{in } \Omega,$$

- $F(x) \cdot \nabla u$ is a singular transport term,

 $$|F(x)| \sim \frac{\sigma}{\text{dist}(x, \partial\Omega)} \text{ with } F(x) \text{ “directed outward”}$$

- $g(x, \nabla u)$ is a nonlinear term with ”natural growth”

- $f(x)$ is a locally Lipschitz function (possibly singular at $\partial\Omega$).
The typical structure:

\[-\alpha \Delta u + u + F(x) \cdot \nabla u + g(x, \nabla u) = f(x) \quad \text{in } \Omega ,\]

- $F(x) \cdot \nabla u$ is a singular transport term,

\[|F(x)| \sim \frac{\sigma}{\text{dist}(x, \partial \Omega)} \quad \text{with } F(x) \text{ “directed outward”}\]

- $g(x, \nabla u)$ is a nonlinear term with ”natural growth”

- $f(x)$ is a locally Lipschitz function (possibly singular at $\partial \Omega$).

Rmk.: No boundary conditions are prescribed!
Our aims are:

▶ construct solutions that are $W^{1,\infty}(\Omega)$ despite the singularity of the Hamiltonian term at the boundary;
Our aims are:

- construct solutions that are $W^{1,\infty}(\Omega)$ despite the singularity of the Hamiltonian term at the boundary;

- find suitable conditions in order to have uniqueness of solutions;
Our aims are:

- construct solutions that are $W^{1,\infty}(\Omega)$ despite the singularity of the Hamiltonian term at the boundary;
- find suitable conditions in order to have uniqueness of solutions;
- study the behavior of solutions at the boundary;
- look at the vanishing viscosity (i.e. as $\alpha \to 0$);
- apply such estimates to a problem of large solutions in order to find secondary effects in the asymptotic expansion of the gradient.
Our aims are:

- construct solutions that are $W^{1,\infty}(\Omega)$ despite the singularity of the Hamiltonian term at the boundary;
- find suitable conditions in order to have uniqueness of solutions;
- study the behavior of solutions at the boundary;
- look at the vanishing viscosity (i.e. as $\alpha \to 0$);
Our aims are:

▶ construct solutions that are $W^{1,\infty}(\Omega)$ despite the singularity of the Hamiltonian term at the boundary;

▶ find suitable conditions in order to have uniqueness of solutions;

▶ study the behavior of solutions at the boundary;

▶ look at the vanishing viscosity (i.e. as $\alpha \to 0$);

▶ apply such estimates to a problem of large solutions in order to find secondary effects in the asymptotic expansion of the gradient.
Motivation

The interest on this kind of equations comes from a problem introduced by J.M. Lasry and P.L. Lions in a paper of 1989.
The interest on this kind of equations comes from a problem introduced by J.M. Lasry and P.L. Lions in a paper of 1989. They consider the following SDE

\[
\begin{aligned}
 dX_t &= a_t \, dt + \sqrt{2} \, dB_t, \\
 X_0 &= x \in \Omega,
\end{aligned}
\]

where \(B_t \) is the Brownian motion, and \(a \in C^0(\Omega, \mathbb{R}^N) \) represents the control.
The interest on this kind of equations comes from a problem introduced by J.M. Lasry and P.L. Lions in a paper of 1989.

They consider the following SDE

\[
\begin{align*}
 dX_t &= a_t dt + \sqrt{2} dB_t, \\
 X_0 &= x \in \Omega,
\end{align*}
\]

where B_t is the Brownian motion, and $a \in C^0(\Omega, \mathbb{R}^N)$ represents the control.

“We want to constrain a Brownian motion in a given domain Ω by controlling its drift”.
Questions:

- Are there controls that keep the process inside Ω for any time?
Questions:

- Are there controls that keep the process inside Ω for any time?
- How do they look like?
\[
\begin{align*}
&dX_t = a(X_t)dt + \sqrt{2}dB_t, \\
&X_0 = x \in \Omega,
\end{align*}
\]
Deterministic case

\[
\begin{aligned}
\begin{cases}
 dX_t &= a(X_t)dt + \sqrt{2}dB_t, \\
 X_0 &= x \in \Omega,
\end{cases}
\end{aligned}
\]
Deterministic case

\[
\begin{cases}
\dot{x}(t) = a(x(t)), & \forall t > 0 \\
x(0) \in \Omega.
\end{cases}
\]
Deterministic case

\[
\begin{aligned}
\begin{cases}
\dot{x}(t) = a(x(t)), & \forall t > 0 \\
x(0) \in \Omega.
\end{cases}
\end{aligned}
\]

In the deterministic case it is enough to require that (ν is the outward normal at the boundary)

\[a(x) \cdot \nu(x) < 0 \quad x \sim \partial \Omega.\]
Deterministic case

\[
\begin{cases}
\dot{x}(t) = a(x(t)), & \forall t > 0 \\
x(0) \in \Omega.
\end{cases}
\]

In the deterministic case it is enough to require that \((\nu \text{ is the outward normal at the boundary})\)

\[a(x) \cdot \nu(x) < 0 \quad x \sim \partial \Omega.\]

Indeed we have \((\nabla d(x) = -\nu(x))\)

\[
\frac{d}{dt} d(x(t)) = \dot{x}(t) \nabla d(x) = -a(x(t)) \cdot \nu(x) > 0,
\]
Deterministic case

\[
\begin{cases}
\dot{x}(t) = a(x(t)), \quad \forall t > 0 \\
x(0) \in \Omega.
\end{cases}
\]

In the deterministic case it is enough to require that \((\nu\) is the outward normal at the boundary\)

\[a(x) \cdot \nu(x) < 0 \quad x \sim \partial \Omega.\]

Indeed we have \((\nabla d(x) = -\nu(x))\)

\[\frac{d}{dt} d(x(t)) = \dot{x}(t) \nabla d(x) = -a(x(t)) \cdot \nu(x) > 0,\]

i.e. the distance to the boundary grows, as \(x(t)\) get close to the boundary.
In the stochastic case we do not expect the control to be bounded.
In the stochastic case we do not expect the control to be bounded.

Indeed a bounded control, near the boundary of Ω, cannot contrast the diffusion due to the Brownian motion.
In the stochastic case we do not expect the control to be bounded.

Indeed a bounded control, near the boundary of Ω, cannot contrast the diffusion due to the Brownian motion.

Indeed let τ_x be the first exit time from Ω, thus $\mathbb{E}(\tau_x) = v(x)$ solves

$$
\begin{cases}
-\Delta v - a \cdot \nabla v = 1 & \text{in } \Omega, \\
v = 0 & \text{on } \partial \Omega,
\end{cases}
$$
In the stochastic case we do not expect the control to be bounded.

Indeed a bounded control, near the boundary of Ω, cannot contrast the diffusion due to the Brownian motion.

Indeed let τ_x be the first exit time from Ω, thus $\mathbb{E}(\tau_x) = \nu(x)$ solves

\[
\begin{cases}
-\Delta \nu - a \cdot \nabla \nu = 1 & \text{in } \Omega, \\
\nu = 0 & \text{on } \partial \Omega,
\end{cases}
\]

and thus if a is bounded there exists a unique solution ν bounded and $\mathbb{E}(\tau_x) \leq \|\nu\|_{\infty}$.

In the stochastic case we do not expect the control to be bounded.

Indeed a bounded control, near the boundary of \(\Omega \), cannot contrast the diffusion due to the Brownian motion.

Indeed let \(\tau_x \) be the first exit time from \(\Omega \), thus \(\mathbb{E}(\tau_x) = v(x) \) solves
\[
\begin{cases}
-\Delta v - a \cdot \nabla v = 1 & \text{in } \Omega, \\
v = 0 & \text{on } \partial \Omega,
\end{cases}
\]
and thus if \(a \) is bounded there exists a unique solution \(v \) bounded and \(\mathbb{E}(\tau_x) \leq \|v\|_\infty \).

Typical examples of controls are constructed as functions of the distance to the boundary, that are singular at the boundary itself, i.e.

\[a(x) \sim \psi(d(x)) \quad \text{with} \quad \lim_{d(x) \to 0} |\psi(x)| = +\infty. \]
Motivated by such type of problems, we are mainly interested in nonlinear Hamiltonians $H(x, p)$ where a sort of ”linearization” (I will give more details later) lets appear a singular field.
Motivated by such type of problems, we are mainly interested in nonlinear Hamiltonians $H(x, p)$ where a sort of "linearization" (I will give more details later) lets appear a singular field.

This field has a privileged direction which reminds of the control mechanism acting basically in the normal direction.
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:

Let \(v \) be a solution of \(-\Delta v + v + H(x, \nabla v) = f \) in \(\Omega \) and \(f \) smooth. We want to find an (upper) bound for \(|\nabla v|^2 \) by looking at the equation that it solves. The equation involves the laplacian, so the first step is to write \(\Delta |\nabla v|^2 \).

\[
\partial_{x_i} |\nabla v|^2 = \sum_{k=1}^{N} v_k^2 = \sum_{k=1}^{N} 2v_k v_{ki} = 2 \sum_{k=1}^{N} v_k (v_{ii})_k + v_{ki} v_{ki}.
\]
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions

Let \(v \) be a solution of

\[-\Delta v + v + H(x, \nabla v) = f \quad \text{in} \ \Omega \]

\(H \) and \(f \) smooth.
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions

Let v be a solution of

$$-\Delta v + v + H(x, \nabla v) = f \quad \text{in } \Omega$$

H and f smooth.

We want to find an (upper) bound for $|\nabla v|^2$ by looking at the equation that it solves.
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions
Let v be a solution of

$$-\Delta v + v + H(x, \nabla v) = f \text{ in } \Omega$$

H and f smooth.

We want to find an (upper) bound for $|\nabla v|^2$ by looking at the equation that it solves.

The equation involves the laplacian, so the first step is to write $\Delta |\nabla v|^2$.
Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions

Let v be a solution of

$$-\Delta v + v + H(x, \nabla v) = f \quad \text{in } \Omega$$

H and f smooth.

We want to find an (upper) bound for $|\nabla v|^2$ by looking at the equation that it solves. The equation involves the laplacian, so the first step is to write $\Delta |\nabla v|^2$.

$$\partial_{x_i} |\nabla v|^2 =$$
Bernstein method for nonlinear elliptic equations: Bernstein, Serrin, P.L.Lions

Let v be a solution of

$$-\Delta v + v + H(x, \nabla v) = f \quad \text{in} \ \Omega$$

H and f smooth.

We want to find an (upper) bound for $|\nabla v|^2$ by looking at the equation that it solves.

The equation involves the laplacian, so the first step is to write $\Delta |\nabla v|^2$.

$$\partial_{x_i} |\nabla v|^2 = \partial_{x_i} \sum_{k=1}^{N} v_k^2 =$$
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions

Let \(v \) be a solution of

\[-\Delta v + v + H(x, \nabla v) = f \quad \text{in } \Omega\]

\(H \) and \(f \) smooth.

We want to find an (upper) bound for \(|\nabla v|^2 \) by looking at the equation that it solves.

The equation involves the laplacian, so the first step is to write \(\Delta |\nabla v|^2 \).

\[
\partial_{x_i} |\nabla v|^2 = \partial_{x_i} \sum_{k=1}^{N} v_k^2 = \sum_{k=1}^{N} 2v_k v_{ki}
\]
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions
Let \(v \) be a solution of
\[
-\Delta v + v + H(x, \nabla v) = f \quad \text{in } \Omega
\]
\(H \) and \(f \) smooth.

We want to find an (upper) bound for \(|\nabla v|^2 \) by looking at the equation that it solves.
The equation involves the laplacian, so the first step is to write \(\Delta |\nabla v|^2 \).

\[
\partial_{x_i} |\nabla v|^2 = \partial_{x_i} \sum_{k=1}^{N} v_k^2 = \sum_{k=1}^{N} 2v_k v_{ki}
\]
and consequently
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions
Let \(v \) be a solution of
\[
-\Delta v + v + H(x, \nabla v) = f \quad \text{in } \Omega
\]
\(H \) and \(f \) smooth.

We want to find an (upper) bound for \(|\nabla v|^2 \) by looking at the equation that it solves.
The equation involves the laplacian, so the first step is to write \(\Delta |\nabla v|^2 \).
\[
\partial_{x_i} |\nabla v|^2 = \partial_{x_i} \sum_{k=1}^{N} v_k^2 = \sum_{k=1}^{N} 2v_k v_{ki}
\]
and consequently
\[
\partial_{x_i x_i} |\nabla v|^2
\]
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions
Let \(v \) be a solution of

\[
-\Delta v + v + H(x, \nabla v) = f \quad \text{in } \Omega
\]

\(H \) and \(f \) smooth.

We want to find an (upper) bound for \(|\nabla v|^2\) by looking at the equation that it solves.

The equation involves the laplacian, so the first step is to write \(\Delta |\nabla v|^2 \).

\[
\partial_{x_i} |\nabla v|^2 = \partial_{x_i} \sum_{k=1}^{N} v_k^2 = \sum_{k=1}^{N} 2v_k v_{ki}
\]

and consequently

\[
\partial_{x_i x_i} |\nabla v|^2 = \sum_{k=1}^{N} 2v_k v_{kii} + 2v_{ki} v_{ki}
\]
Gradient bound: Idea of the method

Bernstein method for nonlinear elliptic equations:
Bernstein, Serrin, P.L.Lions

Let v be a solution of

$$-\Delta v + v + H(x, \nabla v) = f \quad \text{in } \Omega$$

H and f smooth.

We want to find an (upper) bound for $|\nabla v|^2$ by looking at the equation that it solves.

The equation involves the laplacian, so the first step is to write $\Delta |\nabla v|^2$.

$$\partial_{x_i} |\nabla v|^2 = \partial_{x_i} \sum_{k=1}^{N} v_k^2 = \sum_{k=1}^{N} 2v_k v_{ki}$$

and consequently

$$\partial_{x_i x_i} |\nabla v|^2 = \sum_{k=1}^{N} 2v_k v_{kii} + 2v_{ki} v_{ki} = 2 \sum_{k=1}^{N} v_k (v_{ii})_k + v_{ki}^2.$$
Hence

\[\partial_{x_ix_i} |\nabla v|^2 = 2 \sum_{k=1}^{N} v_k (v_{ii})_k + v^2_{ki}, \]
Hence
\[\partial_{x_ix_i}|\nabla v|^2 = 2 \sum_{k=1}^{N} v_k (v_{ii})_k + v_{ki}^2 , \]
it means, when we sum with respect to \(i \),
\[\Delta |\nabla v|^2 = 2\nabla v \cdot \nabla \Delta v + 2|D^2 v|^2 . \]
Hence

\[\partial_{x_ix_i} |\nabla v|^2 = 2 \sum_{k=1}^{N} v_k (v_{ii})_k + v_{ki}^2, \]

it means, when we sum with respect to \(i \),

\[\Delta |\nabla v|^2 = 2 \nabla v \cdot \nabla \Delta v + 2 |D^2 v|^2. \]

Thus the expression of the laplacian of \(|\nabla v|^2 \) involves the gradient of the laplacian of \(v \).
Hence

\[\partial_{x_i x_i} |\nabla v|^2 = 2 \sum_{k=1}^{N} v_k (v_{ii})_k + v^2_{ki}, \]

it means, when we sum with respect to \(i \),

\[\Delta |\nabla v|^2 = 2 \nabla v \cdot \nabla \Delta v + 2 |D^2 v|^2. \]

Thus the expression of the laplacian of \(|\nabla v|^2 \) involves the gradient of the laplacian of \(v \).

So we have to use the equation solved by \(v \):

\[-\Delta v + v + H(x, \nabla v) = f \]
Hence

\[\partial_{x_i x_i} |\nabla \nu|^2 = 2 \sum_{k=1}^{N} \nu_k (\nu_{ii})_k + \nu_{ki}^2 , \]

it means, when we sum with respect to \(i \),

\[\Delta |\nabla \nu|^2 = 2 \nabla \nu \cdot \nabla \Delta \nu + 2 |D^2 \nu|^2 . \]

Thus the expression of the laplacian of \(|\nabla \nu|^2 \) involves the gradient of the laplacian of \(\nu \).

So we have to use the equation solved by \(\nu \):

\[\Delta \nu = \nu + H(x, \nabla \nu) - f \]
Example: $H(x, p) \equiv 0$.

$$\Delta|\nabla v|^2 = 2\nabla v \cdot \nabla(\Delta v) + 2|D^2 v|^2,$$

and v satisfies $\Delta v = v - f$.
Example: $H(x, p) \equiv 0$.

\[
\Delta |\nabla v|^2 = 2 \nabla v \cdot \nabla (\Delta v) + 2 |D^2 v|^2,
\]

and v satisfies $\Delta v = v - f$.

Thus dropping the second (positive) term on the right hand side, we deduce

\[
\Delta |\nabla v|^2 \geq 2 |\nabla v|^2 - 2 \nabla v \cdot \nabla f
\]
Example: \(H(x, \rho) \equiv 0 \).

\[
\Delta |\nabla v|^2 = 2 \nabla v \cdot \nabla (\Delta v) + 2 |D^2 v|^2 ,
\]

and \(v \) satisfies \(\Delta v = v - f \).

Thus dropping the second (positive) term on the right hand side, we deduce

\[
\Delta |\nabla v|^2 \geq 2 |\nabla v|^2 - 2 \nabla v \cdot \nabla f \geq |\nabla v|^2 - \| \nabla f \|^2_\infty .
\]
Example: $H(x, p) \equiv 0$.

\[\Delta |\nabla v|^2 = 2 \nabla v \cdot \nabla (\Delta v) + 2 |D^2 v|^2, \]

and v satisfies \[\Delta v = v - f. \]

Thus dropping the second (positive) term on the right hand side, we deduce

\[\Delta |\nabla v|^2 \geq 2 |\nabla v|^2 - 2 \nabla v \cdot \nabla f \geq |\nabla v|^2 - \| \nabla f \|^2. \]

Hence $|\nabla v|^2$ is a subsolution for

\[-\Delta w + w = \| \nabla f \|^2. \]

If $|\nabla v|^2$ has an interior maximum point, thus it is bounded by the square of the norm of f.
Example: \(H(x, p) \equiv 0. \)

\[
\Delta |\nabla v|^2 = 2 \nabla v \cdot \nabla (\Delta v) + 2 |D^2 v|^2,
\]

and \(v \) satisfies \(\Delta v = v - f. \)

Thus dropping the second (positive) term on the right hand side, we deduce

\[
\Delta |\nabla v|^2 \geq 2 |\nabla v|^2 - 2 \nabla v \cdot \nabla f \geq |\nabla v|^2 - \| \nabla f \|_\infty^2.
\]

Hence \(|\nabla v|^2 \) is a subsolution for

\[
-\Delta w + w = \| \nabla f \|_\infty^2.
\]

If \(|\nabla v|^2 \) has an interior maximum point, thus it is bounded by the square of the norm of \(f \). Hence

\[
\sup_{\overline{\Omega}} |\nabla v|^2 \leq \| \nabla f \|_\infty^2 + \sup_{\partial \Omega} |\nabla v|^2
\]
The model equation we have in mind is the following:

\[
\alpha \Delta u + u + B(x) \cdot \nabla u \, d(x) + c(x) |\nabla u|^2 = f(x) \quad \text{in} \quad \Omega,
\]

where \(\alpha > 0 \), \(B(x) \in W^{1, \infty}(\Omega) \), \(d(x) \in C^2(\Omega) \), \(d \equiv \text{dist}(x, \partial \Omega) \) near \(\partial \Omega \) and \(\nabla d = -\nu \) at \(\partial \Omega \), \(c(x) \in W^{1, \infty}(\Omega) \), without any sign condition! i.e. the hamiltonian \(H(x, p) \) is not coercive with respect to \(|p| \); \(f(x) \in W^{1, \infty}_{\text{loc}}(\Omega) \), possibly singular at \(\partial \Omega \).
The model equation

The model equation we have in mind is the following:

\[(E_\alpha) \quad - \alpha \Delta u + u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega,\]

where

\(\alpha > 0,\)
The model equation

The model equation we have in mind is the following:

\[(E_\alpha) - \alpha \Delta u + u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega,\]

where

- \(\alpha > 0,\)
- \(B(x) \in W^{1,\infty}(\Omega)^N,\)
- \(f(x) \in W^{1,\infty}_{\text{loc}}(\Omega),\) possibly singular at \(\partial \Omega.\)
The model equation

The model equation we have in mind is the following:

\[(E_\alpha) \quad - \alpha \Delta u + u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega,\]

where

- \(\alpha > 0,\)
- \(B(x) \in W^{1,\infty}(\Omega)^N,\)
- \(d(x) \in C^2(\Omega), \quad d \equiv \text{dist}(x, \partial\Omega) \text{ near } \partial\Omega \text{ and } \nabla d = -\nu \text{ at } \partial\Omega,\)
The model equation

The model equation we have in mind is the following:

\[(E_\alpha) \quad - \alpha \Delta u + u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega,\]

where

- \(\alpha > 0\),
- \(B(x) \in W^{1,\infty}(\Omega)^N\),
- \(d(x) \in C^2(\Omega), \quad d \equiv \text{dist}(x, \partial \Omega) \text{ near } \partial \Omega \text{ and } \nabla d = -\nu \text{ at } \partial \Omega,\)
- \(c(x) \in W^{1,\infty}(\Omega), \text{ without any sign condition!}\)
The model equation

The model equation we have in mind is the following:

\[(E_\alpha) \quad - \alpha \Delta u + u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in} \ \Omega,\]

where

- \(\alpha > 0,\)
- \(B(x) \in W^{1,\infty}(\Omega)^N,\)
- \(d(x) \in C^2(\Omega), \quad d \equiv \text{dist}(x, \partial \Omega) \text{ near } \partial \Omega \text{ and } \nabla d = -\nu \text{ at } \partial \Omega,\)
- \(c(x) \in W^{1,\infty}(\Omega), \) without any sign condition!
 i.e. the hamiltonian \(H(x, p)\) is not coercive with respect to \(|p|;\)
The model equation we have in mind is the following:

\[
(E_\alpha) \quad - \alpha \Delta u + u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega,
\]

where

- \(\alpha > 0 \),
- \(B(x) \in W^{1,\infty}(\Omega)^N \),
- \(d(x) \in C^2(\Omega) \), \quad d \equiv \text{dist}(x, \partial \Omega) \text{ near } \partial \Omega \text{ and } \nabla d = -\nu \text{ at } \partial \Omega, \)
- \(c(x) \in W^{1,\infty}(\Omega) \), without any sign condition! i.e. the Hamiltonian \(H(x, p) \) is not coercive with respect to \(|p| \);
- \(f(x) \in W^{1,\infty}_{\text{loc}}(\Omega) \), possibly singular at \(\partial \Omega \).
Theorem (T.L., A. Porretta - ARMA 2011)

Let \(c(x) \in W^{1,\infty}(\Omega), B(x) \in W^{1,\infty}(\Omega)^N \) with

\[
B(x) \cdot \nu \geq \sigma > 0, \quad B(x) \cdot \tau = 0 \quad \text{at } \partial \Omega
\]

and \(\sigma > \alpha \) and assume that \(f(x) \in W^{1,\infty}_{loc}(\Omega) \) satisfies near the boundary

\[
|f| \leq \frac{\rho(d)}{d}, \quad |\nabla f| \leq \frac{\rho(d)}{d^2} \quad \text{where } \int_0^1 \frac{\rho(s)}{s} \, ds < \infty.
\]

Then there exists a solution \(u \) of \((E_\alpha)\) in \(u \in C^2(\Omega) \cap W^{1,\infty}(\Omega) \).
Theorem (T.L., A. Porretta - ARMA 2011)

Let \(c(x) \in W^{1,\infty}(\Omega) \), \(B(x) \in W^{1,\infty}(\Omega)^N \) with

\[
B(x) \cdot \nu \geq \sigma > 0, \quad B(x) \cdot \tau = 0 \quad \text{at } \partial \Omega
\]

and \(\sigma > \alpha \) and assume that \(f(x) \in W^{1,\infty}_{\text{loc}}(\Omega) \) satisfies near the boundary

\[
|f| \leq \frac{\rho(d)}{d}, \quad |\nabla f| \leq \frac{\rho(d)}{d^2} \quad \text{where } \int_0^1 \frac{\rho(s)}{s} \, ds < \infty.
\]

Then there exists a solution \(u \) of \((E_\alpha) \) in \(u \in C^2(\Omega) \cap W^{1,\infty}(\Omega) \).

Moreover \(u \) is the unique bounded solution and \(\frac{\partial u(x)}{\partial \nu} \to 0 \) as \(x \to \partial \Omega \).
Theorem (T.L., A. Porretta - ARMA 2011)

Let $c(x) \in W^{1,\infty}(\Omega)$, $B(x) \in W^{1,\infty}(\Omega)^N$ with

$$B(x) \cdot \nu \geq \sigma > 0, \quad B(x) \cdot \tau = 0 \quad \text{at } \partial \Omega$$

and $\sigma > \alpha$ and assume that $f(x) \in W^{1,\infty}_{loc}(\Omega)$ satisfies near the boundary

$$|f| \leq \frac{\rho(d)}{d}, \quad |\nabla f| \leq \frac{\rho(d)}{d^2} \quad \text{where } \int_0^1 \frac{\rho(s)}{s} \, ds < \infty.$$

Then there exists a solution u of (E_α) in $u \in C^2(\Omega) \cap W^{1,\infty}(\Omega)$.

Moreover u is the unique bounded solution and $\frac{\partial u(x)}{\partial \nu} \to 0$ as $x \to \partial \Omega$.

For $\alpha = \sigma$ the same result holds true under stronger hypothesis on ρ, namely

$$\int_0^1 \frac{1}{s} \left(\int_0^s \frac{\rho(\tau)}{\tau} \, d\tau \right) \, ds < \infty.$$
Idea of the Proof.

First, we approximate our equation in order to ”desingularize” it, with solutions that satisfy a Neumann boundary condition at the interior of Ω,

\[
-\alpha \Delta u_n + u_n + B(x) \cdot \nabla u_n + c(x) |\nabla u_n|^2 = f(x) \quad \text{in} \quad \Omega_n
\]

\[
\frac{\partial u_n}{\partial \nu} = 0 \quad \text{on} \quad \partial \Omega_n
\]

Where $\Omega_n = \{x \in \Omega : d(x) > \frac{1}{n}\}$.

We focus our attention on the function $w_n = |\nabla u_n|^2 e^{\theta(d)}$ where θ is a bounded function (but its first derivative, in general, is singular at $d(x) = 0$).
Idea of the Proof.

First, we approximate our equation in order to "desingularize" it, with solutions that satisfy a Neumann boundary condition at the interior of Ω, namely:

\[
\begin{align*}
-\alpha \Delta u_n + u_n + \frac{B(x) \cdot \nabla u_n}{d(x)} + c(x)|\nabla u_n|^2 &= f(x) \quad \text{in } \Omega_n, \\
\frac{\partial u_n}{\partial \nu} &= 0 \quad \text{on } \partial \Omega_n,
\end{align*}
\]

where $\Omega_n = \{ x \in \Omega : d(x) > \frac{1}{n} \}$.
Idea of the Proof.

First, we approximate our equation in order to "desingularize" it, with solutions that satisfy a Neumann boundary condition at the interior of Ω, namely:

\[
\begin{cases}
-\alpha \Delta u_n + u_n + \frac{B(x) \cdot \nabla u_n}{d(x)} + c(x) |\nabla u_n|^2 = f(x) & \text{in } \Omega_n, \\
\frac{\partial u_n}{\partial \nu} = 0 & \text{on } \partial \Omega_n,
\end{cases}
\]

where $\Omega_n = \{ x \in \Omega : d(x) > \frac{1}{n} \}$.

We focus our attention on the function

\[w_n = |\nabla u_n|^2 e^{\theta(d)} \]

where θ is a bounded function (but its first derivative, in general, is singular at $d(x) = 0$).
Step 1. Boundary behavior. We notice that the condition

\[\nabla u_n \cdot \nu = 0 \quad \text{on} \; \partial \Omega_n \]
Step 1. Boundary behavior. We notice that the condition

$$\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n$$

implies that there exists a function μ such that

$$\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + J(\nu(x)) \nabla u_n \quad \text{on } \partial \Omega_n.$$
Step 1. Boundary behavior. We notice that the condition
\[\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n \]
implies that there exists a function \(\mu \) such that
\[\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + J(\nu(x)) \nabla u_n \quad \text{on } \partial \Omega_n. \]
Thus in the direction of \(\nabla u_n \) we have
\[\mu(x) \nu(x) \cdot \nabla u_n = D^2 u_n \nu(x) \cdot \nabla u_n + J(\nu(x)) \nabla u_n \cdot \nabla u_n \quad \text{on } \partial \Omega_n. \]
Step 1. Boundary behavior. We notice that the condition

\[\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n \]

implies that there exists a function \(\mu \) such that

\[\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + J(\nu(x)) \nabla u_n \quad \text{on } \partial \Omega_n. \]

Thus in the direction of \(\nabla u_n \) we have (using the Neumann condition)

\[\mu(x) \nu(x) \cdot \nabla u_n = D^2 u_n \nu(x) \cdot \nabla u_n + J(\nu(x)) \nabla u_n \cdot \nabla u_n \quad \text{on } \partial \Omega_n, \]

\[= 0 \]
Step 1. Boundary behavior. We notice that the condition

$$\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n$$

implies that there exists a function μ such that

$$\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + J(\nu(x)) \nabla u_n \quad \text{on } \partial \Omega_n.$$

Thus in the direction of ∇u_n we have (using the Neumann condition)

$$\mu(x) \nu(x) \cdot \nabla u_n = D^2 u_n \nu(x) \cdot \nabla u_n + J(\nu(x)) \nabla u_n \cdot \nabla u_n = 0 \quad \text{on } \partial \Omega_n,$$

and

$$0 = \frac{1}{2} \nabla |\nabla u_n|^2 \cdot \nu(x) - D^2 d(x) \nabla u_n \cdot \nabla u_n \quad \text{on } \partial \Omega_n.$$
Step 1. Boundary behavior. We notice that the condition
\[\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n \]
implies that there exists a function \(\mu \) such that
\[\mu(x) \, \nu(x) = \nabla(\nabla u_n \cdot \nu(x)) = D^2 u_n \, \nu(x) + J(\nu(x)) \, \nabla u_n \quad \text{on } \partial \Omega_n. \]
Thus in the direction of \(\nabla u_n \) we have (using the Neumann condition)
\[
\mu(x) \, \nu(x) \cdot \nabla u_n = D^2 u_n \, \nu(x) \cdot \nabla u_n + J(\nu(x)) \, \nabla u_n \cdot \nabla u_n = 0 \quad \text{on } \partial \Omega_n,
\]
\[
0 = \frac{1}{2} \nabla|\nabla u_n|^2 \cdot \nu(x) - D^2 d(x) \, \nabla u_n \cdot \nabla u_n \quad \text{on } \partial \Omega_n,
\]
\[
\nabla|\nabla u_n|^2 \cdot \nu \leq 2 \| D^2 d \| \, |\nabla u_n|^2 \quad \text{on } \partial \Omega_n.
\]
Step 1. Boundary behavior. We notice that the condition
\[\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n \]
implies that there exists a function \(\mu(x) \) such that
\[\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + D \nu(x) \nabla u_n \quad \text{on } \partial \Omega_n. \]
Thus in the direction of \(\nabla u_n \) we have (using the Neumann condition)
\[\nabla |\nabla u_n|^2 \cdot \nu \leq 2 \| D^2 d \| \ |\nabla u_n|^2 \quad \text{on } \partial \Omega_n. \]
Step 1. Boundary behavior. We notice that the condition

$$\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n$$

implies that there exists a function $\mu(x)$ such that

$$\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + D \nu(x) \nabla u_n \quad \text{on } \partial \Omega_n.$$

Thus in the direction of ∇u_n we have (using the Neumann condition)

$$\nabla |\nabla u_n|^2 \cdot \nu \leq 2 \| D^2 d \| |\nabla u_n|^2 \quad \text{on } \partial \Omega_n.$$

Thus it is easy to see that on $\partial \Omega_n$,

$$\nabla w_n \cdot \nu = \nabla \left(|\nabla u_n|^2 e^{\theta(d)} \right) \cdot \nu = -\theta'(d)w_n + e^{\theta(d)} \nabla |\nabla u_n|^2 \cdot \nu \leq -\theta'(d)w_n + 2 \| D^2 d \| e^{\theta(d)} |\nabla u_n|^2$$
Step 1. Boundary behavior. We notice that the condition
\[\nabla u_n \cdot \nu = 0 \quad \text{on} \quad \partial \Omega_n \]
is satisfied, which implies that there exists a function \(\mu(x) \) such that
\[\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + D\nu(x) \nabla u_n \quad \text{on} \quad \partial \Omega_n. \]
Thus in the direction of \(\nabla u_n \) we have (using the Neumann condition)
\[\nabla |\nabla u_n|^2 \cdot \nu \leq 2 \| D^2 d \| |\nabla u_n|^2 \quad \text{on} \quad \partial \Omega_n. \]
Thus it is easy to see that on \(\partial \Omega_n \),
\[\nabla w_n \cdot \nu = \nabla \left(|\nabla u_n|^2 e^{\theta(d)} \right) \cdot \nu = -\theta'(d) w_n + e^{\theta(d)} \nabla |\nabla u_n|^2 \cdot \nu \]
\[\leq -\theta'(d) w_n + 2 \| D^2 d \| \underbrace{e^{\theta(d)} |\nabla u_n|^2}_{w_n} \]
Step 1. Boundary behavior. We notice that the condition
\[\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n \]
implies that there exists a function \(\mu(x) \) such that
\[\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + D\nu(x) \nabla u_n \quad \text{on } \partial \Omega_n. \]
Thus in the direction of \(\nabla u_n \) we have (using the Neumann condition)
\[\nabla |\nabla u_n|^2 \cdot \nu \leq 2\|D^2 d\| |\nabla u_n|^2 \quad \text{on } \partial \Omega_n. \]
Thus it is easy to see that on \(\partial \Omega_n \),
\[
\nabla w_n \cdot \nu = \nabla \left(|\nabla u_n|^2 e^{\theta(d)} \right) \cdot \nu = -\theta'(d) w_n + e^{\theta(d)} \nabla |\nabla u_n|^2 \cdot \nu \\
\leq -\theta'(d) w_n + 2\|D^2 d\| \underbrace{e^{\theta(d)} |\nabla u_n|^2}_{w_n} < 0
\]
Step 1. Boundary behavior. We notice that the condition
\[\nabla u_n \cdot \nu = 0 \quad \text{on } \partial \Omega_n \]
implies that there exists a function \(\mu(x) \) such that
\[\mu(x) \nu(x) = \nabla (\nabla u_n \cdot \nu(x)) = D^2 u_n \nu(x) + D\nu(x) \nabla u_n \quad \text{on } \partial \Omega_n. \]
Thus in the direction of \(\nabla u_n \) we have (using the Neumann condition)
\[\nabla |\nabla u_n|^2 \cdot \nu \leq 2 \| D^2 d \| |\nabla u_n|^2 \quad \text{on } \partial \Omega_n. \]
Thus it is easy to see that on \(\partial \Omega_n \),
\[\nabla w_n \cdot \nu = \nabla \left(|\nabla u_n|^2 e^{\theta(d)} \right) \cdot \nu = -\theta'(d)w_n + e^{\theta(d)} \nabla |\nabla u_n|^2 \cdot \nu \]
\[\leq -\theta'(d)w_n + 2 \| D^2 d \| e^{\theta(d)} |\nabla u_n|^2 \]
\[< 0 \]
Thus (Hopf Lemma) the maximum of \(w_n \) is not achieved at the boundary of \(\Omega_n \).
Step 2. Near $\partial \Omega$.

Assume that $c(x) \equiv 0$ (to deal with the general case we need to modify the proof). We fix a $\delta > 0$ (small) and we study the equation solved by $w_n = |\nabla u_n|^2 e^{\theta(d)}$ in $\Omega \setminus \Omega_{\delta}$ for n large enough. Notice that $\alpha \Delta |\nabla u_n|^2 = 2\nabla \alpha \Delta u_n \cdot \nabla u_n + 2\alpha |D^2 u_n|^2$. Using that u_n solves $\alpha \Delta u_n = u_n + B(x) \cdot \nabla u_n - f(x)$, it follows that $\alpha \Delta w_n = 2\alpha \theta' (d) \nabla w_n \cdot \nabla d + B(x) \cdot \nabla w_n d - 2DB \nabla u_n \cdot \nabla u_n d e^{\theta(d)} - 2|\nabla u_n| |\nabla f| e^{\theta(d)} + 2\alpha |D^2 u_n|^2$.

Step 2. Near $\partial \Omega$. Assume that $c(x) \equiv 0$ (to deal with the general case we need to modify the proof).
Step 2. Near \(\partial \Omega \). Assume that \(c(x) \equiv 0 \) (to deal with the general case we need to modify the proof).

We fix a \(\delta > 0 \) (small) and we study the equation solved by
\[
w_n = |\nabla u_n|^2 e^{\theta(d)} \text{ in } \Omega \setminus \Omega_\delta \text{ for } n \text{ large enough.}
\]
Step 2. Near \(\partial \Omega \). Assume that \(c(x) \equiv 0 \) (to deal with the general case we need to modify the proof).

We fix a \(\delta > 0 \) (small) and we study the equation solved by \(w_n = |\nabla u_n|^2 e^{\theta(d)} \) in \(\Omega \setminus \Omega_\delta \) for \(n \) large enough.

Notice that

\[
\alpha \Delta |\nabla u_n|^2 = 2 \nabla \alpha \Delta u_n \cdot \nabla u_n + 2 \alpha |D^2 u_n|^2.
\]
Step 2. Near $\partial \Omega$. Assume that $c(x) \equiv 0$ (to deal with the general case we need to modify the proof).

We fix a $\delta > 0$ (small) and we study the equation solved by $w_n = |\nabla u_n|^2 e^{\theta(d)}$ in $\Omega \setminus \Omega_\delta$ for n large enough. Notice that

$$\alpha \Delta |\nabla u_n|^2 = 2 \nabla \alpha \Delta u_n \cdot \nabla u_n + 2\alpha |D^2 u_n|^2.$$

Using that u_n solves $\alpha \Delta u_n = u_n + \frac{B(x) \cdot \nabla u_n}{d} - f(x)$,
Step 2. Near $\partial \Omega$. Assume that $c(x) \equiv 0$ (to deal with the general case we need to modify the proof).

We fix a $\delta > 0$ (small) and we study the equation solved by $w_n = |\nabla u_n|^2 e^{\theta(d)}$ in $\Omega \setminus \Omega_{\delta}$ for n large enough.

Notice that

$$\alpha \Delta |\nabla u_n|^2 = 2 \nabla \alpha \Delta u_n \cdot \nabla u_n + 2 \alpha |D^2 u_n|^2.$$

Using that u_n solves $\alpha \Delta u_n = u_n + \frac{B(x) \cdot \nabla u_n}{d} - f(x)$, it follows that

$$\alpha \Delta w_n = 2 \alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w}{d}$$

$$+ w_n \left[2 + \alpha \left(\theta''(d) - \theta'(d)^2 + \Delta d \theta'(d)\right) - B(x) \cdot \nabla d \frac{\theta'(d)}{d}\right]$$

$$- 2 \frac{DB \nabla u_n \cdot \nabla u_n}{d} e^{\theta(d)} - 2 |\nabla u_n| |\nabla f| e^{\theta(d)} + 2 \alpha |D^2 u_n|^2$$
Step 2. Near $\partial \Omega$. Assume that $c(x) \equiv 0$ (to deal with the general case we need to modify the proof).
We fix a $\delta > 0$ (small) and we study the equation solved by $w_n = |\nabla u_n|^2 e^{\theta(d)}$ in $\Omega \setminus \Omega_\delta$ for n large enough.
Notice that
\[
\alpha \Delta |\nabla u_n|^2 = 2\nabla \alpha \Delta u_n \cdot \nabla u_n + 2\alpha |D^2 u_n|^2.
\]
Using that u_n solves $\alpha \Delta u_n = u_n + \frac{B(x) \cdot \nabla u_n}{d} - f(x)$, it follows that
\[
\alpha \Delta w_n \geq 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d}
\]
\[
+ w_n \left[2 + \alpha \left(\theta''(d) - \theta'(d)^2 + \Delta d \theta'(d) \right) - B(x) \cdot \nabla d \frac{\theta'(d)}{d} \right]
\]
\[
- 2 \frac{DB \nabla u_n \cdot \nabla u_n}{d} e^{\theta(d)} - 2 |\nabla u_n| |\nabla f| e^{\theta(d)} + 2\alpha |D^2 u_n|^2
\]
\[
\geq - \frac{\|DB\|}{d} |\nabla u_n|^2 \geq 0.
\]
Step 2. Near $\partial \Omega$. Assume that $c(x) \equiv 0$ (to deal with the general case we need to modify the proof).
We fix a $\delta > 0$ (small) and we study the equation solved by $w_n = |\nabla u_n|^2 e^{\theta(d)}$ in $\Omega \setminus \Omega_\delta$ for n large enough. Notice that

$$\alpha \Delta |\nabla u_n|^2 = 2 \nabla \alpha \Delta u_n \cdot \nabla u_n + 2 \alpha |D^2 u_n|^2.$$

Using that u_n solves $\alpha \Delta u_n = u_n + \frac{B(x) \cdot \nabla u_n}{d} - f(x)$, it follows that

$$\alpha \Delta w_n \geq 2 \alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d}$$

$$+ w_n \left[2 + \alpha \left(\theta''(d) - \theta'(d)^2 + \Delta d \theta'(d) \right) - B(x) \cdot \nabla d \frac{\theta'(d)}{d} \right]$$

$$- 2 \frac{DB \nabla u_n \cdot \nabla u_n}{d} e^{\theta(d)} - 2 |\nabla u_n| |\nabla f| e^{\theta(d)} + 2 \alpha |D^2 u_n|^2 \\ \geq - \frac{\|DB\|}{d} |\nabla u_n|^2$$

Recalling that $B \cdot \nu \geq \sigma > \alpha$
Step 2. Near $\partial \Omega$. Assume that $c(x) \equiv 0$ (to deal with the general case we need to modify the proof).
We fix a $\delta > 0$ (small) and we study the equation solved by $w_n = |\nabla u_n|^2 e^{\theta(d)}$ in $\Omega \setminus \Omega_\delta$ for n large enough.

Notice that

$$\alpha \Delta |\nabla u_n|^2 = 2 \nabla \alpha \Delta u_n \cdot \nabla u_n + 2 \alpha |D^2 u_n|^2.$$

Using that u_n solves $\alpha \Delta u_n = u_n + \frac{B(x) \cdot \nabla u_n}{d} - f(x)$, it follows that

$$\alpha \Delta w_n \geq 2 \alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d} + w_n \left[2 + \alpha \left(\theta''(d) - \theta'(d)^2 + \Delta d \theta'(d) \right) + \sigma \frac{\theta'(d)}{d} \right]$$

$$-2 \frac{||DB||}{d} |\nabla u_n|^2 e^{\theta(d)} - 2 |\nabla u_n||\nabla f| e^{\theta(d)} = w_n$$

Recalling that $B \cdot \nu \geq \sigma > \alpha$.
We now choose
\[\theta(s) = \int_0^s \frac{\rho(\sigma)}{\sigma} d\sigma \]
where, we recall \(\frac{\rho(\sigma)}{\sigma} \) is integrable (i.e. \(\rho(0) = 0, \rho > 0 \)).

\[\alpha \Delta w_n \geq 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d} \]
\[+ w_n \left[2 + \alpha \left(\theta''(d) - \theta'(d)^2 + \Delta d \theta'(d) \right) + \sigma \frac{\theta'(d)}{d} \right] \]
\[- 2 \frac{\|DB\|}{d} w_n - 2 \|\nabla u_n\| \|\nabla f\| e^{\theta(d)} \]
We now choose

$$\theta(s) = \int_0^s \frac{\rho(\sigma)}{\sigma} d\sigma$$

where, we recall $\frac{\rho(\sigma)}{\sigma}$ is integrable (i.e. $\rho(0) = 0$, $\rho > 0$).

$$\alpha \Delta w_n \geq 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d}$$

$$+ w_n \left[2 + \alpha \left(\frac{\rho'(d)}{d} - \frac{\rho(d)}{d^2} - \frac{\rho'^2(d)}{d^2} - |\Delta d| \frac{\rho(d)}{d} \right) + \sigma \frac{\rho(d)}{d^2} \right]$$

$$- 2 \frac{||DB||}{d} w_n - 2 |\nabla u_n| |\nabla f| e^{\theta(d)}$$
We now choose

\[\theta(s) = \int_0^s \frac{\rho(\sigma)}{\sigma} \, d\sigma \]

where, we recall \(\frac{\rho(\sigma)}{\sigma} \) is integrable (i.e. \(\rho(0) = 0, \rho > 0 \)).

\[
\alpha \Delta w_n \geq 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d} \\
+ (\sigma - \alpha) \frac{\rho(d)}{d^2} (1 + o(1)) w_n - 2 |\nabla u_n| |\nabla f| e^{\theta(d)}
\]
We now choose

\[\theta(s) = \int_0^s \frac{\rho(\sigma)}{\sigma} \, d\sigma \]

where, we recall \(\frac{\rho(\sigma)}{\sigma} \) is integrable (i.e. \(\rho(0) = 0, \rho > 0 \)).

\[\alpha \Delta w_n \geq 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d} + \left(\sigma - \alpha \right) \frac{\rho(d)}{d^2} (1 + o(1)) w_n - \frac{2 \|
abla u_n\| \|
abla f\| e^{\theta(d)}}{d^2} \]

since \(\|
abla f\| \leq \frac{\rho(d)}{d^2} \)
We now choose
\[\theta(s) = \int_0^s \frac{\rho(\sigma)}{\sigma} \, d\sigma \]
where, we recall \(\frac{\rho(\sigma)}{\sigma} \) is integrable (i.e. \(\rho(0) = 0, \rho > 0 \)).

\[-\alpha \Delta w_n + 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d} + \frac{(\sigma - \alpha)}{2} \frac{\rho(d)}{d^2} w_n \leq C_0 \frac{\rho(d)}{d^2}.\]
We now choose

$$\theta(s) = \int_0^s \frac{\rho(\sigma)}{\sigma} d\sigma$$

where, we recall $\frac{\rho(\sigma)}{\sigma}$ is integrable (i.e. $\rho(0) = 0$, $\rho > 0$).

$$-\alpha \Delta w_n + 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d} + \frac{(\sigma - \alpha)}{2} \frac{\rho(d)}{d^2} w_n \leq C_0 \frac{\rho(d)}{d^2}.$$

Thus on the interior maximum points $w_n \leq \frac{2}{(\sigma - \alpha)} C_0$.

This implies $\sup_{\Omega \setminus \Omega_\delta} |\nabla u_n|^2 \leq \tilde{C}_0 + \sup_{\partial \Omega \delta} |\nabla u_n|^2$.

Thus on the interior maximum points $w_n \leq \frac{2}{(\sigma - \alpha)} C_0$.

We now choose

$$\theta(s) = \int_0^s \frac{\rho(\sigma)}{\sigma} d\sigma$$

where, we recall $\frac{\rho(\sigma)}{\sigma}$ is integrable (i.e. $\rho(0) = 0$, $\rho > 0$).

$$-\alpha \Delta w_n + 2\alpha \theta'(d) \nabla w_n \cdot \nabla d + \frac{B(x) \cdot \nabla w_n}{d} + \frac{(\sigma - \alpha)}{2} \frac{\rho(d)}{d^2} w_n \leq C_0 \frac{\rho(d)}{d^2}.$$

Thus on the interior maximum points $w_n \leq \frac{2}{(\sigma - \alpha)} C_0$.

This implies

$$\sup_{\Omega_n \setminus \Omega_\delta} |\nabla u_n|^2 \leq \widetilde{C}_0 + \sup_{\partial \Omega_\delta} |\nabla u_n|^2.$$
For the case $c(x) \neq 0$ we have to deal with

\[w_n = |\nabla u_n|^2 e^{\theta(d)} (1 + \beta(u_n)) \]

where β is a suitable smooth, positive bounded function (computations in this case are much more heavy).
For the case $c(x) \neq 0$ we have to deal with

$$w_n = |\nabla u_n|^2 e^{\theta(d)} (1 + \beta(u_n))$$

where β is a suitable smooth, positive bounded function (computations in this case are much more heavy). The advantage of taking this function is that when we compute the laplacian of w_n there appears a term that involves

$$\alpha \Delta w_n = \ldots + |\nabla u_n|^2 e^{\theta(d)} \Delta (1 + \beta(u_n)) + \ldots$$
For the case $c(x) \neq 0$ we have to deal with
\[w_n = |\nabla u_n|^2 e^{\theta(d)} (1 + \beta(u_n)) \]
where β is a suitable smooth, positive bounded function (computations in this case are much more heavy).
The advantage of taking this function is that when we compute the laplacian of w_n there appears a term that involves
\[\Delta w_n = \ldots + |\nabla u_n|^2 e^{\theta(d)} [\beta'(u_n) \Delta u_n + \beta''(u_n) |\nabla u_n|^2] + \ldots \]
Tedious computations yield to
\[\sup_{\overline{\Omega} \setminus \Omega_\delta} |\nabla u_n|^2 \leq C + \sup_{\partial \Omega_\delta} |\nabla u_n|^2. \]
For the case $c(x) \neq 0$ we have to deal with
\[w_n = |\nabla u_n|^2 e^{\theta(d)}(1 + \beta(u_n)) \]
where β is a suitable smooth, positive bounded function (computations in this case are much more heavy).

The advantage of taking this function is that when we compute the laplacian of w_n there appears a term that involves
\[\Delta w_n = \ldots + |\nabla u_n|^2 e^{\theta(d)} \left[\beta'(u_n)\Delta u_n + \beta''(u_n)|\nabla u_n|^2 \right] + \ldots \]

Tedious computations yield to
\[\sup_{\Omega \setminus \Omega_{\delta}} |\nabla u_n|^2 \leq C + \sup_{\partial \Omega_{\delta}} |\nabla u_n|^2. \]

Step 3. Interior estimate. By classical elliptic regularity ([GT]):
\[\forall K \subset \subset \Omega, \quad \sup_K |\nabla u_n|^2 \leq C(\text{dist} (K, \partial \Omega)). \]
For the case $c(x) \neq 0$ we have to deal with
\[w_n = |\nabla u_n|^2 e^{\theta(d)}(1 + \beta(u_n)) \]
where β is a suitable smooth, positive bounded function (computations in this case are much more heavy). The advantage of taking this function is that when we compute the laplacian of w_n there appears a term that involves
\[
\Delta w_n = \ldots + |\nabla u_n|^2 e^{\theta(d)} \left[\beta'(u_n) \Delta u_n + \beta''(u_n)|\nabla u_n|^2 \right] + \ldots
\]
Tedious computations yield to
\[
\sup_{\Omega \setminus \Omega_\delta} |\nabla u_n|^2 \leq C + \sup_{\partial \Omega_\delta} |\nabla u_n|^2.
\]

Step 3. Interior estimate. By classical elliptic regularity ([GT]):
\[
\forall K \subset \subset \Omega, \quad \sup_K |\nabla u_n|^2 \leq C \left(\text{dist} \ (K, \partial \Omega) \right).
\]

Thus we deduce that
\[
\exists c > 0 : |\nabla u_n|^2 \leq c \quad \text{in} \ \Omega.
\]
Uniqueness

When $H(x, \cdot)$ is convex, uniqueness holds in a suitable class of functions. This is a consequence of a classical principle that is well known in the linear case. If there exists $\phi \in C^2(\Omega)$ such that

$$-\alpha \Delta \phi + \phi + H(x, \nabla \phi) \leq 0 \text{ in } \Omega,$$
$$\phi = -\infty \text{ on } \Omega,$$

then uniqueness holds for solutions such that $u = o(|\phi|)$. In the case of equation (E_{\alpha}) it holds with $\phi \sim \log(d)$. Thus bounded solutions are unique!
Uniqueness

When $H(x, \cdot)$ is convex, uniqueness holds in a suitable class of functions.
Uniqueness

When $H(x, \cdot)$ is convex, uniqueness holds in a suitable class of functions. This is consequence of a classical principle that is well known in the linear case.
When $H(x, \cdot)$ is convex, uniqueness holds in a suitable class of functions. This is consequence of a classical principle that is well known in the linear case.

If $\exists \varphi \in C^2(\Omega)$ such that

$$\begin{cases} -\alpha \Delta \varphi + \varphi + H(x, \nabla \varphi) \leq 0 & \text{in } \Omega, \\ \varphi = -\infty & \text{on } \Omega, \end{cases}$$

then uniqueness holds for solutions such that $u = o(|\varphi|)$. In the case of equation \((E\alpha)\) it holds with $\varphi \sim \log(d)$. Thus bounded solutions are unique!
When $H(x, \cdot)$ is convex, uniqueness holds in a suitable class of functions. This is a consequence of a classical principle that is well known in the linear case. If $\exists \varphi \in C^2(\Omega)$ such that
\[
\begin{align*}
-\alpha \Delta \varphi + \varphi + H(x, \nabla \varphi) & \leq 0 \quad \text{in } \Omega, \\
\varphi & = -\infty \quad \text{on } \Omega,
\end{align*}
\]
then uniqueness holds for solutions such that $u = o(|\varphi|)$.

When $H(x, \cdot)$ is convex, uniqueness holds in a suitable class of functions. This is consequence of a classical principle that is well known in the linear case. If $\exists \varphi \in C^2(\Omega)$ such that
\begin{align*}
\begin{cases}
-\alpha \Delta \varphi + \varphi + H(x, \nabla \varphi) \leq 0 & \text{in } \Omega, \\
\varphi = -\infty & \text{on } \Omega,
\end{cases}
\end{align*}
then uniqueness holds for solutions such that $u = o(|\varphi|)$. In the case of equation (E_α) it holds with $\varphi \sim \log(d)$.
When $H(x, \cdot)$ is convex, uniqueness holds in a suitable class of functions. This is consequence of a classical principle that is well known in the linear case.

If $\exists \varphi \in C^2(\Omega)$ such that

$$
\begin{cases}
-\alpha \Delta \varphi + \varphi + H(x, \nabla \varphi) \leq 0 & \text{in } \Omega, \\
\varphi = -\infty & \text{on } \Omega,
\end{cases}
$$

then uniqueness holds for solutions such that $u = o(|\varphi|)$.

In the case of equation (E_α) it holds with $\varphi \sim \log(d)$.

Thus bounded solutions are unique!
Let \(u \) be a solution of \((E_\alpha)\) and let us define \(u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi \).
Let u be a solution of (E_α) and let us define $u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi$. Thus

$$-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon)$$

$$= (1 + \varepsilon) (-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).$$
Let \(u \) be a solution of \((E_\alpha)\) and let us define \(u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi \). Thus
\[
-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) = (1 + \varepsilon)(-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).
\]
Since \(\nabla u = \frac{1}{1+\varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1+\varepsilon} \nabla \varphi \) using that \(H(x, \cdot) \) is convex, we have
\[
H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon)H(x, \nabla u) - \varepsilon H(x, \nabla \varphi)
\]
Let u be a solution of (E_{α}) and let us define $u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi$. Thus

$$-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon)$$

$$= (1 + \varepsilon) (-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).$$

Since $\nabla u = \frac{1}{1+\varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1+\varepsilon} \nabla \varphi$ using that $H(x, \cdot)$ is convex, we have

$$H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon) H(x, \nabla u) - \varepsilon H(x, \nabla \varphi)$$

and thus $-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \geq 0$. ($u_\varepsilon$ is a super, $u_\varepsilon \to +\infty$ at $\partial \Omega$)
Let u be a solution of (E_α) and let us define $u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi$. Thus

$$-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon)$$

$$= (1 + \varepsilon) (-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).$$

Since $\nabla u = \frac{1}{1+\varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1+\varepsilon} \nabla \varphi$ using that $H(x, \cdot)$ is convex, we have

$$H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon)H(x, \nabla u) - \varepsilon H(x, \nabla \varphi)$$

and thus $-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \geq 0$. ($u_\varepsilon$ is a super, $u_\varepsilon \to +\infty$ at $\partial \Omega$)

Let ν be any subsolution of (E_α) such that $\nu = o(\varphi)$ as $d(x) \to 0$. We define $z_\varepsilon = u_\varepsilon - \nu$.
Let u be a solution of (E_α) and let us define $u_\varepsilon = (1 + \varepsilon) u - \varepsilon \varphi$. Thus

$$-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon)$$

$$= (1 + \varepsilon) (-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).$$

Since $\nabla u = \frac{1}{1+\varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1+\varepsilon} \nabla \varphi$ using that $H(x, \cdot)$ is convex, we have

$$H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon) H(x, \nabla u) - \varepsilon H(x, \nabla \varphi)$$

and thus $-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \geq 0$. ($u_\varepsilon$ is a super, $u_\varepsilon \to +\infty$ at $\partial \Omega$)

Let v be any subsolution of (E_α) such that $v = o(\varphi)$ as $d(x) \to 0$. We define $z_\varepsilon = u_\varepsilon - v$, then

$$-\alpha \Delta z_\varepsilon + z_\varepsilon + H(x, \nabla u_\varepsilon) - H(x, \nabla v) \geq 0.$$
Let u be a solution of (E_α) and let us define $u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi$. Thus

$$-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon)$$

$$= (1 + \varepsilon)(-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).$$

Since $\nabla u = \frac{1}{1+\varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1+\varepsilon} \nabla \varphi$ using that $H(x, \cdot)$ is convex, we have

$$H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon)H(x, \nabla u) - \varepsilon H(x, \nabla \varphi)$$

and thus $-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \geq 0$. ($u_\varepsilon$ is a super, $u_\varepsilon \to +\infty$ at $\partial \Omega$)

Let v be any subsolution of (E_α) such that $v = o(\varphi)$ as $d(x) \to 0$. We define $z_\varepsilon = u_\varepsilon - v$, then

$$-\alpha \Delta z_\varepsilon + z_\varepsilon + H(x, \nabla u_\varepsilon) - H(x, \nabla v) \geq 0.$$

Since z_ε blows-up at the boundary, there exists (at least) one point x_0 such that z_ε achieves its minimum in x_0;
Let \(u \) be a solution of \((E_\alpha)\) and let us define \(u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi \). Thus

\[
-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) = (1 + \varepsilon)(-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).
\]

Since \(\nabla u = \frac{1}{1+\varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1+\varepsilon} \nabla \varphi \) using that \(H(x, \cdot) \) is convex, we have

\[
H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon)H(x, \nabla u) - \varepsilon H(x, \nabla \varphi)
\]

and thus

\[
-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \geq 0. \quad (u_\varepsilon \text{ is a super, } u_\varepsilon \to +\infty \text{ at } \partial \Omega)
\]

Let \(\nu \) be any subsolution of \((E_\alpha)\) such that \(\nu = o(\varphi) \) as \(d(x) \to 0 \). We define \(z_\varepsilon = u_\varepsilon - \nu \), then

\[
-\alpha \Delta z_\varepsilon + z_\varepsilon + H(x, \nabla u_\varepsilon) - H(x, \nabla \nu) \geq 0.
\]

Since \(z_\varepsilon \) blows-up at the boundary, there exists (at least) one point \(x_0 \) such that \(z_\varepsilon \) achieves its minimum in \(x_0 \); \(u_\varepsilon \) and \(\nu \) are smooth, then \(\Delta z_\varepsilon(x_0) \geq 0 \) and \(\nabla z_\varepsilon(x_0) = 0 \) (i.e. \(\nabla u_\varepsilon(x_0) = \nabla \nu(x_0) \)).

\[
z_\varepsilon \geq 0
\]
Let u be a solution of (E_{α}) and let us define $u_\varepsilon = (1 + \varepsilon)u - \varepsilon \phi$. Thus

$$-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) = (1 + \varepsilon)(-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \phi + \phi) + H(x, \nabla u_\varepsilon).$$

Since $\nabla u = \frac{1}{1 + \varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1 + \varepsilon} \nabla \phi$ using that $H(x, \cdot)$ is convex, we have

$$H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon)H(x, \nabla u) - \varepsilon H(x, \nabla \phi)$$

and thus $-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \geq 0$. ($u_\varepsilon$ is a super, $u_\varepsilon \to +\infty$ at $\partial \Omega$)

Let v be any subsolution of (E_{α}) such that $v = o(\phi)$ as $d(x) \to 0$. We define $z_\varepsilon = u_\varepsilon - v$, then

$$-\alpha \Delta z_\varepsilon + z_\varepsilon + H(x, \nabla u_\varepsilon) - H(x, \nabla v) \geq 0.$$

Since z_ε blows-up at the boundary, there exists (at least) one point x_0 such that z_ε achieves its minimum in x_0; u_ε and v are smooth, then $\Delta z_\varepsilon(x_0) \geq 0$ and $\nabla z_\varepsilon(x_0) = 0$ (i.e. $\nabla u_\varepsilon(x_0) = \nabla v(x_0)$).

$$z_\varepsilon \geq 0 \implies u_\varepsilon \geq v.$$
Let u be a solution of (E_α) and let us define $u_\varepsilon = (1 + \varepsilon)u - \varepsilon \varphi$. Thus

$$
-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \\
= (1 + \varepsilon) (-\alpha \Delta u + u) - \varepsilon (-\alpha \Delta \varphi + \varphi) + H(x, \nabla u_\varepsilon).
$$

Since $\nabla u = \frac{1}{1+\varepsilon} \nabla u_\varepsilon + \frac{\varepsilon}{1+\varepsilon} \nabla \varphi$ using that $H(x, \cdot)$ is convex, we have

$$
H(x, \nabla u_\varepsilon) \geq (1 + \varepsilon)H(x, \nabla u) - \varepsilon H(x, \nabla \varphi)
$$

and thus $-\alpha \Delta u_\varepsilon + u_\varepsilon + H(x, \nabla u_\varepsilon) \geq 0$. ($u_\varepsilon$ is a super, $u_\varepsilon \to +\infty$ at $\partial \Omega$)

Let v be any subsolution of (E_α) such that $v = o(\varphi)$ as $d(x) \to 0$. We define $z_\varepsilon = u_\varepsilon - v$, then

$$
-\alpha \Delta z_\varepsilon + z_\varepsilon + H(x, \nabla u_\varepsilon) - H(x, \nabla v) \geq 0.
$$

Since z_ε blows-up at the boundary, there exists (at least) one point x_0 such that z_ε achieves its minimum in x_0; u_ε and v are smooth, then $\Delta z_\varepsilon(x_0) \geq 0$ and $\nabla z_\varepsilon(x_0) = 0$ (i.e. $\nabla u_\varepsilon(x_0) = \nabla v(x_0)$).

$$
z_\varepsilon \geq 0 \quad \Rightarrow \quad u_\varepsilon \geq v \quad \Rightarrow \quad u \geq v
$$
Regularity and boundary conditions

This statement can be very useful as a regularity result.

Any bounded solution of \((E_\alpha)\) is \(W^{1,\infty}(\Omega)\).

Notice that this result of uniqueness/regularity holds true without knowing any information on the solution at the boundary!

Since the solution belongs to \(W^{1,\infty}(\Omega)\), there exists the trace at \(\partial\Omega\) and thus, for any \(x_0 \in \partial\Omega\) we can rescale the equation near the boundary, we make a blow-up and it follows that the solution satisfies

\[\lim_{x \to x_0 \in \partial\Omega} \frac{\partial}{\partial \nu}(u(x)) = 0.\]

This in particular means that the homogeneous Neumann boundary condition is intrinsic in the equation.
This statement can be very useful as a regularity result.

Any bounded solution of \((E_\alpha)\) is \(W^{1,\infty}(\Omega)\).

Notice that this result of uniqueness/regularity holds true without knowing any information on the solution at the boundary!
Regularity and boundary conditions

This statement can be very useful as a regularity result.

Any bounded solution of \((E_\alpha)\) is \(W^{1,\infty}(\Omega)\).

Notice that this result of uniqueness/regularity holds true without knowing any information on the solution at the boundary!

Since the solution belongs to \(W^{1,\infty}(\Omega)\), there exists the trace at \(\partial\Omega\) ad thus, for any \(x_0 \in \partial\Omega\) we can rescale the equation near the boundary, we make a blow-up and it follows that the solution satisfies

\[
\lim_{x \to x_0 \in \partial\Omega} \frac{\partial u(x)}{\partial \nu} = 0.
\]
This statement can be very useful as a regularity result.

Any bounded solution of \((E_\alpha)\) is \(W^{1,\infty}(\Omega)\).

Notice that this result of uniqueness/regularity holds true without knowing any information on the solution at the boundary!

Since the solution belongs to \(W^{1,\infty}(\Omega)\), there exists the trace at \(\partial \Omega\) ad thus, for any \(x_0 \in \partial \Omega\) we can rescale the equation near the boundary, we make a blow-up and it follows that the solution satisfies

\[
\lim_{x \to x_0 \in \partial \Omega} \frac{\partial u(x)}{\partial \nu} = 0.
\]

This in particular means that the homogeneous Neumann boundary condition is intrinsic in the equation.
Optimality of $\sigma \geq \alpha$: the Fichera condition

In the linear framework we can observe that the condition $\sigma \geq \alpha$ is optimal.
Optimality of $\sigma \geq \alpha$: the Fichera condition

In the linear framework we can observe that the condition $\sigma \geq \alpha$ is optimal. Indeed for linear equations as

$$a_{ij}\partial_{ij}^2 v + b_j v_j + cv = f \quad \text{in } \Omega$$

you can prescribe Dirichlet boundary data in the set

$$\Gamma_d = \left\{ x \in \partial \Omega : a_{ij}(x)\nu(x)\nu(x) > 0 \text{ or } \sum_j \left(b_j - \sum_i \partial_{x_i} a_{ij} \right) \nu_j > 0 \right\}$$

Assume that $c(x) \equiv 0$ in (E_α) and multiply the equation by $d(x)$, hence we have:

$$-\alpha d(x)\Delta u + d(x)u + B(x) \cdot \nabla u - d(x)f(x) = 0 \quad \text{in } \Omega.$$

Thus if $\sigma < \alpha$ our estimate should depend on the boundary value of u!
Generalizations

\[-\alpha \Delta u + u + H(x, \nabla u) = 0 \quad \text{in } \Omega , \]
Generalizations

\[-\alpha \Delta u + u + H(x, \nabla u) = 0 \quad \text{in } \Omega\,, \text{ where } H(x, p)\]
satisfies a local natural growth condition, and general assumptions, as

\[|H(x, p) - p \cdot H_p(x, p)| \leq C_0 |p|^2 + \frac{\rho(d)}{d}\,\]

\[H_x(x, p) \cdot \frac{p}{|p|} \geq -\frac{\rho(d)}{d^2} |p| - \frac{\rho(d)}{d} |p|^2 - \frac{\rho(d)}{d^2}\,\]

\[H_p(x, p) \cdot \nu(x) \geq \frac{\sigma}{d} - C_1 |p|,\]

and either

\[\sigma > \alpha\,, \quad \text{and} \quad \int_0^1 \frac{\rho(t)}{t} dt < \infty\,,\]

or

\[\sigma = \alpha\,, \quad \text{and} \quad \int_0^1 \frac{1}{t} \left(\int_0^t \frac{\rho(\tau)}{\tau} d\tau\right) dt < \infty\,.\]
Generalizations

\[-\alpha \Delta u + u + H(x, \nabla u) = 0 \]
Generalizations

- $-\alpha \Delta u + u + H(x, \nabla u) = 0$
- Oblique derivative
Generalizations

- $-\alpha \Delta u + u + H(x, \nabla u) = 0$
- Oblique derivative
- Elliptic operator with smooth coefficients (say $W^{1,\infty}(\Omega)$)
Generalizations

- $-\alpha \Delta u + u + H(x, \nabla u) = 0$
- Oblique derivative
- Elliptic operator with smooth coefficients (say $W^{1,\infty}(\Omega)$)
- Weighted Lipschitz estimates (Hölder-type estimates, blow-up solutions...
Stability (first order equation)

As we saw, the most important role in such estimates is played by the singular transport term,
Stability (first order equation)

As we saw, the most important role in such estimates is played by the singular transport term, i.e. such estimates seem to be independent on the ellipticity of the operator.
Stability (first order equation)

As we saw, the most important role in such estimates is played by the singular transport term, i.e. such estimates seem to be independent on the ellipticity of the operator.

Question: are such kind of estimates stable with respect to the limit as $\alpha \to 0$?
Stability (first order equation)

As we saw, the most important role in such estimates is played by the singular transport term, i.e. such estimates seem to be independent on the ellipticity of the operator.

Question: are such kind of estimates stable with respect to the limit as $\alpha \to 0$?

In other words:
As we saw, the most important role in such estimates is played by the singular transport term, i.e. such estimates seem to be independent on the ellipticity of the operator.

Question: are such kind of estimates stable with respect to the limit as $\alpha \to 0$?

In other words:

are we able to prove the existence of a Lipschitz solution for the equation

$$(E_0) \quad u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega$$

?
As we saw, the most important role in such estimates is played by the singular transport term, i.e. such estimates seem to be independent on the ellipticity of the operator.

Question: are such kind of estimates stable with respect to the limit as $\alpha \to 0$?

In other words:

are we able to prove the existence of a Lipschitz solution for the equation

$$(E_0) \quad u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega$$

In order to give a positive answer to such a question, we have to straight some hypotheses on the nonlinear term.
Stability (first order equation)

\[(E_0) \quad u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega\]
Stability (first order equation)

\[
(E_0) \quad u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x) |\nabla u|^2 = f(x) \quad \text{in } \Omega
\]

Two ingredients are needed:

- In order to get interior gradient bound, \(c(x)\) has to be positive in \(\Omega\) (possibly vanishing at \(\partial \Omega\));
- An approximation that involves a vanishing transport term, i.e., the solutions of \((E_0)\) are limit of \(u - \alpha \Delta u + \alpha \nu \cdot \nabla u d(x) + B(x) \cdot \nabla u d(x) + c(x) |\nabla u|^2 = f(x) \) in \(\Omega\).
Stability (first order equation)

\[(E_0) \quad u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega\]

Two ingredients are needed:

- In order to get interior gradient bound \(c(x)\) has to be positive in \(\Omega\) (possibly vanishing at \(\partial \Omega\)).
Stability (first order equation)

\[(E_0) \quad u + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega\]

Two ingredients are needed:

- In order to get interior gradient bound \(c(x)\) has to be positive in \(\Omega\) (possibly vanishing at \(\partial \Omega\));
- an approximation that involves a vanishing transport term i.e. the solutions of \((E_0)\) are limit of

\[u - \alpha \Delta u + \alpha \frac{\nu \cdot \nabla u}{d(x)} + \frac{B(x) \cdot \nabla u}{d(x)} + c(x)|\nabla u|^2 = f(x) \quad \text{in } \Omega\].
Theorem (T.L., A. Porretta - ARMA 2011)

Assume that $B(x) \in W^{1,\infty}(\Omega)^N$ is such that $B(x) \cdot \nu > 0$, and $f(x) \in W^{1,\infty}_{loc}(\Omega)$ satisfies near the boundary

$$|f| \leq \frac{\rho(d)}{d}, \quad |\nabla f| \leq \frac{\rho(d)}{d^2} \quad \text{where} \quad \int_0^1 \frac{\rho(s)}{s} \, ds < \infty.$$

Moreover suppose that $c(x) \in W^{1,\infty}_{loc}(\Omega)$ is a positive function that satisfies the following condition near $\partial \Omega$:

$$|\nabla c(x)|^2 \leq \frac{\rho(d)}{d^2} c(x).$$
Theorem (T.L., A. Porretta - ARMA 2011)

Assume that $B(x) \in W^{1,\infty}(\Omega)^N$ is such that $B(x) \cdot \nu > 0$, and $f(x) \in W^{1,\infty}_{loc}(\Omega)$ satisfies near the boundary

$$|f| \leq \frac{\rho(d)}{d}, \quad |\nabla f| \leq \frac{\rho(d)}{d^2} \quad \text{where} \quad \int_0^1 \frac{\rho(s)}{s} \, ds < \infty.$$

Moreover suppose that $c(x) \in W^{1,\infty}_{loc}(\Omega)$ is a positive function that satisfies the following condition near $\partial \Omega$:

$$|\nabla c(x)|^2 \leq \frac{\rho(d)}{d^2} c(x).$$

Then there exists $u \in W^{1,\infty}(\Omega)$ which is a viscosity solution of (E_0) and $\frac{\partial u}{\partial \nu} = 0$ (in the viscosity sense) at $\partial \Omega$.
Application/motivation:

A stochastic control problem with state constraint.
A stochastic control problem with state constraint.

Let’s go back to the model introduced by J.M. Lasry and P.L. Lions, and let us consider the SDE:

\[
\begin{aligned}
dX_t &= a_t dt + \sqrt{2} dB_t \\
X_0 &= x \in \Omega.
\end{aligned}
\]

We have already noticed that the class of controls that confine the process inside \(\Omega \) a.s. for any \(t \) is not empty.
Application/motivation:

A stochastic control problem with state constraint.

Let’s go back to the model introduced by J.M. Lasry and P.L. Lions, and let us consider the SDE:

\[
\begin{align*}
 dX_t &= a_t dt + \sqrt{2} dB_t \\
 X_0 &= x \in \Omega.
\end{align*}
\]

We have already noticed that the class of controls that confine the process inside Ω a.s. for any t is not empty.

We restrict our choice to the controls (feedback controls) that depend only on the state (X_t).
A stochastic control problem with state constraint.

Let's go back to the model introduced by J.M. Lasry and P.L. Lions, and let us consider the SDE:

\[
\begin{align*}
 dX_t &= a_t \, dt + \sqrt{2} \, dB_t \\
 X_0 &= x \in \Omega.
\end{align*}
\]

We have already noticed that the class of controls that confine the process inside \(\Omega \) a.s. for any \(t \) is not empty.

We restrict our choice to the controls (feedback controls) that depend only on the state \((X_t) \).

Among these controls, we want to select one that satisfies a criterion of optimality.
Thus, let \mathcal{A} be the class of all (feedback) controls that keep the process X_t inside the domain Ω for any time $t > 0$ a.s..
Thus, let \mathcal{A} be the class of all (feedback) controls that keep the process X_t inside the domain Ω for any time $t > 0$ a.s..

The criterion for optimality proposed by Lasry and Lions is given by the cost functional:
Thus, let \mathcal{A} be the class of all (feedback) controls that keep the process X_t inside the domain Ω for any time $t > 0$ a.s..

The criterion for optimality proposed by Lasry and Lions is given by the cost functional:

\mathbb{E} is the expected value, $C_q > 0$ and $\frac{1}{q'} + \frac{1}{q} = 1$, $q \in (1, 2)$,

$$J(x, a) = \mathbb{E} \int_0^\infty \left\{ f(X_t) + C_q |a(X_t)|^{q'} + C_q |a(X_t)|^q e^{-t} \right\} dt$$
Thus, let \(\mathcal{A} \) be the class of all (feedback) controls that keep the process \(X_t \) inside the domain \(\Omega \) for any time \(t > 0 \) a.s..

The criterion for optimality proposed by Lasry and Lions is given by the cost functional:

\[
\mathbb{E} \text{ is the expected value, } C_q > 0 \text{ and } \frac{1}{q'} + \frac{1}{q} = 1, \quad q \in (1, 2),
\]

\[
J(x, a) = \mathbb{E} \int_0^\infty \left\{ \begin{array}{c}
\mathbb{E} \\
\text{f}(X_t)
\end{array} \right\} \underbrace{\text{assigned cost}}_{\text{discount factor}}
\]
Thus, let \mathcal{A} be the class of all (feedback) controls that keep the process X_t inside the domain Ω for any time $t > 0$ a.s..

The criterion for optimality proposed by Lasry and Lions is given by the cost functional:

$$J(x, a) = \mathbb{E} \int_0^\infty \left\{ \begin{array}{l}
\text{assigned cost} \\
\text{cost of the control}
\end{array} \right\}$$

where \mathbb{E} is the expected value, $C_q > 0$ and $\frac{1}{q'} + \frac{1}{q} = 1$, $q \in (1, 2)$,
Thus, let \mathcal{A} be the class of all (feedback) controls that keep the process X_t inside the domain Ω for any time $t > 0$ a.s..

The criterion for optimality proposed by Lasry and Lions is given by the cost functional:

\mathbb{E} is the expected value, $C_q > 0$ and $\frac{1}{q'} + \frac{1}{q} = 1$, $q \in (1, 2)$,

$$J(x, a) = \mathbb{E} \int_0^\infty \left\{ \begin{array}{c} f(X_t) \quad \text{assigned cost} \\ C_q |a(X_t)|^{q'} \quad \text{cost of the control} \end{array} \right\} e^{-t} dt$$
Application to a stochastic control problem

Hence

\[\inf_{a \in A} J(x, a), \]

is achieved and it defines the value function

\[u(x) = \inf_{a \in A} J(x, a), \]

that solves the problem

\[
\begin{align*}
-\Delta u + u + |\nabla u|^q &= f(x) \\
nu(x) &\to +\infty \text{ as } d(x) \to 0
\end{align*}
\]
Application to a stochastic control problem

Hence

$$\inf_{a \in A} J(x, a),$$

where

$$A = \{ a \in C^0(\Omega, \mathbb{R}^N) : X_t \in \Omega, \forall t > 0 \text{ a.s.} \},$$
Hence

\[\inf_{a \in \mathcal{A}} J(x, a), \]

where

\[\mathcal{A} = \{ a \in C^0(\Omega, \mathbb{R}^N) : X_t \in \Omega, \forall t > 0 \text{ a.s.} \}, \]

is achieved and it defines the value function

\[u(x) = \inf_{a \in \mathcal{A}} J(x, a), \]
Application to a stochastic control problem

Hence

$$\inf_{a \in A} J(x, a),$$

where

$$A = \{ a \in C^0(\Omega, \mathbb{R}^N) : X_t \in \Omega, \forall t > 0 \ a.s. \},$$

is achieved and it defines the value function

$$u(x) = \inf_{a \in A} J(x, a),$$

that solves the problem

$$\begin{cases}
-\Delta u + u + |\nabla u|^q = f(x) & \text{in } \Omega \\
u(x) \to +\infty & \text{as } d(x) \to 0.
\end{cases}$$
Some results about large solutions

It has been proved: ([LL])

- existence and uniqueness of the solution $u \in W^{2,p}_{loc}(\Omega)$, $\forall p > 1$;
- asymptotic estimates on $u(x)$, as $d(x) \to 0$: $u(x) \sim C^* d(x)^{-2-q}$ if $1 < q < 2$, $C^* = \frac{(q-1)}{2-q}$;
- the unique optimal control is $a(x) = -q |\nabla u(x)|^{q-2} \nabla u(x)$;
- ([PV])

\[
\lim_{x \to x_0 \in \partial \Omega} d(x)^{\frac{1}{q-1}} \nabla u(x) = (q-1)^{-1} \nu(x_0),
\]

\[
\partial u/\partial \tau = o(\partial u/\partial \nu).
\]
Some results about large solutions

It has been proved: ([LL])

- existence and uniqueness of the solution $u \in W^{2,p}_{\text{loc}}(\Omega)$, $\forall p > 1$;

- asymptotic estimates on $u(x)$, as $d(x) \to 0$:

 $u(x) \sim C^* d(x)^{-q_{-2}}$ if $1 < q < 2$,

 $C^* = \frac{(q-1)_{-2}}{q_{-1}}$,

- the unique optimal control is $a(x) = -q |\nabla u(x)|^{q-2} \nabla u(x)$.

- ([PV])

 $\begin{cases}
 \lim_{x \to x_0 \in \partial \Omega} d(x)^{\frac{1}{q-1}} \frac{\nabla u(x)}{\nabla u(x)} = (q-1)^{-1} \nu(x_0), \\
 \partial u / \partial \tau = o(\partial u / \partial \nu)
 \end{cases}$
Some results about large solutions

It has been proved: ([LL])

- existence and uniqueness of the solution \(u \in W_{\text{loc}}^{2,p}(\Omega) \), \(\forall p > 1 \);
- asymptotic estimates on \(u(x) \),
Some results about large solutions

It has been proved: ([LL])

▶ existence and uniqueness of the solution \(u \in W^2_p(\Omega) \), \(\forall p > 1 \);

▶ asymptotic estimates on \(u(x) \), as \(d(x) \to 0 \):

\[
 u(x) \sim C^* d(x)^{-\frac{2-q}{q-1}} \quad \text{if } 1 < q < 2, \quad C^* = \frac{(q-1)^{-\frac{2-q}{q-1}}}{2-q},
\]
Some results about large solutions

It has been proved: ([LL])

- existence and uniqueness of the solution \(u \in W^{2,p}_{\text{loc}}(\Omega), \quad \forall p > 1 \);
- asymptotic estimates on \(u(x) \), as \(d(x) \to 0 \):

\[
 u(x) \sim C^* d(x)^{-\frac{2-q}{q-1}} \quad \text{if} \quad 1 < q < 2, \quad C^* = \frac{(q-1)^{-2-q}}{2-q},
\]

- the unique optimal control is \(a(x) = -q |\nabla u(x)|^{q-2} \nabla u(x) \),
Some results about large solutions

It has been proved: ([LL])

- existence and uniqueness of the solution $u \in W_{\text{loc}}^{2,p}(\Omega)$, $\forall p > 1$;
- asymptotic estimates on $u(x)$, as $d(x) \to 0$:

 $$u(x) \sim C^* d(x)^{-\frac{2-q}{q-1}} \text{ if } 1 < q < 2, \quad C^* = \frac{(q-1)^{-\frac{2-q}{q-1}}}{2-q},$$

- the unique optimal control is $a(x) = -q|\nabla u(x)|^{q-2}\nabla u(x)$,
- ([PV])

\[
\begin{cases}
\lim_{x \to x_0 \in \partial \Omega} d(x)^{\frac{1}{q-1}} \nabla u(x) = (q - 1)^{-\frac{1}{q-1}} \nu(x_0), \\
\frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right)
\end{cases}
\]
The results on the first order, in particular, say that the solution and the gradient (and consequently the control) depend only on the distance to the boundary.

\[u(x) \sim \psi(d(x)) \]

and

\[\nabla u \sim -\psi'(d(x)) \nu(x) \]

where \(\psi(s) \) is the solution of the ODE

\[
\begin{cases}
-\psi''(s) + |\psi'(s)|^q = 0 \\ s \in (0, 1), 1 < q < 2 \\
\lim_{s \to 0^+} \psi(s) = +\infty.
\end{cases}
\]
The results on the first order, in particular, say that the solution and the gradient (and consequently the control) depend only on the distance to the boundary. In particular

\[u(x) \sim \psi(d(x)) \quad \text{and} \quad \nabla u \sim -\psi'(d(x)) \nu(x) \]

where \(\psi(s) \) is the solution of the ODE
The results on the first order, in particular, say that the solution and the gradient (and consequently the control) depend only on the distance to the boundary. In particular

$$u(x) \sim \psi(d(x)) \quad \text{and} \quad \nabla u \sim -\psi'(d(x)) \nu(x)$$

where $\psi(s)$ is the solution of the ODE

$$\begin{cases}
-\psi''(s) + |\psi'(s)|^q = 0 & s \in (0, 1), \quad 1 < q < 2, \\
\lim_{s \to 0^+} \psi(s) = +\infty.
\end{cases}$$
Our main objectives are:
Our main objectives are:

- to give a more precise picture of the behavior of the gradient (and consequently of the control) near $\partial \Omega$;
Our main objectives are:

- to give a **more precise picture** of the behavior of the gradient (and consequently of the control) near $\partial \Omega$;
- to study **second order effects**;
Goal

Our main objectives are:

▶ to give a more precise picture of the behavior of the gradient (and consequently of the control) near $\partial \Omega$;

▶ to study second order effects;

▶ look at the role played by the geometry of the domain.
Main result

Let Ω be regular and let $H(\varsigma)$ be the mean curvature of $\partial \Omega$ computed at ς and $\bar{x} = \text{Proj}(x, \partial \Omega)$. Then $\forall 1 < q < 2$, as $d(x) \to 0$,

\[\partial u(x) \partial \nu = \left(q - 1 \right) - \frac{q}{q-1} d(x) \left[1 + \left(N - 1 \right) H(x) d(x) \right] + o(d(x)) \]

and

\[\begin{cases} \partial u(x) \partial \tau \in L^\infty(\Omega) & \text{if } \frac{3}{2} < q \leq 2, \\ \partial u(x) \partial \tau = O(\left| \log d(x) \right|) & \text{if } q = \frac{3}{2}, \\ \partial u(x) \partial \tau = O(d(x)^{2q-3}) & \text{if } 1 < q < \frac{3}{2}. \end{cases} \]
Main result

Let Ω be regular and let $H(\varsigma)$ be the mean curvature of $\partial \Omega$ computed at ς and $\bar{x} = \text{Proj}(x, \partial \Omega)$. Then $\forall 1 < q < 2$, as $d(x) \to 0$,

$$\frac{\partial u(x)}{\partial \nu} = (q - 1)^{-\frac{1}{q-1}} \frac{1}{d(x)^{\frac{1}{q-1}}}$$

Let Ω be regular and let $H(\varsigma)$ be the mean curvature of $\partial \Omega$ computed at ς and $\bar{x} = \text{Proj}(x, \partial \Omega)$. Then $\forall 1 < q < 2$, as $d(x) \to 0$,

\[
\frac{\partial u(x)}{\partial \nu} = \left(q - 1 \right)^{-\frac{1}{q-1}} \frac{1}{d(x)^{\frac{1}{q-1}}} \left[1 + \frac{(N - 1)H(\bar{x})}{2} d(x) \right]
\]
Main result

Let Ω be regular and let $H(\varsigma)$ be the mean curvature of $\partial\Omega$ computed at ς and $\bar{x} = \text{Proj}(x, \partial\Omega)$. Then $\forall 1 < q < 2$, as $d(x) \to 0$,

$$
\frac{\partial u(x)}{\partial \nu} = \left(q - 1 \right)^{\frac{1}{q-1}} \frac{1}{d(x)^{\frac{1}{q-1}}} \left[1 + \frac{(N - 1)H(\bar{x})}{2} d(x) + o(d(x)) \right]
$$
Main result

Let Ω be regular and let $H(\varsigma)$ be the mean curvature of $\partial \Omega$ computed at ς and $\bar{x} = \text{Proj}(x, \partial \Omega)$. Then $\forall 1 < q < 2$, as $d(x) \to 0$,

$$
\frac{\partial u(x)}{\partial \nu} = \frac{(q - 1)^{-\frac{1}{q-1}}}{d(x)^{\frac{1}{q-1}}}
\left[1 + \frac{(N - 1)H(\bar{x})}{2}d(x) + o(d(x)) \right]
$$

and

$$
\begin{cases}
\frac{\partial u(x)}{\partial \tau} \in L^\infty(\Omega) & \text{if } \frac{3}{2} < q \leq 2, \\
\frac{\partial u(x)}{\partial \tau} = O(|\log d|) & \text{if } q = \frac{3}{2}, \\
\frac{\partial u(x)}{\partial \tau} = O\left(d^{\frac{2q-3}{q-1}}\right) & \text{if } 1 < q < \frac{3}{2}.
\end{cases}
$$
Consequence (Representation of the optimal control)

Recalling that, by [LL], \(a = -q|\nabla u|^{q-2}\nabla u, \)
Consequence (Representation of the optimal control)

Recalling that, by [LL], \(a = -q|\nabla u|^{q-2} \nabla u \), we deduce, as \(d(x) \to 0 \):

1. is singular at the boundary;
2. is mainly directed in the normal direction, pointing inside;
3. in the tangential directions, vanishes as \(d(x) \to 0 \);
4. it has maximum intensity near the points where the boundary is more "curved" (i.e., on the hypersurfaces parallel to \(\partial \Omega \), it achieves its maximum where the mean curvature is maximal).
Recalling that, by [LL], $a = -q|\nabla u|^{q-2}\nabla u$, we deduce, as $d(x) \to 0$:

$$a(x) = -\frac{q'}{d(x)}\nu(x)$$
Consequence (Representation of the optimal control)

Recalling that, by [LL], $a = -q|\nabla u|^{q-2}\nabla u$, we deduce, as $d(x) \to 0$:

$$a(x) = - \frac{q'}{d(x)} \nu(x) - \frac{q'(N-1)}{2} H(x) \nu(x)$$
Recalling that, by [LL], \(a = -q|\nabla u|^{q-2}\nabla u \), we deduce, as \(d(x) \to 0 \):

\[
a(x) = -\frac{q'}{d(x)}\nu(x) - \frac{q'(N-1)}{2}H(\bar{x})\nu(x) + o(1);
\]

The (unique) optimal control:

1. is singular at the boundary;
2. is mainly directed in the normal direction, pointing inside;
3. in the tangential directions, vanishes as \(d(x) \to 0 \);
4. it has maximum intensity near the points where the boundary is more "curved" (i.e. on the hypersurfaces parallel to \(\partial \Omega \), it achieves its maximum where the mean curvature is maximal).
Recalling that, by [LL], \(a = -q|\nabla u|^{q-2}\nabla u \), we deduce, as \(d(x) \to 0 \):

\[
a(x) = -\frac{q'}{d(x)} \nu(x) - \frac{q'(N-1)}{2} H(\bar{x}) \nu(x) + o(1);
\]

The (unique) optimal control:

1. is singular at the boundary;
Consequence (Representation of the optimal control)

Recalling that, by [LL], \(a = -q|\nabla u|^{q-2}\nabla u \), we deduce, as \(d(x) \to 0 \):

\[
a(x) = -\frac{q'}{d(x)}\nu(x) - \frac{q'(N-1)}{2}H(\bar{x})\nu(x) + o(1) ;
\]

The (unique) optimal control:

1. is singular at the boundary;
2. is mainly directed in the normal direction, pointing inside;
3. in the tangential directions, vanishes as \(d(x) \to 0 \);
4. it has maximum intensity near the points where the boundary is more "curved" (i.e. on the hypersurfaces parallel to \(\partial \Omega \), it achieves its maximum where the mean curvature is maximal).
Consequence (Representation of the optimal control)

Recalling that, by [LL], \(a = -q|\nabla u|^{q-2}\nabla u \), we deduce, as \(d(x) \to 0 \):

\[
a(x) = -\frac{q'}{d(x)}\nu(x) - \frac{q'(N-1)}{2}H(x)\nu(x) + o(1);
\]

The (unique) optimal control:

1. is singular at the boundary;
2. is mainly directed in the normal direction, pointing inside;
3. in the tangential directions, vanishes as \(d(x) \to 0 \);
Recalling that, by [LL], \(a = -q|\nabla u|^{q-2}\nabla u \), we deduce, as \(d(x) \to 0 \):

\[
a(x) = -\frac{q'}{d(x)}\nu(x) - \frac{q'(N-1)}{2}H(\bar{x})\nu(x) + o(1)
\]

The (unique) optimal control:

1. is singular at the boundary;
2. is mainly directed in the normal direction, pointing inside;
3. in the tangential directions, vanishes as \(d(x) \to 0 \);
4. it has maximum intensity near the points where the boundary is more "curved" (i.e. on the hypersurfaces parallel to \(\partial \Omega \), it achieves its maximum where the mean curvature is maximal).
Idea of the proof.

We introduce a corrector term, \(u - S \), where

\[
S = d - 2 - q^{-1} \sum_{k=0}^{m} \sigma_k(x) d_k(x),
\]

with \(m > 0 \), \(\sigma_0 = C^* \).

Then we define \(z = u - S \) and we look at the equation solved by \(z \), i.e.

\[
-\Delta z + z + |\nabla z + \nabla S|^{q-2} - |\nabla S|^{q-2} = f(x) + g(x).
\]

The coefficients \(\sigma_k \) are chosen such that \(f(x) + g(x) \) is smooth.

Our aim is to prove a global Lipschitz estimate for \(z \).
Idea of the proof.

We introduce a corrector term, (a formal expansion of u)

$$S = d^{-\frac{2-q}{q-1}}(x) \sum_{k=0}^{m} \sigma_k(x)d^k(x), \quad m > 0, \quad \sigma_0 = C^* = \frac{(q - 1)^{-\frac{2-q}{q-1}}}{2 - q}. $$
Idea of the proof.

We introduce a corrector term, (a formal expansion of u)

$$S = d^{-\frac{2-q}{q-1}}(x) \sum_{k=0}^{m} \sigma_k(x) d^k(x), \quad m > 0, \quad \sigma_0 = C^* = \frac{(q - 1)^{-\frac{2-q}{q-1}}}{2 - q}.$$

Then we define $z = u - S$
Idea of the proof.

We introduce a corrector term, (a formal expansion of \(u \))

\[
S = d^{-\frac{2-q}{q-1}}(x) \sum_{k=0}^{m} \sigma_k(x) d^k(x), \quad m > 0, \quad \sigma_0 = C^* = \frac{(q - 1)^{-\frac{2-q}{q-1}}}{2 - q}.
\]

Then we define \(z = u - S \) and we look at the equation solved by \(z \), i.e.

\[
-\Delta z + z + |\nabla z + \nabla S|^q - |\nabla S|^q = f(x) + g(x)
\]

where \(g(x) = \Delta S - S - |\nabla S|^q \).
Idea of the proof.

We introduce a corrector term, (a formal expansion of u)

$$S = d^{-\frac{2-q}{q-1}}(x) \sum_{k=0}^{m} \sigma_k(x)d^k(x), \quad m > 0, \quad \sigma_0 = C^* = \frac{(q - 1)^{-2-q}}{2 - q}.$$

Then we define $z = u - S$ and we look at the equation solved by z, i.e.

$$-\Delta z + z + |\nabla z + \nabla S|^q - |\nabla S|^q = f(x) + g(x)$$

where $g(x) = \Delta S - S - |\nabla S|^q$.

The coefficients σ_k are chosen such that $f(x) + g(x)$ is smooth.
Idea of the proof.

We introduce a corrector term, (a formal expansion of \(u \))

\[
S = d^{-\frac{2-q}{q-1}}(x) \sum_{k=0}^{m} \sigma_k(x)d^k(x), \quad m > 0, \quad \sigma_0 = C^* = \frac{(q-1)^{-\frac{2-q}{q-1}}}{2 - q}.
\]

Then we define \(z = u - S \) and we look at the equation solved by \(z \), i.e.

\[
-\Delta z + z + |\nabla z + \nabla S|^q - |\nabla S|^q = f(x) + g(x)
\]

where \(g(x) = \Delta S - S - |\nabla S|^q. \)

The coefficients \(\sigma_k \) are chosen such that \(f(x) + g(x) \) is smooth.

Our aim is to prove a global Lipschitz estimate for \(z \).
Idea of the proof.

Indeed \(z \in W^{1,\infty}(\Omega) \) implies that \(|\nabla u - \nabla S| \) is bounded and we can characterize any singular term of \(\nabla u \),
Idea of the proof.

Indeed \(z \in \mathcal{W}^{1,\infty}(\Omega) \) implies that \(|\nabla u - \nabla S| \) is bounded and we can characterize any singular term of \(\nabla u \), i.e. \(\alpha = \frac{2-q}{q-1} \)

\[
\frac{\partial u(x)}{\partial \nu} - \frac{\alpha C^*}{d^{\alpha+1}(x)} + \sum_{k=1}^{[\alpha]+1} \left[\frac{(k-\alpha)\sigma_k(x)}{d^{\alpha-k+1}(x)} - \frac{\nabla \sigma_{k-1}(x) \cdot \nu}{d^{\alpha-k+1}(x)} \right] \in L^\infty(\Omega)
\]
Idea of the proof.

Indeed \(z \in W^{1,\infty}(\Omega) \) implies that \(|\nabla u - \nabla S|\) is bounded and we can characterize any singular term of \(\nabla u \), i.e. \(\alpha = \frac{2-q}{q-1} \)

\[
\frac{\partial u(x)}{\partial \nu} - \frac{\alpha C^*}{d^{\alpha+1}(x)} + \sum_{k=1}^{[\alpha]+1} \left[\frac{(k - \alpha)\sigma_k(x)}{d^{\alpha-k+1}(x)} - \frac{\nabla \sigma_{k-1}(x) \cdot \nu}{d^{\alpha-k+1}(x)} \right] \in L^\infty(\Omega)
\]

and

\[
\frac{\partial u(x)}{\partial \tau} - \sum_{k=1}^{[\alpha]} \frac{\nabla \sigma_k(x) \cdot \tau}{d^{\alpha-k}(x)} \in L^\infty(\Omega)
\]

(that is a stronger result than the one stated).
Idea of the proof.

Indeed $z \in W^{1,\infty}(\Omega)$ implies that $|\nabla u - \nabla S|$ is bounded and we can characterize any singular term of ∇u, i.e. $\alpha = \frac{2-q}{q-1}$

$$\frac{\partial u(x)}{\partial \nu} - \frac{\alpha C^*}{d^{\alpha+1}(x)} + \sum_{k=1}^{[\alpha]+1} \left[\frac{(k - \alpha)\sigma_k(x)}{d^{\alpha-k+1}(x)} - \frac{\nabla \sigma_{k-1}(x) \cdot \nu}{d^{\alpha-k+1}(x)} \right] \in L^\infty(\Omega)$$

and

$$\frac{\partial u(x)}{\partial \tau} - \sum_{k=1}^{[\alpha]} \frac{\nabla \sigma_k(x) \cdot \tau}{d^{\alpha-k}(x)} \in L^\infty(\Omega)$$

(that is a stronger result than the one stated).

In particular it is easy to see that

$$\sigma_1 = \frac{(q - 1)^{-\frac{2-q}{q-1}}}{3 - 2q} \frac{\Delta d(x)}{2}$$

and recalling that $\Delta d(x) \big|_{\partial \Omega} = (N - 1)H(x)$ we deduce the result of the Theorem.
Thus our aim is to prove a **global Lipschitz estimate** for the (unique) solution of

$$-\Delta z + z + |\nabla z + \nabla S|^q - |\nabla S|^q = f(x) + g(x) \quad \text{in} \quad \Omega$$

where the right hand side is smooth.
Key point: gradient bounds

Thus our aim is to prove a global Lipschitz estimate for the (unique) solution of

\[-\Delta z + z + |\nabla z + \nabla S|^q - |\nabla S|^q = f(x) + g(x) \text{ in } \Omega\]

where the right hand side is smooth. Actually, the first order expansion of the gradient ([PV]) implies that

\[|\nabla z + \nabla S|^q - |\nabla S|^q \sim -\frac{q}{q-1} \frac{\nabla z \cdot \nabla d}{d} + H_0(x, \nabla z),\]

where \(H_0(x, \rho) = O(d^{\frac{2-q}{q-1}}|\nabla z|^2).\)
Thus our aim is to prove a global Lipschitz estimate for the (unique) solution of

$$-\Delta z + z + |\nabla z + \nabla S|^q - |\nabla S|^q = f(x) + g(x) \quad \text{in} \quad \Omega$$

where the right hand side is smooth. Actually, the first order expansion of the gradient ([PV]) implies that

$$|\nabla z + \nabla S|^q - |\nabla S|^q \sim -\frac{q}{q - 1} \frac{\nabla z \cdot \nabla d}{d} + H_0(x, \nabla z),$$

where $H_0(x, p) = O(d^{\frac{2-q}{q-1}} |\nabla z|^2)$. Thus we are in the hypotheses of the previous Theorem. \blacksquare
Gracias!