A characterization of convex calibrable sets in \mathbb{R}^N with respect to an anisotropy

San José, 19th September 2007

V. Caselles, A. Chambolle, Salvador Moll and M. Novaga

salvador.moll@upf.edu

Universitat Pompeu Fabra

Departament de Tecnologia

Let $\Omega \subset \mathbb{R}^2$ be a convex set. The following are equivalent.

(a) Ω is calibrable, i.e., there is a vector field $\xi \in L^{\infty}(\Omega, \mathbb{R}^2)$, with $|\xi(x)| \leq 1$ a.e. in Ω , such that

$$-{
m div}\; \xi=\lambda_\Omega:=rac{P(\Omega)}{|\Omega|}\quad {
m in}\;\; \Omega,$$

$$\xi \cdot \nu^{\Omega} = -1$$
 in $\partial \Omega$,

(b) Ω is a solution of the problem

$$\min_{X\subseteq\Omega} P(X) - \lambda_{\Omega}|X|.$$

(c) We have

$$\operatorname{ess\,sup}_{x \in \partial\Omega} \kappa_{\Omega}(x) \le \lambda_{\Omega} \,,$$

Applications:

• Existence of solutions to the capillary problem in absence of gravity for any contact angle $\gamma \in [0, \frac{\pi}{2}]$ [Giusti, 78]

Applications:

- Existence of solutions to the capillary problem in absence of gravity for any contact angle $\gamma \in [0, \frac{\pi}{2}]$ [Giusti, 78]
- Description of the sets $F \subset \mathbb{R}^N$ such that the solution of

$$\frac{\partial u}{\partial t} = \operatorname{div}\left(\frac{Du}{|Du|}\right) \quad \text{in } Q_T :=]0, T[\times \mathbb{R}^N,$$

with $u(0,x)=\chi_{\Omega}(x)$ is given by $u(t)=(1-\lambda_{\Omega}t)^{+}\chi_{\Omega}$ and evolution of any convex set of class $C^{1,1}$.[Bellettini, Caselles, Novaga, 02, 05].

Applications:

- Existence of solutions to the capillary problem in absence of gravity for any contact angle $\gamma \in [0, \frac{\pi}{2}]$ [Giusti, 78]
- Description of the sets $F \subset \mathbb{R}^N$ such that the solution of

$$\frac{\partial u}{\partial t} = \operatorname{div}\left(\frac{Du}{|Du|}\right) \quad \text{in } Q_T :=]0, T[\times \mathbb{R}^N,$$

with $u(0,x)=\chi_{\Omega}(x)$ is given by $u(t)=\left(1-\lambda_{\Omega}t\right)^{+}\chi_{\Omega}$ and evolution of any convex set of class $C^{1,1}$.[Bellettini, Caselles, Novaga, 02, 05].

 Cheeger sets and relations to landslides [Kawohl and Lachand-Robert, 06]

Introduction, anisotropic setting.

Let ϕ be an anisotropy in \mathbb{R}^2 and let $F \subset \mathbb{R}^2$ be a convex set. The following are equivalent [Bellettini, Novaga, Paolini, 01].

(a) Ω is ϕ -calibrable, i.e., there is a vector field $\xi \in L^{\infty}(\Omega, \mathbb{R}^2)$, with $\phi(\xi(x)) \leq 1$ a.e. in Ω (where ϕ is the dual norm of ϕ°), such that

$$-{
m div}\; \xi=\lambda_\Omega^\phi:=rac{P_\phi(\Omega)}{|\Omega|}\quad {
m in}\;\; \Omega,$$

$$\xi \cdot \nu^{\Omega} = -\phi^{\circ}(\nu^{\Omega})$$
 in $\partial \Omega$,

(b) Ω is a solution of the problem

$$\min_{X\subseteq\Omega} P_{\phi}(X) - \lambda_{\Omega}^{\phi}|X|.$$

(c) We have

$$\operatorname{ess\,sup}_{x \in \partial\Omega} \, \kappa_{\Omega}^{\phi}(x) \le \lambda_{\Omega}^{\phi} \,,$$

Introduction. Problem view as a problem in c.v.

Consider

$$(P_{\lambda}): \qquad \min_{X \subseteq C} P_{\phi}(X) - \lambda |X|, \quad \lambda > 0$$

Introduction. Problem view as a problem in c.v.

Consider

$$(P_{\lambda}): \qquad \min_{X \subset C} P_{\phi}(X) - \lambda |X|, \quad \lambda > 0$$

Show existence, uniqueness and concavity of solutions of

$$(Q)_{\mu}: \quad \min_{u \in BV(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)} \int_{\mathbb{R}^N} \phi^{\circ}(Du) + \frac{\mu}{2} \int_{\mathbb{R}^N} (u - \chi_C)^2 dx, \qquad \mu > 0.$$

Plan of the talk

- Preliminaries
 - \circ Anisotropies, ϕ -regularity and the RW_{ϕ} -condition.
 - \circ BV-functions, ϕ -total variation and Green's formula.
 - \circ ϕ -calibrable sets.
- Properties of the solutions of (Q_{μ}) .
- Convexity of the anisotropic perimeter with fixed volume.
- Characterization of convex ϕ -calibrable sets by its anisotropic mean curvature.
- Evolution of convex sets by the anisotropic total variation flow.

Definition: We say that $\phi: \mathbb{R}^N \to [0, \infty[$ is an anisotropy if

$$\phi(t\xi) = |t|\phi(\xi) \quad \forall \, \xi \in \mathbb{R}^N, \, \forall \, t \in \mathbb{R},$$

and there is m > 0 such that $m|\xi| \le \phi(\xi) \quad \forall \, \xi \in \mathbb{R}^N$.

Definition: We say that $\phi: \mathbb{R}^N \to [0, \infty[$ is an anisotropy if

$$\phi(t\xi) = |t|\phi(\xi) \quad \forall \, \xi \in \mathbb{R}^N, \, \forall \, t \in \mathbb{R},$$

and there is m>0 such that $m|\xi|\leq \phi(\xi) \quad \forall\,\xi\in\mathbb{R}^N.$

Wulff shape: $W_{\phi} := \{ \xi : \phi(\xi) \leq 1 \}$

Surface tension: $\phi^0(\xi) = \sup\{\eta \cdot \xi : \phi(\eta) \le 1\}$

Definition: We say that $\phi: \mathbb{R}^N \to [0, \infty[$ is an anisotropy if

$$\phi(t\xi) = |t|\phi(\xi) \quad \forall \, \xi \in \mathbb{R}^N, \, \forall \, t \in \mathbb{R},$$

and there is m>0 such that $m|\xi|\leq \phi(\xi) \quad \forall\,\xi\in\mathbb{R}^N.$

Wulff shape: $W_{\phi} := \{ \xi : \phi(\xi) \leq 1 \}$

Surface tension: $\phi^0(\xi) = \sup\{\eta \cdot \xi : \phi(\eta) \le 1\}$

Given $\emptyset \neq E \subseteq \mathbb{R}^N$, we consider

$$d_{\phi}^{E}(x) := \inf_{y \in E} \phi(x - y) - \inf_{y \in \mathbb{R}^{N} \setminus E} \phi(x - y), \qquad x \in \mathbb{R}^{N},$$

 d_ϕ^E is a Lipschitz function. Where there exists $\nabla d_\phi^E(x)$, $\phi^0(\nabla d_\phi^E(x))=1$,

$$\nu_{\phi}^{E}(x) := \nabla d_{\phi}^{E}(x) = \frac{\nu^{E}(x)}{\phi^{\circ}(\nu^{E}(x))} \quad \text{on } \partial E$$

Definition:
$$T^{\circ}(x) = \frac{1}{2}\partial(\phi^{\circ})^{2}(x), \quad x \in \mathbb{R}^{N}.$$

 T° is a maximal monotone operator mapping $\mathcal{W}_{\phi^{\circ}}$ onto \mathcal{W}_{ϕ} .

Definition:
$$T^{\circ}(x) = \frac{1}{2}\partial(\phi^{\circ})^{2}(x), \quad x \in \mathbb{R}^{N}.$$

 T° is a maximal monotone operator mapping $\mathcal{W}_{\phi^{\circ}}$ onto \mathcal{W}_{ϕ} .

Definition: $\phi \in \mathcal{C}^{1,1}_+$ (resp. \mathcal{C}^{∞}_+) if ϕ^2 is $\mathcal{C}^{1,1}(\mathbb{R}^N)$ (resp. $\mathcal{C}^{\infty}(\mathbb{R}^N \setminus \{0\})$) and $\exists \ c > 0$ such that $\nabla^2(\phi^2) \geq c \ \mathrm{Id}$ a.e.

Definition:
$$T^{\circ}(x) = \frac{1}{2}\partial(\phi^{\circ})^{2}(x), \quad x \in \mathbb{R}^{N}.$$

 T° is a maximal monotone operator mapping $\mathcal{W}_{\phi^{\circ}}$ onto \mathcal{W}_{ϕ} .

Definition: $\phi \in \mathcal{C}^{1,1}_+$ (resp. \mathcal{C}^{∞}_+) if ϕ^2 is $\mathcal{C}^{1,1}(\mathbb{R}^N)$ (resp. $\mathcal{C}^{\infty}(\mathbb{R}^N\setminus\{0\})$) and $\exists \ c>0$ such that $\nabla^2(\phi^2)\geq c \ \mathrm{Id}$ a.e.

Definition: ϕ is crystalline if the unit ball W_{ϕ} of ϕ is a polytope.

Definition:
$$T^{\circ}(x) = \frac{1}{2}\partial(\phi^{\circ})^{2}(x), \quad x \in \mathbb{R}^{N}.$$

 T° is a maximal monotone operator mapping $\mathcal{W}_{\phi^{\circ}}$ onto \mathcal{W}_{ϕ} .

Definition: $\phi \in \mathcal{C}^{1,1}_+$ (resp. \mathcal{C}^{∞}_+) if ϕ^2 is $\mathcal{C}^{1,1}(\mathbb{R}^N)$ (resp. $\mathcal{C}^{\infty}(\mathbb{R}^N\setminus\{0\})$) and $\exists \ c>0$ such that $\nabla^2(\phi^2)\geq c \ \mathrm{Id}$ a.e.

Definition: ϕ is crystalline if the unit ball W_{ϕ} of ϕ is a polytope.

Definition: Let $E \subset \mathbb{R}^N$. E is ϕ -regular if ∂E is a compact Lipschitz hypersurface and $\exists \ U \supset \partial E$ and $n \in L^\infty(U; \mathbb{R}^N)$ s.t. div $n \in L^\infty(U)$, $n \in \partial \phi^\circ(\nabla d_\phi^E)$ a.e. in U. E is Lipschitz ϕ -regular if E is ϕ -regular and $n \in \operatorname{Lip}(U; \mathbb{R}^N)$.

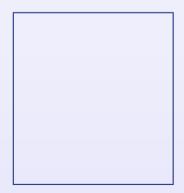
Example:
$$\phi_1(\xi) = \|\xi\|_2 \longrightarrow \phi_1^{\circ}(\xi) = \|\xi\|_2 \longrightarrow \partial \phi_1^{\circ}(\xi) = \frac{\xi}{\|\xi\|_2}$$

$$\phi_2(\xi) = \|\xi\|_{\infty} \longrightarrow \phi_2^{\circ}(\xi) = \|\xi\|_1 \longrightarrow \partial \phi_2^{\circ}(\xi) = \left(\frac{\xi_1}{|\xi_1|}, \dots \frac{\xi_N}{|\xi_N|}\right)$$

Example:
$$\phi_1(\xi) = \|\xi\|_2 \longrightarrow \phi_1^{\circ}(\xi) = \|\xi\|_2 \longrightarrow \partial \phi_1^{\circ}(\xi) = \frac{\xi}{\|\xi\|_2}$$

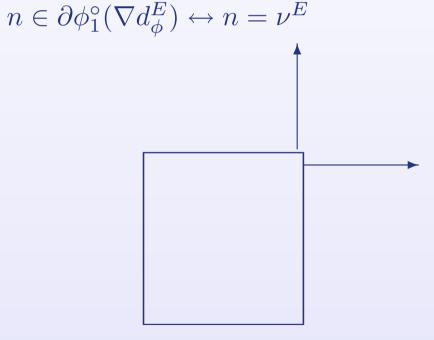
$$\phi_2(\xi) = \|\xi\|_{\infty} \longrightarrow \phi_2^{\circ}(\xi) = \|\xi\|_1 \longrightarrow \partial \phi_2^{\circ}(\xi) = \left(\frac{\xi_1}{|\xi_1|}, \dots \frac{\xi_N}{|\xi_N|}\right)$$

$$n \in \partial \phi_1^{\circ}(\nabla d_{\phi}^E) \leftrightarrow n = \nu^E$$



Example:
$$\phi_1(\xi) = \|\xi\|_2 \longrightarrow \phi_1^{\circ}(\xi) = \|\xi\|_2 \longrightarrow \partial \phi_1^{\circ}(\xi) = \frac{\xi}{\|\xi\|_2}$$

$$\phi_2(\xi) = \|\xi\|_{\infty} \longrightarrow \phi_2^{\circ}(\xi) = \|\xi\|_1 \longrightarrow \partial \phi_2^{\circ}(\xi) = \left(\frac{\xi_1}{|\xi_1|}, \dots \frac{\xi_N}{|\xi_N|}\right)$$

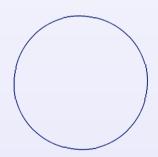


Example:
$$\phi_1(\xi) = \|\xi\|_2 \longrightarrow \phi_1^{\circ}(\xi) = \|\xi\|_2 \longrightarrow \partial \phi_1^{\circ}(\xi) = \frac{\xi}{\|\xi\|_2}$$

$$\phi_2(\xi) = \|\xi\|_{\infty} \longrightarrow \phi_2^{\circ}(\xi) = \|\xi\|_1 \longrightarrow \partial \phi_2^{\circ}(\xi) = \left(\frac{\xi_1}{|\xi_1|}, \dots, \frac{\xi_N}{|\xi_N|}\right)$$

$$n \in \partial \phi_1^{\circ}(\nabla d_{\phi}^E) \leftrightarrow n = \nu^E$$

$$n \in \partial \phi_2^{\circ}(\nabla d_{\phi}^E) \leftrightarrow n \in (\operatorname{sign} \nu_1^E, \dots, \operatorname{sign} \nu_N^E)$$

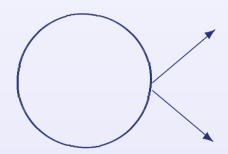


Example:
$$\phi_1(\xi) = \|\xi\|_2 \longrightarrow \phi_1^{\circ}(\xi) = \|\xi\|_2 \longrightarrow \partial \phi_1^{\circ}(\xi) = \frac{\xi}{\|\xi\|_2}$$

$$\phi_2(\xi) = \|\xi\|_{\infty} \longrightarrow \phi_2^{\circ}(\xi) = \|\xi\|_1 \longrightarrow \partial \phi_2^{\circ}(\xi) = \left(\frac{\xi_1}{|\xi_1|}, \dots \frac{\xi_N}{|\xi_N|}\right)$$

$$n \in \partial \phi_1^{\circ}(\nabla d_{\phi}^E) \leftrightarrow n = \nu^E$$

$$n \in \partial \phi_2^{\circ}(\nabla d_{\phi}^E) \leftrightarrow n \in (\operatorname{sign} \nu_1^E, \dots, \operatorname{sign} \nu_N^E)$$



Definition: Let $E \subset \mathbb{R}^N$ be s.t. $E^{\circ} \neq \emptyset$ and R > 0. E satisfies the $R\mathcal{W}_{\phi}$ -condition (W) if $\forall \ x \in \partial E$, there exists $y \in \mathbb{R}^N$ such that

$$RW_{\phi} + y \subseteq \overline{E}$$
 and $x \in \partial (RW_{\phi} + y)$.

Definition: Let $E \subset \mathbb{R}^N$ be s.t. $E^{\circ} \neq \emptyset$ and R > 0. E satisfies the $R\mathcal{W}_{\phi}$ -condition (W) if $\forall \ x \in \partial E$, there exists $y \in \mathbb{R}^N$ such that

$$RW_{\phi} + y \subseteq \overline{E}$$
 and $x \in \partial (RW_{\phi} + y)$.

Lemma: (i) If E is Lipschitz ϕ -regular, then E and $\mathbb{R}^N \setminus E$ satisfy (W). (ii) A compact convex set satisfying the $R\mathcal{W}_{\phi}$ -condition is ϕ -regular.

Definition: Let $E \subset \mathbb{R}^N$ be s.t. $E^{\circ} \neq \emptyset$ and R > 0. E satisfies the RW_{ϕ} -condition (W) if $\forall x \in \partial E$, there exists $y \in \mathbb{R}^N$ such that

$$RW_{\phi} + y \subseteq \overline{E}$$
 and $x \in \partial (RW_{\phi} + y)$.

Lemma: (i) If E is Lipschitz ϕ -regular, then E and $\mathbb{R}^N \setminus E$ satisfy (W). (ii) A compact convex set satisfying the $R\mathcal{W}_{\phi}$ -condition is ϕ -regular.

Proposition: Assume that $\phi \in \mathcal{C}^{1,1}_+$. Then,

- (a) E is Lipschitz ϕ -regular if and only if E is of class $C^{1,1}$.
- (b) A compact convex set which satisfies (W) is Lipschitz ϕ -regular.
- (c) E is Lipschitz ϕ -regular if and only if E and $\mathbb{R}^N \setminus E$ satisfy (W).

$$u \in BV(\Omega) \Leftrightarrow \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \varphi d\mu_i, \quad \forall \varphi \in C_0^{\infty}(\Omega), \ \forall i = 1, \dots, N$$

$$u \in BV(\Omega) \Leftrightarrow \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \varphi d\mu_i, \quad \forall \varphi \in C_0^{\infty}(\Omega), \ \forall i = 1, \dots, N$$

$$|Du| := \sup \left\{ \int_{\Omega} u \operatorname{div}(\phi) \, dx : \phi \in C_0^{\infty}(\Omega, \mathbb{R}^N) \, |\phi(x)| \le 1, \ x \in \Omega \right\}.$$

$$||u||_{BV} := ||u||_1 + |Du|$$

$$u \in BV(\Omega) \Leftrightarrow \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \varphi d\mu_i, \quad \forall \varphi \in C_0^{\infty}(\Omega), \ \forall i = 1, \dots, N$$

$$|Du| := \sup \left\{ \int_{\Omega} u \operatorname{div}(\phi) \, dx : \phi \in C_0^{\infty}(\Omega, \mathbb{R}^N) \, |\phi(x)| \le 1, \ x \in \Omega \right\}.$$

$$||u||_{BV} := ||u||_1 + |Du|$$

$$\chi_E \in BV(\Omega) \Longrightarrow P(E,\Omega) := |D\chi_E|.$$

$$u \in BV(\Omega) \Leftrightarrow \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \varphi d\mu_i, \quad \forall \varphi \in C_0^{\infty}(\Omega), \ \forall i = 1, \dots, N$$

$$|Du| := \sup \left\{ \int_{\Omega} u \operatorname{div}(\phi) \, dx : \phi \in C_0^{\infty}(\Omega, \mathbb{R}^N) \, |\phi(x)| \le 1, \ x \in \Omega \right\}.$$

$$||u||_{BV} := ||u||_1 + |Du|$$

$$\chi_E \in BV(\Omega) \Longrightarrow P(E,\Omega) := |D\chi_E|.$$

$$\int_{\Omega} \phi^{\circ}(Du) := \sup \left\{ \int_{\Omega} u \operatorname{div} \sigma \ dx : \sigma \in \mathcal{C}^{1}_{c}(\Omega; \mathbb{R}^{N}), \phi(\sigma(x)) \leq 1 \ \forall x \in \Omega \right\}.$$

Definition: Let $\Omega \subseteq \mathbb{R}^N$ be an open set and consider $u \in L^1(\Omega)$.

$$u \in BV(\Omega) \Leftrightarrow \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \varphi d\mu_i, \quad \forall \varphi \in C_0^{\infty}(\Omega), \ \forall i = 1, \dots, N$$

$$|Du| := \sup \left\{ \int_{\Omega} u \operatorname{div}(\phi) \, dx : \phi \in C_0^{\infty}(\Omega, \mathbb{R}^N) \, |\phi(x)| \le 1, \ x \in \Omega \right\}.$$

$$||u||_{BV} := ||u||_1 + |Du|$$

$$\chi_E \in BV(\Omega) \Longrightarrow P(E,\Omega) := |D\chi_E|.$$

$$\int_{\Omega} \phi^{\circ}(Du) := \sup \left\{ \int_{\Omega} u \operatorname{div} \sigma \ dx : \sigma \in \mathcal{C}^{1}_{c}(\Omega; \mathbb{R}^{N}), \phi(\sigma(x)) \leq 1 \ \forall x \in \Omega \right\}.$$

If $E \subseteq \mathbb{R}^N$ has finite perimeter in Ω , we set

$$P_{\phi}(E,\Omega):=\int_{\Omega}\phi^{\circ}(D\chi_{E})=\int_{\Omega\cap\partial^{*}E}\phi^{\circ}(\nu^{E})\,d\mathcal{H}^{N-1}, \qquad \text{ whitersitation for the property fabra in the property form of the property fabra in the property fab$$

Definition:
$$X_2(\Omega) := \{ z \in (L^{\infty}(\Omega))^N : \operatorname{div}(z) \in L^2(\Omega) \}$$

Let
$$u \in BV(\Omega) \cap L^2(\Omega)$$
, $z \in X_2(\Omega)$, and define

$$\langle (z, Du), \varphi \rangle := -\int_{\Omega} u\varphi \operatorname{div}(z) dx - \int_{\Omega} uz \cdot \nabla \varphi dx.$$

Definition: $X_2(\Omega) := \{ z \in (L^{\infty}(\Omega))^N : \operatorname{div}(z) \in L^2(\Omega) \}$

Let $u \in BV(\Omega) \cap L^2(\Omega)$, $z \in X_2(\Omega)$, and define

$$\langle (z, Du), \varphi \rangle := -\int_{\Omega} u\varphi \operatorname{div}(z) dx - \int_{\Omega} uz \cdot \nabla \varphi dx.$$

Theorem: (z,Du), |(z,Du)| << |Du|.

Definition: $X_2(\Omega) := \{ z \in (L^{\infty}(\Omega))^N : \operatorname{div}(z) \in L^2(\Omega) \}$

Let $u \in BV(\Omega) \cap L^2(\Omega)$, $z \in X_2(\Omega)$, and define

$$\langle (z, Du), \varphi \rangle := -\int_{\Omega} u\varphi \operatorname{div}(z) dx - \int_{\Omega} uz \cdot \nabla \varphi dx.$$

Theorem: (z,Du), |(z,Du)| << |Du|.

Green's Formula:
$$\int_{\Omega} u \,\operatorname{div}(z) \,dx + \int_{\Omega} (z, Du) = \int_{\partial \Omega} [z, \nu] u \,d\mathcal{H}^{N-1}.$$

Preliminaries. ϕ -calibrable sets

Definition: Let $E \subset \mathbb{R}^N$ be bounded and of finite perimeter. E is ϕ -calibrable if $\exists \ \xi \in L^\infty(\mathbb{R}^N,\mathbb{R}^N)$ with $\phi(\xi(x)) \leq 1$ a.e. such that $(\xi,D\chi_E)=\phi^\circ(D\chi_E)$ as measures in R^N , and

$$-\mathrm{div}\,\xi=\lambda_E\chi_E\quad\text{in }\mathcal{D}'(\mathbb{R}^N).$$

Preliminaries. ϕ -calibrable sets

Definition: Let $E \subset \mathbb{R}^N$ be bounded and of finite perimeter. E is ϕ -calibrable if $\exists \ \xi \in L^\infty(\mathbb{R}^N,\mathbb{R}^N)$ with $\phi(\xi(x)) \leq 1$ a.e. such that $(\xi,D\chi_E)=\phi^\circ(D\chi_E)$ as measures in R^N , and

$$-\mathrm{div}\,\xi=\lambda_E\chi_E\quad\text{in }\mathcal{D}'(\mathbb{R}^N).$$

Proposition: Let E be a bounded convex set of finite perimeter in \mathbb{R}^N . Then E is ϕ -calibrable iff E minimizes the functional

$$P_{\phi}(X) - \lambda_E |X|$$

among the sets of finite perimeter $X \subseteq E$.

Properties of the solutions of $(Q)_{\lambda}$

Consider the energy functional $\Psi_{\phi}:L^2(\mathbb{R}^N)\to [0,+\infty]$

$$\Psi_{\phi}(u) := \begin{cases} \int_{\mathbb{R}^N} \phi^{\circ}(Du) & \text{if} \quad u \in L^2(\mathbb{R}^N) \cap BV(\mathbb{R}^N) \\ +\infty & \text{if} \quad u \in L^2(\mathbb{R}^N) \setminus BV(\mathbb{R}^N). \end{cases}$$

Consider the energy functional $\Psi_{\phi}: L^2(\mathbb{R}^N) \to [0, +\infty]$

$$\Psi_{\phi}(u) := \begin{cases} \int_{\mathbb{R}^N} \phi^{\circ}(Du) & \text{if} \quad u \in L^2(\mathbb{R}^N) \cap BV(\mathbb{R}^N) \\ +\infty & \text{if} \quad u \in L^2(\mathbb{R}^N) \setminus BV(\mathbb{R}^N). \end{cases}$$

 Ψ_{ϕ} is convex, l.s.c. and proper, then $\partial \Psi_{\phi}$ is maximal monotone with dense domain, generating a contraction semigroup in $L^2(\mathbb{R}^N)$.

Consider the energy functional $\Psi_{\phi}: L^2(\mathbb{R}^N) \to [0, +\infty]$

$$\Psi_{\phi}(u) := \begin{cases} \int_{\mathbb{R}^N} \phi^{\circ}(Du) & \text{if} \quad u \in L^2(\mathbb{R}^N) \cap BV(\mathbb{R}^N) \\ +\infty & \text{if} \quad u \in L^2(\mathbb{R}^N) \setminus BV(\mathbb{R}^N). \end{cases}$$

 Ψ_{ϕ} is convex, l.s.c. and proper, then $\partial \Psi_{\phi}$ is maximal monotone with dense domain, generating a contraction semigroup in $L^2(\mathbb{R}^N)$.

Lemma: Let $u \in L^2(\mathbb{R}^N) \cap BV(\mathbb{R}^N)$. Then $v \in \partial \Psi_{\phi}(u)$ iff $v \in L^2(\mathbb{R}^N)$ and $\exists z \in X_2(\mathbb{R}^N)$, $\phi(z(x)) \leq 1$ a.e. such that $v = -\mathrm{div}z$ in $\mathcal{D}'(\mathbb{R}^N)$ and

(1)
$$\int_{\mathbb{R}^N} (z, Du) = \int_{\mathbb{R}^N} \phi^{\circ}(Du).$$

Definition: Given $g \in L^2(\mathbb{R}^N)$,

$$||g||_{\phi,*} := \sup \left\{ \int_{\mathbb{R}^N} g(x)u(x) \ dx : \ u \in L^2(\mathbb{R}^N) \cap BV(\mathbb{R}^N), \int_{\mathbb{R}^N} \phi^{\circ}(Du) \le 1 \right\}.$$

Definition: Given $g \in L^2(\mathbb{R}^N)$,

$$||g||_{\phi,*} := \sup \left\{ \int_{\mathbb{R}^N} g(x)u(x) \ dx : \ u \in L^2(\mathbb{R}^N) \cap BV(\mathbb{R}^N), \int_{\mathbb{R}^N} \phi^{\circ}(Du) \le 1 \right\}.$$

Lemma: Let $f \in L^2(\mathbb{R}^N)$ and $\lambda > 0$. Then,

(a) u is the solution of

$$(Q)_{\lambda}: \min_{w \in L^{2}(\mathbb{R}^{N}) \cap BV(\mathbb{R}^{N})} \int_{\mathbb{R}^{N}} \phi^{\circ}(Dw) + \frac{\lambda}{2} \int_{\mathbb{R}^{N}} (w - f)^{2} dx$$

iff $\exists z \in X_2(\mathbb{R}^N)$ satisfying (1) such that $\phi(z(x)) \leq 1$ a.e. and $\operatorname{div} z = \lambda(u - f)$.

- (b) $u \equiv 0$ is the solution of $(Q)_{\lambda}$ iff $||f||_{\phi,*} \leq \frac{1}{\lambda}$.
- (c) We have $\partial \Psi_{\phi}(0) = \{ f \in L^2(\mathbb{R}^N) : \|f\|_{\phi,*} \le 1 \}.$

$$(Q)_{\lambda}: \quad \min_{u \in BV(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)} \left\{ \int_{\mathbb{R}^N} \phi^{\circ}(Du) + \frac{\lambda}{2} \int_{\mathbb{R}^N} (u - \chi_C)^2 dx \right\}.$$

$$(Q)_{\lambda}: \quad \min_{u \in BV(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)} \left\{ \int_{\mathbb{R}^N} \phi^{\circ}(Du) + \frac{\lambda}{2} \int_{\mathbb{R}^N} (u - \chi_C)^2 dx \right\}.$$

(i)
$$0 \le u \le 1$$
. Let $E_s := \{u \ge s\}$, $s \in (0,1]$. Then $E_s \subseteq C$, and

$$P_{\phi}(E_s) - \lambda(1-s)|E_s| \le P_{\phi}(F) - \lambda(1-s)|F|, \quad \forall F \subseteq C.$$

$$(Q)_{\lambda}: \quad \min_{u \in BV(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)} \left\{ \int_{\mathbb{R}^N} \phi^{\circ}(Du) + \frac{\lambda}{2} \int_{\mathbb{R}^N} (u - \chi_C)^2 dx \right\}.$$

- (i) $0 \le u \le 1$. Let $E_s:=\{u \ge s\}$, $s \in (0,1]$. Then $E_s \subseteq C$, and $P_\phi(E_s)-\lambda(1-s)|E_s|\le P_\phi(F)-\lambda(1-s)|F|, \quad \forall F\subseteq C.$
- (ii) $u_{\lambda} \neq \chi_C$ for any $\lambda > 0$, and $u_{\lambda} \to \chi_C$ in $L^2(\mathbb{R}^N)$ as $\lambda \to \infty$.

$$(Q)_{\lambda}: \quad \min_{u \in BV(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)} \left\{ \int_{\mathbb{R}^N} \phi^{\circ}(Du) + \frac{\lambda}{2} \int_{\mathbb{R}^N} (u - \chi_C)^2 dx \right\}.$$

- (i) $0 \le u \le 1$. Let $E_s:=\{u \ge s\}$, $s \in (0,1]$. Then $E_s \subseteq C$, and $P_\phi(E_s) \lambda(1-s)|E_s| \le P_\phi(F) \lambda(1-s)|F|, \quad \forall F \subseteq C.$
- (ii) $u_{\lambda} \neq \chi_C$ for any $\lambda > 0$, and $u_{\lambda} \to \chi_C$ in $L^2(\mathbb{R}^N)$ as $\lambda \to \infty$.
- (iii) If C satisfies the RW_{ϕ} -condition, then $u_{\lambda} \geq \left(1 \frac{N}{R\lambda}\right)^{+} \chi_{C}$.

$$(Q)_{\lambda}: \quad \min_{u \in BV(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)} \left\{ \int_{\mathbb{R}^N} \phi^{\circ}(Du) + \frac{\lambda}{2} \int_{\mathbb{R}^N} (u - \chi_C)^2 dx \right\}.$$

- (i) $0 \le u \le 1$. Let $E_s:=\{u \ge s\}, s \in (0,1]$. Then $E_s \subseteq C$, and $P_\phi(E_s)-\lambda(1-s)|E_s|\le P_\phi(F)-\lambda(1-s)|F|, \quad \forall F\subseteq C.$
- (ii) $u_{\lambda} \neq \chi_C$ for any $\lambda > 0$, and $u_{\lambda} \to \chi_C$ in $L^2(\mathbb{R}^N)$ as $\lambda \to \infty$.
- (iii) If C satisfies the RW_{ϕ} -condition, then $u_{\lambda} \geq \left(1 \frac{N}{R\lambda}\right)^{+} \chi_{C}$.
- (iv) $u_{\lambda} \neq 0$ if and only if $\lambda > \frac{1}{\|\chi_C\|_{\phi,*}}$.

$$(Q)_{\lambda}: \quad \min_{u \in BV(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)} \left\{ \int_{\mathbb{R}^N} \phi^{\circ}(Du) + \frac{\lambda}{2} \int_{\mathbb{R}^N} (u - \chi_C)^2 dx \right\}.$$

- (i) $0 \le u \le 1$. Let $E_s := \{u \ge s\}, s \in (0,1]$. Then $E_s \subseteq C$, and $P_{\phi}(E_s) - \lambda(1-s)|E_s| \leq P_{\phi}(F) - \lambda(1-s)|F|, \quad \forall F \subseteq C.$
- (ii) $u_{\lambda} \neq \chi_C$ for any $\lambda > 0$, and $u_{\lambda} \to \chi_C$ in $L^2(\mathbb{R}^N)$ as $\lambda \to \infty$.
- (iii) If C satisfies the RW_{ϕ} -condition, then $u_{\lambda} \geq \left(1 \frac{N}{R\lambda}\right)^{+} \chi_{C}$.
- (iv) $u_{\lambda} \neq 0$ if and only if $\lambda > \frac{1}{\|\chi_{C}\|_{\phi}}$.
- (v) If C is not ϕ -calibrable, for any $\lambda>\frac{1}{\|\chi_C\|_{\phi,*}}\,u_\lambda$ cannot be a multiple of χ_C .

Theorem: Let C be bounded, convex and satisfying (W). If $\lambda \geq \frac{2N}{R}$, then the solution u_{λ} of $(Q)_{\lambda}$ is concave in C.

Theorem: Let C be bounded, convex and satisfying (W). If $\lambda \geq \frac{2N}{R}$, then the solution u_{λ} of $(Q)_{\lambda}$ is concave in C.

Lemma: Let ϕ be an anisotropy, and let C be a convex body in \mathbb{R}^N . Then $\exists \{\phi_{\epsilon}\}$, anisotropies and $\{C_{\epsilon}\}$, compact convex sets s.t.

- (i) $\{\phi_{\epsilon}\} \to \phi$ uniformly on \mathbb{R}^N as $\epsilon \to 0$;
- (ii) $\{C_{\epsilon}\} \to C$ in the Hausdorff distance as $\epsilon \to 0$;
- (iii) ϕ_{ϵ} , $\phi_{\epsilon}^{\circ} \in \mathcal{C}_{+}^{\infty}$ and C_{ϵ} is of class \mathcal{C}_{+}^{∞} for any $\epsilon > 0$.

Theorem: Let C be bounded, convex and satisfying (W). If $\lambda \geq \frac{2N}{R}$, then the solution u_{λ} of $(Q)_{\lambda}$ is concave in C.

Lemma: Let ϕ be an anisotropy, and let C be a convex body in \mathbb{R}^N . Then $\exists \{\phi_{\epsilon}\}$, anisotropies and $\{C_{\epsilon}\}$, compact convex sets s.t.

- (i) $\{\phi_{\epsilon}\} \to \phi$ uniformly on \mathbb{R}^N as $\epsilon \to 0$;
- (ii) $\{C_{\epsilon}\} \to C$ in the Hausdorff distance as $\epsilon \to 0$;
- (iii) ϕ_{ϵ} , $\phi_{\epsilon}^{\circ} \in \mathcal{C}_{+}^{\infty}$ and C_{ϵ} is of class \mathcal{C}_{+}^{∞} for any $\epsilon > 0$.

Theorem:Let $\phi \in \mathcal{C}_+^{\infty}$ and $\lambda \geq \frac{2N}{R}$. Consider

$$(P)_{\epsilon} \begin{cases} u - \lambda^{-1} \operatorname{div}\left(\frac{T^{\circ}(Du)}{\sqrt{\epsilon^{2} + \phi^{\circ}(Du)^{2}}}\right) = 1 & \text{in} \quad C \\ u = 0 & \text{on} \quad \partial C. \end{cases}$$

Then, there is a unique solution u^{ϵ} of $(P)_{\epsilon}$, $0 \leq u^{\epsilon} \leq 1$. Moreover $u^{\epsilon} \geq \alpha > 0$ in a neighborhood of ∂C for some $\alpha > 0$.

Proposition: Let C be a bounded convex domain in \mathbb{R}^N satisfying the RW_{ϕ} -condition. Let u_{α} be the solution of $(Q)_{\alpha}$. Let $\alpha, \beta \geq \frac{2N}{R}$. Then,

(i) If $\lambda > \alpha(1 - ||u_{\alpha}||_{\infty})$, the unique solution of $(P)_{\lambda}$ is a convex set

$$(P)_{\lambda}: \min_{F\subseteq C} P_{\phi}(F) - \lambda |F|.$$

(ii) $\{u_{\alpha} \ge \|u_{\alpha}\|_{\infty}\} = \{u_{\beta} \ge \|u_{\beta}\|_{\infty}\}$, and

$$\lambda^* = \frac{P_{\phi}(\{u_{\alpha} \ge ||u_{\alpha}||_{\infty}\})}{|\{u_{\alpha} \ge ||u_{\alpha}||_{\infty}\}|} = \alpha(1 - ||u_{\alpha}||_{\infty}) = \beta(1 - ||u_{\beta}||_{\infty}).$$

Proposition: Let C be a bounded convex domain in \mathbb{R}^N satisfying the $R\mathcal{W}_{\phi}$ -condition. Let u_{α} be the solution of $(Q)_{\alpha}$. Let $\alpha, \beta \geq \frac{2N}{R}$. Then,

(i) If $\lambda > \alpha(1 - ||u_{\alpha}||_{\infty})$, the unique solution of $(P)_{\lambda}$ is a convex set

$$(P)_{\lambda}: \min_{F\subseteq C} P_{\phi}(F) - \lambda |F|.$$

(ii) $\{u_{\alpha} \ge \|u_{\alpha}\|_{\infty}\} = \{u_{\beta} \ge \|u_{\beta}\|_{\infty}\}$, and

$$\lambda^* = \frac{P_{\phi}(\{u_{\alpha} \ge ||u_{\alpha}||_{\infty}\})}{|\{u_{\alpha} \ge ||u_{\alpha}||_{\infty}\}|} = \alpha(1 - ||u_{\alpha}||_{\infty}) = \beta(1 - ||u_{\beta}||_{\infty}).$$

Therefore, $K := \{u_{\alpha} \geq ||u_{\alpha}||_{\infty}\}$ is ϕ -calibrable.

Definition: We define the Cheeger ϕ -constant of C as

$$(Ch) \ h_{\phi}(C) := \min_{F \subseteq C} \frac{P_{\phi}(F)}{|F|}.$$

Definition: We define the Cheeger ϕ -constant of C as

$$(Ch) \ h_{\phi}(C) := \min_{F \subseteq C} \frac{P_{\phi}(F)}{|F|}.$$

Definition: A Cheeger ϕ -set of C is any set G which minimizes (Ch).

Definition: We define the Cheeger ϕ -constant of C as

$$(Ch) \ h_{\phi}(C) := \min_{F \subseteq C} \frac{P_{\phi}(F)}{|F|}.$$

Definition: A Cheeger ϕ -set of C is any set G which minimizes (Ch).

Theorem: Let C be bounded and convex satisfying the ball condition. Then $\exists K \subseteq C$ which is the largest Cheeger ϕ -set of C. K is convex, calibrable and it minimizes $P_{\phi}(F) - \lambda_K^{\phi}|F| \quad \forall \ F \subseteq C$. $\forall \ \lambda \neq \lambda_K^{\phi}, \ \lambda > 0, \ \exists \ ! \ C_{\lambda} \ \text{minimizer of} \ (P)_{\lambda}, \ \text{it is convex}, \ \lambda \to C_{\lambda} \ \text{is increasing and continuous}. Moreover, <math>C_{\lambda} = \emptyset \ \forall \ \lambda \in (0, \lambda_K^{\phi}).$

Remark: Assume ϕ being smooth and strictly convex. Then, if C is uniformly convex and has C^2 boundary, the Cheeger set is unique

Remark: Assume ϕ being smooth and strictly convex. Then, if C is uniformly convex and has C^2 boundary, the Cheeger set is unique

Lemma: Let C be bounded and convex. Let $\mu \geq 0$ and let E be a solution of

$$\min_{F\subseteq C} P_{\phi}(F) - \mu |F|.$$

Let V = |E|. Then E is a solution of $\min_{F \subseteq C, |F| = V} P_{\phi}(F)$.

Remark: Assume ϕ being smooth and strictly convex. Then, if C is uniformly convex and has C^2 boundary, the Cheeger set is unique

Lemma: Let C be bounded and convex. Let $\mu \geq 0$ and let E be a solution of

$$\min_{F\subseteq C} P_{\phi}(F) - \mu |F|.$$

Let V = |E|. Then E is a solution of $\min_{F \subseteq C, |F| = V} P_{\phi}(F)$.

Theorem: Let C be a bounded convex domain in \mathbb{R}^N satisfying the RW_{ϕ} -condition for some R > 0. For any $V \in [|K|, |C|]$ there is a unique convex solution of the constrained isoperimetric problem.

The anisotropic mean curvature

Let (E,U,n) be a ϕ -regular set. For any $p\in[1,+\infty]$, we define

$$\widetilde{H}_{\phi}^{\operatorname{div},p}(U,\mathbb{R}^N) := \{ N \in L^{\infty}(U;\mathbb{R}^N) : N \in T^{\circ}(\nabla d_{\phi}^E), \operatorname{div} N \in L^p(U) \}.$$

The anisotropic mean curvature

Let (E,U,n) be a ϕ -regular set. For any $p\in [1,+\infty]$, we define $\widetilde{H}^{\mathrm{div},p}_{\phi}(U,\mathbb{R}^N):=\{N\in L^\infty(U;\mathbb{R}^N):N\in T^\circ(\nabla d^E_\phi),\,\mathrm{div}\,N\in L^p(U)\}.$

Theorem: Let (E,U,n) be ϕ -regular, $0<\delta_0\leq R$ such that $U_0:=\{|d_\phi^E|<\delta_0\}\subseteq U$, and let (u^h,z^h) be the solution of

$$u^h - h \operatorname{div} z^h = d_\phi^E \quad \text{in } \mathbb{R}^N$$
,

where $z^h \in \partial \phi^{\circ}(\nabla u^h)$ and $(z^h, Du^h) = \phi(Du^h)$ in $\mathcal{D}'(\mathbb{R}^N)$. Then, $\exists \widetilde{z} \in L^{\infty}(\mathbb{R}^N, \mathbb{R}^N)$ and $h_j \to 0^+$ s.t. $z^{h_j} \stackrel{*}{\rightharpoonup} \widetilde{z}$, with $\widetilde{z} \in T^{\circ}(\nabla d_{\phi}^E)$ in U_0 ,

$$\|\operatorname{div} \widetilde{z}\|_{L^q(U_\delta)} \le \|\operatorname{div} Z\|_{L^q(U_\delta)} \qquad \forall Z \in \widetilde{H}^{\operatorname{div},\infty}_{\phi}(U_\delta,\mathbb{R}^N),$$

for all $q \in [1, \infty]$ and for all $0 < \delta < \delta_0$, where $U_{\delta} := \{|d_{\phi}^E| < \delta\}$. Moreover, if E is convex, then $\operatorname{div} \tilde{z} \geq 0$ in U_0 .

The anisotropic mean curvature

Let (E,U,n) be a ϕ -regular set. For any $p\in [1,+\infty]$, we define

$$\widetilde{H}_{\phi}^{\operatorname{div},p}(U,\mathbb{R}^N) := \{ N \in L^{\infty}(U;\mathbb{R}^N) : N \in T^{\circ}(\nabla d_{\phi}^E), \operatorname{div} N \in L^p(U) \}.$$

Theorem: Let (E,U,n) be ϕ -regular, $0<\delta_0\leq R$ such that $U_0:=\{|d_\phi^E|<\delta_0\}\subseteq U$, and let (u^h,z^h) be the solution of

$$u^h - h \operatorname{div} z^h = d_\phi^E$$
 in \mathbb{R}^N ,

where $z^h \in \partial \phi^{\circ}(\nabla u^h)$ and $(z^h, Du^h) = \phi(Du^h)$ in $\mathcal{D}'(\mathbb{R}^N)$. Then, $\exists \widetilde{z} \in L^{\infty}(\mathbb{R}^N, \mathbb{R}^N)$ and $h_j \to 0^+$ s.t. $z^{h_j} \stackrel{*}{\rightharpoonup} \widetilde{z}$, with $\widetilde{z} \in T^{\circ}(\nabla d_{\phi}^E)$ in U_0 ,

$$\|\operatorname{div} \widetilde{z}\|_{L^q(U_\delta)} \le \|\operatorname{div} Z\|_{L^q(U_\delta)} \qquad \forall Z \in \widetilde{H}_\phi^{\operatorname{div},\infty}(U_\delta,\mathbb{R}^N),$$

for all $q \in [1, \infty]$ and for all $0 < \delta < \delta_0$, where $U_{\delta} := \{|d_{\phi}^E| < \delta\}$. Moreover, if E is convex, then $\operatorname{div} \tilde{z} \geq 0$ in U_0 .

$$\|\mathbf{H}_{E}^{\phi}\|_{\infty} := \lim_{t \to 0^{+}} \|\operatorname{div} \widetilde{z}\|_{L^{\infty}(U_{t})}.$$

Definition: (E, n) Lipschitz ϕ -regular, $N \in Nor_{\phi}(\partial E)$, $\psi \in Lip(\partial E)$.

$$\int_{\partial E} \operatorname{div}_{\tau} \mathbf{N} \, \psi \, \phi^{\circ}(\nu^{E}) = \int_{\partial E} \mathbf{N} \cdot n \, \psi \, \operatorname{div}_{\tau} n \, \phi^{\circ}(\nu^{E}) - \int_{\partial E} \left[(\mathrm{Id} - n \otimes n) \nabla_{\tau} \psi \right] \cdot \mathbf{N} \, \phi^{\circ}(\nu^{E})$$

Definition: (E, n) Lipschitz ϕ -regular, $N \in Nor_{\phi}(\partial E)$, $\psi \in Lip(\partial E)$.

$$\int_{\partial E} \operatorname{div}_{\tau} \operatorname{N} \psi \, \phi^{\circ}(\nu^{E}) = \int_{\partial E} \operatorname{N} \cdot n \, \psi \, \operatorname{div}_{\tau} n \, \phi^{\circ}(\nu^{E}) - \int_{\partial E} \left[(\operatorname{Id} - n \otimes n) \nabla_{\tau} \psi \right] \cdot \operatorname{N} \phi^{\circ}(\nu^{E})$$

$$\mathbf{H}_{\phi}^{\mathrm{div},\mathbf{p}}(\partial \mathbf{E},\mathbb{R}^{\mathbf{N}}) := \{ \mathbf{N} \in \mathrm{Nor}_{\phi}(\partial E,\mathbb{R}^{N}) : \operatorname{div}_{\tau} \mathbf{N} \in L^{p}(\partial E) \} \qquad p \in [1,+\infty],$$

Definition: (E, n) Lipschitz ϕ -regular, $N \in Nor_{\phi}(\partial E)$, $\psi \in Lip(\partial E)$.

$$\int_{\partial E} \operatorname{div}_{\tau} \operatorname{N} \psi \, \phi^{\circ}(\nu^{E}) = \int_{\partial E} \operatorname{N} \cdot n \, \psi \, \operatorname{div}_{\tau} n \, \phi^{\circ}(\nu^{E}) - \int_{\partial E} \left[(\operatorname{Id} - n \otimes n) \nabla_{\tau} \psi \right] \cdot \operatorname{N} \phi^{\circ}(\nu^{E})$$

$$\mathbf{H}_{\phi}^{\mathrm{div},\mathbf{p}}(\partial \mathbf{E},\mathbb{R}^{\mathbf{N}}) := \{ \mathbf{N} \in \mathrm{Nor}_{\phi}(\partial E,\mathbb{R}^{N}) : \operatorname{div}_{\tau} \mathbf{N} \in L^{p}(\partial E) \} \qquad p \in [1,+\infty],$$

$$N_{\min} := \operatorname{argmin} \int_{\partial E} (\operatorname{div}_{\tau} N)^{2} \, \phi^{\circ}(\nu^{E}) \, d\mathcal{H}^{N-1} \qquad N \in H_{\phi}^{\operatorname{div}, 2}(\partial E, \mathbb{R}^{N}).$$

Definition: (E, n) Lipschitz ϕ -regular, $N \in Nor_{\phi}(\partial E)$, $\psi \in Lip(\partial E)$.

$$\int_{\partial E} \operatorname{div}_{\tau} \mathbf{N} \, \psi \, \phi^{\circ}(\nu^{E}) = \int_{\partial E} \mathbf{N} \cdot n \, \psi \, \operatorname{div}_{\tau} n \, \phi^{\circ}(\nu^{E}) - \int_{\partial E} \left[(\mathrm{Id} - n \otimes n) \nabla_{\tau} \psi \right] \cdot \mathbf{N} \, \phi^{\circ}(\nu^{E})$$

$$\mathbf{H}_{\phi}^{\mathrm{div},\mathbf{p}}(\partial \mathbf{E},\mathbb{R}^{\mathbf{N}}) := \{ \mathbf{N} \in \mathrm{Nor}_{\phi}(\partial E,\mathbb{R}^{N}) : \operatorname{div}_{\tau} \mathbf{N} \in L^{p}(\partial E) \} \qquad p \in [1,+\infty],$$

$$N_{\min} := \operatorname{argmin} \int_{\partial E} (\operatorname{div}_{\tau} N)^{2} \, \phi^{\circ}(\nu^{E}) \, d\mathcal{H}^{N-1} \qquad N \in H_{\phi}^{\operatorname{div}, 2}(\partial E, \mathbb{R}^{N}).$$

Then $\operatorname{div}_{\tau} \operatorname{N}_{\min} \in L^{\infty}(\partial E)$ and

$$\|\operatorname{div}_{\tau} N_{\min}\|_{\infty} = \min\{\|\operatorname{div}_{\tau} N\|_{\infty} : N \in H_{\phi}^{\operatorname{div},\infty}(\partial E, \mathbb{R}^{N})\}.$$

Definition: (E, n) Lipschitz ϕ -regular, $N \in Nor_{\phi}(\partial E)$, $\psi \in Lip(\partial E)$.

$$\int_{\partial E} \operatorname{div}_{\tau} \mathbf{N} \, \psi \, \phi^{\circ}(\nu^{E}) = \int_{\partial E} \mathbf{N} \cdot n \, \psi \, \operatorname{div}_{\tau} n \, \phi^{\circ}(\nu^{E}) - \int_{\partial E} \left[(\mathrm{Id} - n \otimes n) \nabla_{\tau} \psi \right] \cdot \mathbf{N} \, \phi^{\circ}(\nu^{E})$$

$$\mathbf{H}^{\mathrm{div},\mathbf{p}}_{\phi}(\partial\mathbf{E},\mathbb{R}^{\mathbf{N}}):=\{\mathbf{N}\in\mathrm{Nor}_{\phi}(\partial E,\mathbb{R}^{N}):\operatorname{div}_{\tau}\mathbf{N}\in L^{p}(\partial E)\} \qquad p\in[1,+\infty],$$

$$N_{\min} := \operatorname{argmin} \int_{\partial E} (\operatorname{div}_{\tau} N)^{2} \phi^{\circ}(\nu^{E}) d\mathcal{H}^{N-1} \qquad N \in H_{\phi}^{\operatorname{div},2}(\partial E, \mathbb{R}^{N}).$$

Then $\operatorname{div}_{\tau} \operatorname{N}_{\min} \in L^{\infty}(\partial E)$ and

$$\|\operatorname{div}_{\tau} N_{\min}\|_{\infty} = \min\{\|\operatorname{div}_{\tau} N\|_{\infty} : N \in H_{\phi}^{\operatorname{div},\infty}(\partial E, \mathbb{R}^{N})\}.$$

Proposition: If ϕ is crystalline (resp. $\phi \in C^{1,1}_+$) and let $E \subset \mathbb{R}^N$ be a Lipschitz ϕ -regular polyhedron (resp. E is Lipschitz ϕ -regular). Then

$$(N-1)\|\mathbf{H}_E^{\phi}\|_{\infty} = \|\operatorname{div}_{\tau} N_{\min}\|_{L^{\infty}(\partial E)}.$$

Characterization of convex ϕ -calibrable sets

Theorem: Let $C \subset \mathbb{R}^N$ be bounded, convex and satisfying (W). Let $\Lambda := (N-1) \|\mathbf{H}_C^{\phi}\|_{\infty}$. Let C_{μ} be the solution of $(P)_{\mu}$, $\mu > 0$. Then $C_{\mu} = C$ iff $\mu \geq \max(\lambda_C^{\phi}, \Lambda)$.

Characterization of convex ϕ -calibrable sets

Theorem: Let $C \subset \mathbb{R}^N$ be bounded, convex and satisfying (W). Let $\Lambda := (N-1) \|\mathbf{H}_C^{\phi}\|_{\infty}$. Let C_{μ} be the solution of $(P)_{\mu}$, $\mu > 0$. Then $C_{\mu} = C$ iff $\mu \geq \max(\lambda_C^{\phi}, \Lambda)$.

Corollary: Let $C \subseteq \mathbb{R}^N$ be bounded convex and satisfying (W). Then E = C is a solution of

$$\min_{F \subset C} P_{\phi}(F) - \lambda_C^{\phi}|F|.$$

iff
$$(N-1)\|\mathbf{H}_C^{\phi}\|_{\infty} \le \lambda_C^{\phi}$$
.

$$(ATVF)$$
 $\frac{\partial u}{\partial t} = \operatorname{div} \partial \phi^{\circ}(Du)$ in $Q_T :=]0, T[\times \mathbb{R}^N,$

$$(ATVF)$$
 $\frac{\partial u}{\partial t} = \operatorname{div} \partial \phi^{\circ}(Du)$ in $Q_T :=]0, T[\times \mathbb{R}^N,$

Definition: $u \in C([0,T];L^2(\mathbb{R}^N))$ is a strong solution of (ATVF) if $u \in W^{1,2}_{\mathrm{loc}}(0,T;L^2(\mathbb{R}^N)) \cap L^1_w(0,T;BV(\mathbb{R}^N))$ and $\exists \ z \in L^\infty\left(]0,T[\times\mathbb{R}^N;\mathbb{R}^N\right)$ with $\phi(z(x)) \leq 1$ a.e. s.t.

$$u_t = \operatorname{div} z \quad \text{in } \mathcal{D}'(]0, T[\times \mathbb{R}^N),$$

$$\int_{\mathbb{R}^N}(z(t),Du(t))=\int_{\mathbb{R}^N}\phi^{\circ}(Du(t))\quad t>0 \text{ a.e..}$$

$$(ATVF)$$
 $\frac{\partial u}{\partial t} = \operatorname{div} \partial \phi^{\circ}(Du)$ in $Q_T :=]0, T[\times \mathbb{R}^N,$

Definition: $u \in C([0,T];L^2(\mathbb{R}^N))$ is a strong solution of (ATVF) if $u \in W^{1,2}_{\mathrm{loc}}(0,T;L^2(\mathbb{R}^N)) \cap L^1_w(0,T;BV(\mathbb{R}^N))$ and $\exists \ z \in L^\infty\left(]0,T[\times\mathbb{R}^N;\mathbb{R}^N\right)$ with $\phi(z(x)) \leq 1$ a.e. s.t.

$$u_t = \operatorname{div} z \quad \text{in } \mathcal{D}'(]0, T[\times \mathbb{R}^N),$$

$$\int_{\mathbb{R}^N}(z(t),Du(t))=\int_{\mathbb{R}^N}\phi^\circ(Du(t))\quad t>0 \text{ a.e..}$$

Theorem: Let $u_0 \in L^2(\mathbb{R}^N)$. Then there exists a unique strong solution u of (ATVF) in [0,T] for every T>0. If u and v are strong solutions of (ATVF) corresponding to the initial conditions $u_0, v_0 \in L^2(\mathbb{R}^N)$, then

$$||u(t) - v(t)||_2 \le ||u_0 - v_0||_2$$
 for any $t \ge 0$.

Let Ω be of finite perimeter. We say that the set Ω decreases at constant speed λ if

$$u(t,x) := (1 - \lambda t)^{+} \chi_{\Omega}(x)$$

is the strong solution of (ATVF) with initial condition $u_0 = \chi_{\Omega}$.

Let Ω be of finite perimeter. We say that the set Ω decreases at constant speed λ if

$$u(t,x) := (1 - \lambda t)^{+} \chi_{\Omega}(x)$$

is the strong solution of (ATVF) with initial condition $u_0 = \chi_{\Omega}$.

Theorem: Let *C* be bounded, convex and satisfying (W). TFAE:

- (i) C decreases at constant speed;
- (ii) C is ϕ -calibrable.

Let Ω be of finite perimeter. We say that the set Ω decreases at constant speed λ if

$$u(t,x) := (1 - \lambda t)^{+} \chi_{\Omega}(x)$$

is the strong solution of (ATVF) with initial condition $u_0 = \chi_{\Omega}$.

Theorem: Let C be bounded, convex and satisfying (W). TFAE:

- (i) *C* decreases at constant speed;
- (ii) C is ϕ -calibrable.

For each $\lambda > 0$ let C_{λ} be the solution of $(P)_{\lambda}$. Consider

$$H_C(x) := \begin{cases} -\inf\{\lambda : x \in C_\lambda\} & \text{on } x \in C \\ 0 & \text{on } \mathbb{R}^N \setminus C. \end{cases}$$

Let Ω be of finite perimeter. We say that the set Ω decreases at constant speed λ if

$$u(t,x) := (1 - \lambda t)^{+} \chi_{\Omega}(x)$$

is the strong solution of (ATVF) with initial condition $u_0 = \chi_{\Omega}$.

Theorem: Let *C* be bounded, convex and satisfying (W). TFAE:

- (i) *C* decreases at constant speed;
- (ii) C is ϕ -calibrable.

For each $\lambda > 0$ let C_{λ} be the solution of $(P)_{\lambda}$. Consider

$$H_C(x) := \begin{cases} -\inf\{\lambda : x \in C_\lambda\} & \text{on } x \in C \\ 0 & \text{on } \mathbb{R}^N \setminus C. \end{cases}$$

Theorem: Let C be bounded convex and satisfying (W). Then, $u(t,x)=(1+H_C(x)t)^+\chi_C(x)$ is the solution of (ATVF) corresponding to the initial condition $u_0=\chi_C$.