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Electrowetting

Aim: Modify wetting behaviour, shape, movement of liquid
droplets by application of electric charges / voltages

V=0

ELECTRODE

Droplet: electrically conductive liquid,
surrounded by insulating gas or fluid
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Applications
@ pixelated optical filters
@ adaptive lenses
@ curtain coating
@ fast switching electrowetting displays

V=0 V>0

ELECTRODE
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Phase field model
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E = 7gAg + MsAis + 1gsAgs — EQV
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Phase field model

1
E = 7gAg + sAis + Y1gsAgs — EQV

1
= 7gs(Ais + Ags) + NgAig + (M1s — 7gs)Ais — EQV
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cosf(V) = cosby + 5
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Phase field model

G. Lippmann (1875): Decrease of contact angle with the
applied potential. Lippmann-Young eqn.

V2

9
(V)= 0
cosf(V) = cos Y+2d7|g

Contact angle saturation and contact line instability
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Rayleigh Jets

Bursting of charged drops in an electric field
Rayleigh 1882, Duft et al. 2003

0000000(00000000¢

Singularity development if one uses Navier-Stokes with
classical boundary conditions for perfectly conductive medium
,Beteld, F.,,Kindelan, Vantzos 2007

Strong dependence of jet's diameter and velocity on
Electrical conductivity
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Fluid 1 Fluid 2 Interface
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2.1 ELECTRIC FIELD EQUATIONS
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Are the satellite droplets and Rayleigh jets due to
finite electrical conductivity?(our conjecture)
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Volumetric ELECTROKINETIC EQUATION

' 0
Charge density p a,: (pﬁ) (_Kﬁ 4+ DVp)

™ Convective flux

7 — —Kﬁ + DV p <— Diffusive flux
\ Ohm’s law (drift)
—V - (eVV) =p

K, D, u, & depend now on X

Problem: No clear boundary condition for V and hence no
clear boundary condition for Navier-Stokes. We have to
deal with the two fluids simultaneously and (somehow)
ignore the presence of a boundary.



Minimal surfaces

Transition region

W(g) = (1-¢°)

Min (Fy) = —6°A¢ + W'(p) =0

Tends to minimal surface
(minimize area)
Vanishing mean curvature



N-S with surface tension: @

+T-VU = -Vp+vAT + ykKds

Ot
Possible formulation of Navier-Stokes:
ov U Uyt AT + L
- - v ) = — YJANEY) — NV O
o7 1 [ P+ rAt 2;5 q
| W'(«¢
1= —6A¢ - 5("”) (M mobility)
Conservation of total mass: / ¢dx = Const.
Q
Recover stationary. Config.: uw ~ C
do . | , .
Tt +V - (U0) =V -(MVu), Cahn— Hilliard
ot

Existence of weak solutions: Feng, Abels, 2006
Important open problem: Do we recover the solutions of NS with surface tension
when § tends to zero?



Remark: in reality both viscosity and mobility should depend on @

V(o)
)

s

4T VT = —‘F}.}—I—di-‘t-‘( (v?+(vm1’)>+%wﬁ.ﬁ.

TV (Te) = V- (M()Vu) .

Important advantages:

-No need to implement boundary conditions in a free
boundary.

-We can handle topological changes (collapse or snap-off
of drops).

Minor drawbacks:
- Not a well developed mathematical analysis (YET),
- Numerically expensive (Cahn-Hilliard is 4th order).




The model

Features:
@ Movement of fluids/gases: Stokes—System
@ Movement of interface between fluids (or fluid and gas):
phase field model of Cahn—Hilliard type
@ Electric field: potential equation
@ Transport of electric charges: Ohms law

Conductivity nonzero in droplet only
Charges accumulate at interface, smoothing by diffusion
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Variational principle (Onsager)

D, <:tF(J) - ¢(J,J)> =0

F — free energy
¢ — dissipation function
J — generalized fluxes
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Free energy

e () s [

surface energy of phase field model interfacial energy
liquid—solid

1/ ID|? )\/ )
— —dx + — dx
2 Jo <(9) 2 Jo"

energy of electric field smoothing of
surface charge

~vts — fluid—solid interface energy
D = ¢(¢)E — dielectric displacement
E = —VU — electric field, U — electric potential
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Dissipation function

[9/? (dip)? [Jp/?
¢(J,J):/2M¢(¢)dx+/ 2‘ ds + ZKEEQZ))dx

+/ n(¢) o +/|VT|2dS

J = (v,di¢,J4,Jp) — generalized fluxes

d; — material time derivative M — mobility

1 — Viscosity «a — kinetic parameter
T(v) = 3(Vv +(Vv)T) — velocity strain tensor

[ — friction parameter
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Variational principle => Constitutive equations for fluxes

Jo=-M(6)Vp
Jp = K()(E — AVp)

1
with chemical potential o = —6A¢ + =W (¢) — 3£'(¢)|VU|?
1) <

~~

surface tension ponderomotive force

Boundary conditions for phase field:

0
—adip = (’Yfls(¢) + 5(3;?)
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Stokes—system for velocity

—V-(() (V)) —uVe—pE +Vp=0inQ
v =0 or pv, +7(¢)(T(V)n), = —adisd.é on o2

Equation for phase field
Op+V-(¢v)=V-J,4
Equations for charge transport:

oD =Jp
V-D=p

A phase field model for the coupling between Navier-Stokes and ¢

Marco A. Fontelos



Geometry

charge source q

] Qs vV, ¢, 1, pinQ
UinQ*

| U = U on oQ*
Charge source q in

L g

Result: Existence of weak solutions for no—slip boundary
condition v = 0 and

@ non-degenerate electric conductivity K(¢) > ko > 0 or
@ degenerate conductivity, constant electric permittivity ¢
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Theorem: there exist global in time weak solutions to the system.

Weak formulation

Function spaces:
V:={ve H(Q)|V -v=0}

for velocity field,
W = H'(Q)
for p, ¢, p, and
U = Hy(2")
for potential u = U.
Findv e Ly(L: V), p,o,pp € Lo(IW), U € L (I;U) with p, o € HY(I; W*),

p(0,-) = po, &(0,-) = ¢g such that for every w €V, v € W, y € U and
almost every time t the following equations are true:



Weak formulation

| (T W) T(w) =V w +p VU -w) e =0
/(atpw+v-vp¢+K(¢)V(u ~|—>\p)-V1/J)dx:/qwdx
Q Q
/9(8t¢¢+v'Vgﬁlb—l-l\/l(qb)v,u-vw)dX:O
[ nvax= [ (@oo+i(@)ws
Q r
+ [ (696 V0 + IW(6)6 - 3@ VUPY) o
/ s(qb)VU-deX:/pde
Q* Q
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A priori estimate

(?’[[/Q (; 2+ IV¢\2+§W(¢>)> dX+/*€(2¢)\VU|2dx]

+ [ [T +K@ITU + 3 + M@)IVa?] dx

d
<(¢)d oo’ d
+ gt [s(@ds + [alowfas

:/q(U—i—)\p)dX—i—/ £(¢)VU - VU dx
Q Q*
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We use finite dimensional subspaces

Vi ={wy, wo,ws, ..., w,} of V,
IITn :{wl L/)Q (/)3 SRR )n} of W
Un L= {leXQaXSv“‘?Xn} of U

and look for solutions

v(t, x) ~ o\ (t, ) = Z vi(t)w;(z),
=1
p(t,x) ~ p"(t,x) := Z p;i(t) ¢y(x),
=1
o(t,x) ~ pM(t, x) = Z ¢ (t) ¥j(x).
j=1
T
plt, )~ pt Dt x) = () 4y (),
j=1
n



@ Galerkin—approximation in space => system

M(¢n, pn)Xn = fr(n, pn)

for xn = (Vh, ith, e, Gepn, Un) "
@ M is regular: Proof similar to energy estimate
@ Transformation to system

% () =% ()

with Lipschitz function F
=> existence of discrete solution local in time
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@ Energy estimate:

1ol (ita(@)) + 19l (o)) + 1YUnllLimne)
+ IVall, i) + v K(¢h)Vph“L2(IXQ)
+ IVunllL,axe) + 10dnllL,axm < €

Estimate for partial time derivative

[onllHy (1)) + [ 8nllHr (@) < C(v)

with v € (0,1/2)
@ For nondegenerate K:
Subsequence converges to solution of problem
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The convective terms give cubic contributions to the integral

/ (Dep +?_ ----- \_p?+ K(o)V(V + )\p)vﬁ;) dr = / qdr,
(2 ()

/ (Dpp 1) —IJI Vo) —|— M)V -V )d:z: — 0,
Qe e

By compensated compactness

vV . Vp and o™ Vel v . Ve in L(I x Q),



The case of degenerate K

Problem: Convergence K (¢n)Vpn — K(¢)Vp
@ Approximation with nondegenerate K (¢) +n
Existence of solution (v, ¢y, fty, py, Up)
@ Regularity ¢ € Lo(I; H?(Q)) with 1 < 3 < 3/2
for continuous £(¢)

@ Convergencen — 0
strong convergence of V¢, — V¢ in Ly(l x Q)
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Preliminary numerical tests (2D)

% %
H B
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Phase field

“phi.2,grd" using 1:2:3
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Still to be done

@ Numerical implementation (in progress)

@ Condition for potential instead of charge source
@ Non-degenerate K(¢) & non—constant ¢(¢)

@ Regularity, uniqueness

@ Model with Navier—condition for velocity

@ Modify Ohm’s law for electrolites:

Jp = K(®)(pE — AVp)
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