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2. Bifurcation for problems on Rn in the presence of eigenvalues

We will consider the elliptic problem on Rn of the type

(P) −∆u + q(x)u = λu± up, u ∈ W 1,2(Rn).

In the sequel we will always assume that

q ∈ L2(Rn) ∩ L∞(Rn), 1 < p < 2∗ − 1.

and

lim
|x|→∞

q(x) = 0.

The linearized problem at u = 0 is

(L) −∆u + q(x)u = λu, u ∈ W 1,2(Rn),
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The spectrum of (L) depends on the following number

(1) Λ := inf

{∫
Rn

[|∇u|2 + qu2]dx : u ∈ W 1,2(Rn), ‖u‖L2 = 1

}
.

Precisely, it is well known that;

• If Λ < 0 then the spectrum contains eigenvalues. Indeed, Λ is the lowest
eigenvalue of (L) and is simple.

• If q(x) ≥ 0, then the spectrum is the whole half line [0,∞) and coincides
with the essential spectrum.

The essential spectrum is the set of all points of the spectrum that are not
isolated, jointly with the eigenvalues of infinite multiplicity.

General Ref.: C. Stuart



• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit

Consider the problem

(P’) −∆u + q(x)u = λu− up, u ∈ W 1,2(Rn)

• and assume that Λ < 0.

Following a joint paper with J. Gamez, we will use an approximation proce-
dure.
Problem (P’) will be approximated by problems on balls BRk

= {x ∈ Rn :
|x| < Rk},

(Pk) −∆u + q(x)u = λu− up, u ∈ W 1,2
0 (BRk

)) (Rk →∞).

The solutions u of (Pk) are extended to all of Rn by setting u(x) ≡ 0 for
|x| > Rk.
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Let Σk = {(λ, u) ∈ R× E : λ > 0, u > 0, −∆u + q(x)u = λu− up}.

Let λRk
denote the first (lowest) eigenvalues of

−∆u + q(x)u = λu, u ∈ W 1,2
0 (BRk

),

which is given by

λRk
= inf

{∫
BRk

[|∇u|2 + qu2]dx : u ∈ W 1,2
0 (BRk

), ‖u‖L2 = 1

}
.

Comparing this with the definition (1) of Λ, it follows that

λRk
↓ Λ = inf

u∈W 1,2(Rn):‖u‖L2=1

∫
Rn

[|∇u|2 + qu2]dx, (Rk →∞).

In particular, if Λ < 0 then λRk
< 0 provided Rk � 1.
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Problem (Pk) can be faced by the Rabinowitz global bifurcation theorem:

There exists an unbounded connected component Σk
0 emanating from (λk, 0)

which lies on the right of λk.

In order to perform a limit as k → +∞, we will use the following topological
result:

Whyburn Lemma. Let Y be a metric space and Yk a sequence of connected
subsets of Y . Suppose that
(i)

⋃
Yk is precompact,

(ii) lim inf Yk 6= ∅
Then lim supYk is precompact and connected.

lim inf Yk is the set of y ∈ Y such that every neighborhood of y has
nonempty intersection with all but a finite number of Yk.

lim supYk is the set of y ∈ Y such that every neighborhood of y has
nonempty intersection with infinitely many of the Yk.
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In order to use this lemma, we take E = W 1,2(Rn), endowed with the
standard norm. Fixed b < 0, let Y = [Λ, b]×E and let Yk be the connected

component of {(λ, u) ∈ Σ
k

0 : λ ∈ [Λ, b]} such that (λRk
, 0) ∈ Σ

k

0.

λλRk

Λ

Σk
0

0b

Yk

We also let Π : R× E be defined by setting Π(λ, u) = λ.

It is not difficult to check that Π(Σ
k

0) = [λRk
,+∞). Since (λRk

, 0) ∈ Σ
k

0
and λRk

→ Λ, then (Λ, 0) ∈ lim inf Yk and thus (ii) holds.

Moreover, one has that b ∈ Π(Σ
k

0) for all k � 1.
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In order to prove that
⋃
Yk is precompact, we need a preliminary lemma.

Lemma 1. Let Λ < 0. There exists Ψ = Ψb ∈ L2(Rn) ∩ L∞(Rn), Ψ > 0,
such that u < Ψ for all (λ, u) ∈ Yk, for all k � 1.

The proof (sketch) is carried out in 4 steps.

Step 1. Fix a with b < a < 0. Since lim|x|→∞ q(x) = 0 and a < 0,
the support of (q(x) − a)− (the negative part of q − a) is compact and
is contained in the ball Bρ, for some ρ > 0. We define a piecewise linear
continuous function γα(t), t ∈ R, such that

γα(t) =

{
−α t ≤ ρ,

0 t ≥ ρ + 1.

Let

µα = inf

{∫
Rn

[|∇u|2 + γα(|x|)u2]dx : u ∈ E, ‖u‖L2 = 1

}
.
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Since γα ≤ 0, it follows that

µα ≤ inf{
∫

Rn

|∇u|2dx : u ∈ E, ‖u‖L2 = 1} = 0.

It is easy to see that there exists α∗ > 0 such that µα < 0 for all α > α∗.
Moreover, µα is the principal eigenvalue of

−∆u + γα(|x|)u = µu, u ∈ E.

We denote by ϕα > 0 the (normalized) eigenfunction corresponding to
µα < 0.

In addition, we notice that µα depends continuously upon α.
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Step 2. From the preceding step it follows that we can find α0 > 0 such
that µ0 := µα0

verifies b− a < µ0 < 0.

We define a function ψ ∈ C2(Rn) ∩ E by setting ψ(x) = ϕα0
(x) for all

|x| ≥ ρ + 1; in the ball Bρ+1 the function ψ is arbitrary, but positive.

One shows that there exists C > 0 such that Cψ is a super-solution of (Pk)
for all k ≥ 1 and all λ ≥ b.

Roughly, it is easy to check that for C > 0 sufficiently large one has that

−∆(Cψ) + q(Cψ) ≥ λ(Cψ)− (Cψ)p, ∀ |x| ≤ ρ + 1.

For |x| > ρ + 1, one remarks that γα ≡ 0, so −∆ψ = µ0ψ and one finds
−∆ψ + qψ = (µ0 + q)ψ. The definition of ρ implies that q > a for all
|x| > ρ and thus −∆ψ + qψ ≥ (µ0 + a)ψ ≥ bψ. Then for λ ≤ b we get
−∆ψ + qψ ≥ λψ − ψp for all |x| > ρ + 1, and the claim follows.
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Step 3. One proves that Ψ = Cψ is such that u ≤ Ψ for all (λ, u) ∈ Yk

with k large. For λ ≤ b, set fλ(u) := λu− qu− up and take M > 0 such
that fλ +M is strictly increasing for u ∈ [0,max Ψ]. Let vk be the solution
of {

−∆vk +Mvk = fb(Ψ) +MΨ |x| < Rk,
vk = 0 |x| = Rk.

We want to show that for all λ ≤ b, vk is a super-solution of (Pk) but not
a solution.

Since fb(Ψ) + MΨ ≥ 0 then vk ∈ Pk, where Pk denotes the interior of
the positive cone in C1

0(BRk
).

From the preceding step we know that

−∆Ψ ≥ bΨ− qΨ− Ψp = fb(Ψ).

From this one easily infers{
−∆(Ψ− vk) +M(Ψ− vk) ≥ 0 |x| < Rk,

Ψ− vk > 0 |x| = Rk,
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Then the maximum principle yields

(a) Ψ(x) > vk(x), ∀ |x| < Rk.

Since fλ +M is strictly increasing, it follows that

fλ(Ψ) +MΨ > fλ(vk) +Mvk.

This and the fact that fb ≥ fλ provided λ ≤ b, imply

−∆vk = fb(Ψ)+MΨ−Mvk ≥ fλ(Ψ)+MΨ−Mvk > fλ(vk), |x| < Rk.

This proves our claim.
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Step 4. Let us prove that u < vk for all (λ, u) ∈ Yk. Consider the set
Y ′

k = {(λ, vk − u) : (λ, u) ∈ Yk}. Since (λRk
, 0) ∈ Yk then (λRk

, vk) ∈ Y ′
k ,

and thus Y ′
k ∩ ([Λ, b] × Pk) 6= ∅. Let us check that Y ′

k ⊂ [Λ, b] × Pk.
Otherwise, there exists (λ∗, u∗) ∈ Yk such that vk − u∗ ∈ ∂Pk. Since vk

is not a solution of (Pk) it follows that vk ≥ u∗ but vk 6≡ u∗ in BRk
. This

implies −∆(vk − u∗) +M(vk − u∗) ≥ fλ(vk) +Mvk − fλ(u
∗) +Mu∗ ≥ 0.

By the maximum principle we infer that vk > u∗, namely vk − u∗ ∈ Pk,
while vk − u∗ ∈ ∂Pk. This proves that u < vk and thus, using (a) we get
u < vk < Ψ for all |x| < Rk, and the proof is completed.

Let us point out that we do not know whether u < Ψ for all (λ, u) ∈ Σk
0,

with λ ∈ [Λ, b]. The proof only works for (λ, u) ∈ Yk.
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The preceding lemma allows us to show

Lemma 2.
⋃
Yk is precompact.

Proof. Let (λj, uj) ∈
⋃
Yk. We can assume that λj → λ, for some

λ ∈ [Λ, b]. From Lemma 1 it follows there is c1 > 0 such that

‖uj‖L2 ≤ c1, ∀ j.

From (Pk) we also get

(2)

∫
Rn

|∇uj|2dx +

∫
Rn

qu2
jdx = λ

∫
Rn

u2
jdx−

∫
Rn

up+1
j dx.

From (2) it follows that ∃ c2 > 0 such that ‖uj‖ ≤ c2 and hence, up to a
subsequence, uj ⇀ u in E.
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Since uj verifies∫
∇uj · ∇φ +

∫
q uj φ = λ

∫
ujφ−

∫
up

jφ, ∀φ ∈ C∞
0 (Rn)

then u satisfies

(3)

∫
∇u · ∇φ +

∫
quφ = λ

∫
uφ−

∫
upφ, ∀φ ∈ C∞

0 (Rn).

Set Gλ(u) = λu− qu− up. Equation (2) can be written as

(4) ‖uj‖2 =

∫
u2

j +

∫
Gλj

(uj)uj.

Moreover, by density, we can set φ = uj in (3) yielding

(5)

∫
∇uj · ∇u =

∫
Gλ(u)uj

Similarly, letting φ = u, we get
∫
|∇u|2 =

∫
Gλ(u)u and hence

(6) ‖u‖2 =

∫
Gλ(u)u +

∫
Rn

u2.
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Using (4), (5) and (6), we infer

‖uj − u‖2 = ‖uj‖2 + ‖u‖2 − 2

∫
∇uj · ∇u− 2

∫
uju

=

∫
u2

j +

∫
Gλj

(uj)uj +

∫
Gλ(u)u +

∫
u2

−2

∫
Gλ(u)uj − 2

∫
uju

=

∫ [
Gλj

(uj)−Gλ(u)
]
uj +

∫
Gλ(u)[u− uj]

+

∫
u [u− uj] +

∫
uj[uj − u].

Since uj < Ψ ∈ L2(Rn) we find

‖uj − u‖2 ≤
∫ ∣∣Gλj

(uj)−Gλ(u)
∣∣ Ψ +

∫
|Gλ(u)| |u− uj|

+

∫
|u| |u− uj| +

∫
Ψ|uj − u|.
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Since

|Gλj
(uj)−Gλ(u)| ≤ |λj − λ| |uj − u| + |q| |uj − u| + |up

j − up|,

also taking into account that uj ⇀ u in E, it readily follows that all the
integrals in the right hand side of the preceding equation tend to zero. Thus
‖uj − u‖2 → 0, proving that uj → u strongly in E.

We are now ready to prove our main result

Theorem. (A.A - J.L. Gamez) If (1) holds, then there exists a connected
set Σ0 = {(λ, u) ∈ R× E} such that

(a) u is a positive solution of (P’);

(b) (Λ, 0) ∈ Σ0 and ΠΣ0 ⊃ [Λ, 0).

Proof. We set Σ0 = lim supYk \ {(Λ, 0)}.
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We use the Whyburn Lemma: Let Y be a metric space and Yk a sequence
of connected subsets of Y such that
(i)

⋃
Yk is precompact,

(ii) lim inf Yk 6= ∅
Then lim supYk is precompact and connected.

Therefore Σ0 is connected and it is easy to check that any (λ, u) ∈ Σ0 is a
non-negative solution of (P). To prove (a) we need to show that u > 0.

We have already remarked that for each k ≥ 1, (λ, u) ∈ Σk implies that
λ > λRk

, and this yields that (λ, u) ∈ Σ0 ⇒ λ > Λ. Suppose that there
exist (λj, uj) ∈ Ykj

such that (λj, uj) → (λ, 0) as kj →∞.
Recall that uj satisfies:

−∆uj + quj = λjuj − up
j , u ∈ W 1,2

0 (BRj
).

Since λRj
↓ Λ and λj → λ > Λ, then given δ > 0 there exists ` ∈ N such

that λRj
< Λ + δ < λj, for all kj ≥ `. Then

−∆uj + quj > (Λ + δ)uj − up
j , u ∈ W 1,2

0 (BRj
).
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Therefore uj is a super-solution of

(7) −∆u + qu = (Λ + δ)u− up, u ∈ W 1,2
0 (BR`

).

One can also find εj � 1 such that εjϕ1 is a sub-solution of (7) such that
εjϕ1 ≤ uj in BR`

and thus there exists a positive solution ũj of (7).

Since uj → 0, then also ũj → 0 and therefore Λ+δ is a bifurcation point of
positive solutions of (7). This is not possible, since the unique bifurcation
point of positive solutions of (7) is λR`

< Λ + δ. This contradiction proves
that u > 0.

Since (Λ, 0) ∈ lim supYk it follows immediately that (Λ, 0) ∈ Σ0.

As already remarked before, b ∈ Π(Σ
k

0) for all k � 1 and all b ∈ (Λ, 0).
Repeating the arguments carried out in Lemma 2, it follows that b ∈ Π(Σ0).

Finally, from the fact that Σ0 is connected one deduces that [Λ, 0) ⊂ Π(Σ0).
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It is possible to complete the statement of the previous Theorem by showing
that as λ ↑ 0 the solutions uλ such that (λ, uλ) ∈ Σ0 satisfy:

(i) ‖uλ‖Lr ≤ const. if r > n/(n− 2);

(ii) ‖uλ‖Lr →∞ if r ≤ n/(n− 2).

‖uλ‖Lr

λΛ

Σ′
0

Σ
′′
0

0

◦
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By similar arguments one can handle sublinear problems on Rn, see Brezis
and Kamin.

Theorem. Let ρ ∈ L∞, and suppose that ∃U ∈ L∞ ∩ L2 such that
−∆U = ρ in Rn. Then, for all 0 < q < 1 the problem

−∆u = λρ(x)uq, u ∈ W 1,2(Rn),

possesses a branch Σ of positive solutions bifurcating from (0, 0) and such
that Π(Σ).


