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Introduction

S.  Lojasiewicz. Une propriété topologique des sous-ensembles analytiques
réels. In Les Équations aux Dérivées Partielles (Paris, 1962), pages 87–89.
Éditions du Centre National de la Recherche Scientifique, Paris, 1963.

Every real-analytic function f : U → R defined on a neighborhood
U ⊆ RN of a, with f (a) = 0 satifies  Lojasiewicz ( L-)inequality

‖∇f (x)‖ ≥ |f (x)|α for all x ∈ U (1)

for some exponent 0 < α ≤ 1.

If the function f : U ⊂ RN → R satisfies inequality (1), then the
solutions of the gradient system{

v ′(t) +∇f (v(t)) = 0 for t > 0,

v(0) = v0,
(2)

trend to equilibrium.
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Introduction

K.Kurdyka. On gradients of functions definable in o-minimal structures.
Ann. Inst. Fourier (Grenoble), 48(3):769–783, 1998.

L. Simon, Asymptotics for a class of nonlinear evolution equations, with
applications to geometric problems, Ann. of Math. (2) 118 (1983),
525–571.

Simon’s results imply that the solution of ut −∆u = f (u) in [0,∞× Ω

u = 0 on [0,∞× ∂Ω

converges of some equilibrium point when f is analytic.

A. Haraux, A. Jendoubi, R. Chill, S.-Z- Huang, Bolte, A. Danilidis, O.
Lay, L. Mazet, A. Blanchet, Feehan, Maridakis, etc
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Introduction

R.Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of
the Fokker-Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998.

“the classical linear heat flow in RN can be derived as the gradient flow
of the Boltzmann entropy with respect to the 2-Wasserstein metric on
the space of probability measures on RN”.

L.Ambrosio, N.Gigli, and G. Savaré. Gradient flows in metric spaces and
in the space of probability measures. Lectures in Mathematics ETH
Zürich. Birkhäuser Verlag, Basel, second edition, 2008.

(M, d) denotes a complete metric space. 1 ≤ p <∞ and p′ := p
p−1 be

the Hölder conjugate
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Gradient flows in metric spaces

Definition (Strong upper gradient)

For a proper functional E : M→ (−∞,∞], a proper functional
g : M→ [0,+∞] is called a strong upper gradient of E if for every curve
v ∈ AC(0,+∞;M), the composition function g ◦ v : (0,+∞)→ [0,∞] is
Borel-measurable and

|E(v(t))− E(v(s))| ≤
∫ t

s

g(v(r)) |v ′|(r) dr for all a < s ≤ t < b

where

|v ′|(t) := lim
s→t

d(v(s), v(t))

|s − t| the metric derivative

Definition

For a given functional E : M→ (−∞,∞], the descending slope
|D−E| : M→ [0,+∞] of E is given by

|D−E|(u) :=

lim sup
v→u

[E(v)− E(u)]−

d(v , u)
if u ∈ D(E),

+∞ if otherwise.
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Gradient flows in metric spaces

Definition

Let E : M→ (−∞,∞] be proper functional with strong upper gradient
g , and v ∈ ACloc(0,+∞;M). Then v is a p-gradient flow of E if and only
if E ◦ v : (0,+∞)→ R is non-increasing and energy dissipation equality

E(v(s))− E(v(t)) = 1
p

∫ t

s

|v ′|p(r)dr + 1
p′

∫ t

s

gp′ (v(r)) dr

holds for all 0 < s < t < +∞.
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Gradient flows in metric spaces

Definition (constant speed geodesics and λ-geodesic convexity)

A curve γ : [0, 1]→M is said to be a constant speed geodesic
connecting two points v0, v1 ∈M if γ(0) = v0, γ(1) = v1 and

d(γ(s), γ(t)) = (t − s)d(v0, v1) for all s, t ∈ [0, 1] with s ≤ t.

A metric space (M, d) with the property that for every two elements v0,
v1 ∈M, there is at least one constant speed geodesic γ ⊆M connecting
v0 and v1 is called a length space. Given λ ∈ R, a functional
E : M→ (−∞,∞] is called λ-geodesically convex if for every v0,
v1 ∈ D(E), there is a constant speed geodesic γ ⊆M connecting v0 and
v1 such that E is λ-convex along γ, tha is,

E(γ(t)) ≤ (1− t)E(γ(0)) + tE(γ(1))− λ
2 t(1− t)d2(γ(0), γ(1))

for all t ∈ [0, 1],
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Gradient flows in metric spaces

Proposition

For λ ∈ R, let E : M→ (−∞,∞] be a proper λ-geodesically convex
functional on a length space M. Then, if E is lower semicontinuous, then
the descending slope |D−E| of E is a strong upper gradient of E , and
|D−E| is lower semicontinuous.

Definition

An element ϕ ∈M is called an equilibrium point (or also critical point)
of a proper functional E : M→ (−∞,∞] with strong upper gradient g if
ϕ ∈ D(g) and g(ϕ) = 0. We denote by Eg = g−1({0}) the set of all
equilibrium points of E with respect to strong upper gradient g .

We denote by argmin(E) the set of all global minimisers ϕ of E .

If for λ ≥ 0, E is λ-geodesically convex, then

argmin(E) =
{
ϕ ∈ D(|D−E|)

∣∣∣ |D−E|(ϕ) = 0
}

= E|D−E|.
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Gradient flows in metric spaces

Definition

For a curve v ∈ C ((0,∞);M), the set

ω(v) :=
{
ϕ ∈M

∣∣∣ there is tn ↑ +∞ s.t. lim
n→∞

v(tn) = ϕ in M
}

is called the ω-limit set of v .

We denote by
It0 (v) =

{
v(t)

∣∣ t ≥ t0

}
For a proper functional E : M→ (−∞,∞] and ϕ ∈ D(E), we call the
functional E(·|ϕ) : M→ (−∞,∞] defined by

E(v |ϕ) = E(v)− E(ϕ) for every v ∈M

the relative entropy or relative energy of E with respect to ϕ.
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Trend to equilibrium in the entropy sense

Proposition

Let E : M→ (−∞,+∞] be a proper functional, g a strong upper
gradient of E , and v a p-gradient flow of E . Then, the following
statements hold.

(1) E is a strict Lyapunov function of v .

(2) (Trend to equilibrium in the entropy sense) If for t0 ≥ 0, E
restricted on the set It0 (v) is lower semicontinuous, then for every
ϕ ∈ ω(v), one has ϕ ∈ D(E) and

lim
t→∞

E(v(t)) = E(ϕ) = inf
ξ∈It0 (v)

E(ξ). (3)

(3) (ω-limit points are equilibrium points of E) Suppose for t0 ≥ 0, E
restricted on the set It0 (v) is bounded from below and g restricted
on the set It0 (v) is lower semicontinuous. Then the ω-limit set ω(v)
of v is contained in the set Eg of equilibrium points of E .
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Kurdyka- Lojasiewicz-Simon inequalities in metric spaces

Definition

A proper functional E : M→ (−∞,+∞] with strong upper gradient g
and equilibrium point ϕ ∈ Eg is said to satisfy a Kurdyka- Lojasiewicz
inequality on the set U ⊆ [g > 0] ∩ [θ′(E(·|ϕ)) > 0] if there is a strictly
increasing function θ ∈W 1,1

loc (R) satisfying θ(0) = 0 and

θ′(E(v |ϕ)) g(v) ≥ 1 for all v ∈ U . (4)

In the case that there are α ∈ (0, 1] and c > 0 such that

θ(s) = c
α |s|

α−1s for every s ∈ R,

Definition

A proper functional E : M→ (−∞,+∞] with strong upper gradient g
and equilibrium point ϕ ∈ Eg is said to satisfy a  Lojasiewicz-Simon
inequality with exponent α ∈ (0, 1] near ϕ if there are c > 0 and a set
U ⊆ D(E) with ϕ ∈ U such that

|E(v |ϕ)|1−α ≤ c g(v) for every v ∈ U . (5)
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Trend to equilibrium in the metric sense

Theorem (Trend to equilibrium in the metric sense)

Let E : M→ (−∞,+∞] be a proper functional with strong upper
gradient g, and v be a p-gradient flow of E with non-empty ω-limit set
ω(v). Suppose, E is lower semicontinuous on It(v) for some t ≥ 0 and
for ϕ ∈ ω(v) ∩ Eg , there is an ε > 0 such that

B(ϕ, ε) ∩ [E(·|ϕ) > 0] ⊆ [g > 0].

If there is a strictly increasing function θ ∈W 1,1
loc (R) satisfying θ(0) = 0

and |[θ > 0, θ′ = 0]| = 0 such that E satisfies the Kurdyka- Lojasiewicz
inequality (4) on

Uε = B(ϕ, ε) ∩ [E(·|ϕ) > 0] ∩ [θ′(E(·|ϕ)) > 0], (6)

then v has finite length and

lim
t→∞

v(t) = ϕ in M. (7)
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Decay estimates and finite time of extinction

Theorem (Decay estimates and finite time of extinction)

Let E : M→ (−∞,+∞] be a proper functional with strong upper
gradient g, and v be a p-gradient flow of E with non-empty ω-limit set
ω(v). Suppose, E is lower semicontinuous on It(v) for some t > 0, and
for ϕ ∈ ω(v) ∩ Eg there are ε > 0, c > 0, and α ∈ (0, 1] such that E
satisfies a  Lojasiewicz-Simon inequality (5) with exponent α on
B(ϕ, ε) ∩ D(E). Then

d(v(t), ϕ) ≤ c
α (E(v(t)|ϕ))α = O

(
t
−α(p−1)

1−pα

)
if 0 < α < 1

p

d(v(t), ϕ) ≤ c p (E(v(t)|ϕ))
1
p ≤ c p (E(v(t0)|ϕ))

1
p e
− t

pcp′ if α = 1
p

d(v(t), ϕ) ≤

{
c̃ (t̂ − t)

α(p−1)
pα−1 if t0 ≤ t ≤ t̂ ,

0 if t > t̂ ,
if 1

p < α ≤ 1,
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Decay estimates and finite time of extinction

Theorem

where,

c̃ :=

[[
1

αα−1c

] p′−1
α pα−1

α(p−1)

]α(p−1)
pα−1

,

t̂ := t0 + α
α−1
α(p−1) c

1
α(p−1) α(p−1)

pα−1 (E(v(t0)|ϕ))
pα−1
α(p−1) ,

and t0 ≥ 0 can be chosen to be the “first entry time”, that is, t0 ≥ 0 is
the smallest time t̂0 ∈ [0,+∞) such that v([t̂0,+∞)) ⊆ B(ϕ, ε).

If E : M→ (−∞,∞] be a proper, lower semicontinuous, λ-geodesically
convex functional on a length space (M, d), with λ > 0 and is bounde
from below, then there is a unique minimiser ϕ ∈ D(E) of E and

E(v |ϕ) ≤ 1

2λ
|D−E|2(v) for all v ∈ D(E).

Then, every gradient flow v of E satisfies

d(v(t), ϕ) = O
(
e−λt

)
as t →∞.
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Entropy-transportation inequality and K L inequality

Definition

A proper functional E : M→ (−∞,+∞] with strong upper gradient g is
said to satisfy locally a generalised entropy-transportation (ET-)
inequality at a point of equilibrium ϕ ∈ Eg if there are ε > 0 and a
strictly increasing function Ψ ∈ C (R) satisfying Ψ(0) = 0 and

inf
ϕ̂∈Eg∩B(ϕ,ε)

d(v , ϕ̂) ≤ Ψ(E(v |ϕ)) (8)

for every v ∈ B(ϕ, ε) ∩ D(E). Further, a functional E is said to satisfy
globally a generalised entropy-transportation inequality at ϕ ∈ Eg if E
satisfies

inf
ϕ̂∈Eg

d(v , ϕ̂) ≤ Ψ(E(v |ϕ)) for every v ∈ D(E). (9)

Assumption (E) Suppose, for the proper energy functional
E : M→ (−∞,+∞] with strong upper gradient g holds:

for all v0 ∈ D(E), there is a p-gradient flow v of E with v(0+) = v0.
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Entropy-transportation inequality and K L inequality

Theorem (Global K L- and ET-inequality)

For λ ≥ 0, let E : M→ (−∞,+∞] be a proper, lower semicontinuous,
λ-geodesically convex functional on a length space (M, d). Suppose, E
and the descending slope |D−E| satisfying Assumption (E) and for
ϕ ∈ E|D−E|, the set [E(·|ϕ) 6= 0] ⊂ [|D−E| > 0]. Then, the following
statements are equivalent.

(1) (K L-inequality) There is a strictly increasing function θ ∈W 1,1
loc (R)

satisfying θ(0) = 0 and |[θ 6= 0, θ′ = 0]| = 0, and E satisfies a
Kurdyka- Lojasiewicz inequality on
U := [E(·|ϕ) > 0] ∩ [θ′(E(·|ϕ)) > 0].

(2) (ET-inequality)There is a strictly increasing function Ψ ∈ C (R)
satisfying Ψ(0) = 0 and s 7→ Ψ(s)/s belongs to L1

loc(R) such that E
satisfies the generalised entropy-transportation inequality

inf
ϕ̃∈argmin(E)

d(v , ϕ̃) ≤ Ψ(E(v |ϕ)) for all v ∈ D(E).
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Entropy-transportation inequality and K L inequality

Corollary (Global  LS- and ET-inequality)

For λ ≥ 0, let E : M→ (−∞,+∞] be a proper, lower semicontinuous,
λ-geodesically convex functional on a length space (M, d). Suppose, E
and the descending slope |D−E| satisfy Assumption (E) and for
ϕ ∈ E|D−E|, the set [E(·|ϕ) > 0] ⊂ [g > 0]. Then, for α ∈ (0, 1], the
following statements hold.

(1) ( LS-inequality implies ET-inequality) If there is a c > 0

(E(v |ϕ))1−α ≤ c |D−E|(v) for all v ∈ D(E) (10)

then E satisfies

inf
ϕ̃∈argmin(E)

d(v , ϕ̃) ≤ c

α
(E(v |ϕ))α for all v ∈ D(E). (11)

(2) (ET-inequality implies  LS-inequality) If there is a c > 0 such that
E satisfies (11), then E satisfies

(E(v |ϕ))1−α ≤ c

α
|D−E|(v) for all v ∈ D(E). (12)
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Aplications. The classical Hilbert space case

In the case (H, (., .)H) is a real Hilbert space and E : H → (−∞,+∞] a
proper, lower semicontinuous and semi-convex functional. Then, the
following well-known generation theorem holds

Theorem

For every v0 ∈ D(E), there is a unique strong solution v of{
v ′(t) + ∂E(v(t)) 3 0, t ∈ (0,∞),

v(0) = v0.
(13)

The sub-differential ∂E of E is given by

∂E =
{

(v , u) ∈ H × H
∣∣∣ lim inf

t↓0
E(v+tw)−E(v)

t ≥ (u,w) for all w ∈ H
}
.

For v ∈ D(|D−E|), the descending slope

|D−E|(v) = min
{
‖u‖H

∣∣∣ u ∈ ∂E(v)
}

and |D−E| is a strong upper gradient of E .
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Applications. The classical Hilbert space case

Corollary

Let E : H → (−∞,+∞] be a proper, lower semicontinuous and
semi-convex functional on a Hilbert space H. Suppose v is solution of
(13) and there are c, ε > 0 and an equilibrium point ϕ ∈ ω(v) such that
E satisfies a  Lojasiewicz-Simon inequality

|E(v |ϕ)|1−α ≤ c ‖u‖ for every v ∈ B(ϕ, ε) and u ∈ ∂E(v).

Then,

‖v(t)− ϕ‖H ≤ c
α (E(v(t)|ϕ))α = O

(
t
− α

1−2α
)

if 0 < α < 1
2

‖v(t)− ϕ‖H ≤ c 2 (E(v(t)|ϕ))
1
2 ≤ c 2 (E(v(t0)|ϕ))

1
2 e−

t
2c2 if α = 1

2

‖v(t)− ϕ‖H ≤

{
c̃ (t̂ − t)

α
2α−1 if t0 ≤ t ≤ t̂ ,

0 if t > t̂ ,
if 1

2 < α ≤ 1,

where, t0 ≥ 0 can be chosen to be the “first entry time”, that is, t0 ≥ 0
is the smallest time t̂0 ∈ [0,+∞) such that v([t̂0,+∞)) ⊆ B(ϕ, ε).
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Applications. Finite Extinction time of the Dirichlet-Total
Variational Flow


vt = div

(
Dv
|Dv |

)
in Ω× (0,+∞),

v = 0 on ∂Ω× (0,+∞),

v(0) = v0 on Ω,

(14)

Problem (14) can be rewritten as an abstract initial value problem (13)
in the Hilbert space H = L2(Ω) for the energy functional
E : L2(Ω)→ (−∞,+∞] given by

E(v) :=


∫

Ω

|Dv |+
∫
∂Ω

|v | if v ∈ BV (Ω) ∩ L2(Ω),

+∞ if otherwise.
(15)

Extinction time

T ∗(v0) := inf
{

t > 0
∣∣∣ v(s) = 0 for all s ≥ t

}
.
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Applications. Finite Extinction time of the Dirichlet-Total
Variational Flow

Theorem

Suppose N ≤ 2 and for v0 ∈ L2(Ω), let v be the unique strong solution of
problem (14). Then,

T ∗(v0) ≤

{
s + S1 |Ω|1/2 E(v(s)) if N = 1,

s + S2 E(v(s)) if N = 2,

for arbitrarily small s > 0, and

‖v(t)‖L2(Ω) ≤

{
c̃ (T ∗(v0)− t) if 0 ≤ t ≤ T ∗(v0),

0 if t > T ∗(v0),
(16)

where SN is the best constant in Sobolev inequality and c̃ > 0.
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Applications. Finite Extinction time of the Dirichlet-Total
Variational Flow

Skech of proof By Sobolev’s inequality in BV (Ω), we have

‖v‖L1∗ (Ω) ≤ SN

(∫
Ω

|Dv |+
∫
∂Ω

|v |
)

for all v ∈ BV (Ω) (17)

‖v‖L2(Ω) ≤ C E(v |0) for all v ∈ D(E), (18)

where the constant C = S1 |Ω|1/2 if N = 1 and C = S2 if N = 1.

(18) is a entropy-transportation inequality for Ψ(s) = C s, (s ∈ R),
which by Corollary 14, is equivalent to the  Lojasiewicz-Simon inequality

1 ≤ C |D−E|(v), (v ∈ [E > 0]).

In dimension N = 2, the extinction time

T ∗(v0) ≤ 1√
2π

∫
Ω

|Dv0|.
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Gradient flows in spaces of probability measures.

Let (X ,B, d) be a Polish space equipped with their Borel σ-algebra B.

For s ∈ {0, 1}, let πs : X × X → X be defined by
πs(x , y) := (1− s)x + sy . For given measures µ0, µ1 ∈ P(X ), the set of
transport plans with marginals µ0 and µ1 is denoted by

Π(µ0, µ1) :=
{
γ ∈ P(X × X )

∣∣∣ π0#γ = µ0, π1#γ = µ1

}
.

where πi#γ is the push-forward of γ through πi
For 1 ≤ p < +∞, the p-Wasserstein distance Wp,d(µ1, µ2) between µ0

and µ1 ∈ P(X ) is defined by

Wp,d(µ1, µ2) =

(
inf

γ∈Π(µ0,µ1)

∫
X×X

d(x , y)p dγ(x , y)

) 1
p

.

Fixed x0 ∈ X , the space of finite p-moment

Pp,d(X ) :=

{
µ ∈ P(X )

∣∣∣ ∫
X

d(x0, x)p dµ(x) < +∞
}
,

The pair (Pp,d(X ),Wp,d) is called the p-Wasserstein space.
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.

Fixed x0 ∈ X , the space of finite p-moment

Pp,d(X ) :=

{
µ ∈ P(X )

∣∣∣ ∫
X

d(x0, x)p dµ(x) < +∞
}
,

The pair (Pp,d(X ),Wp,d) is called the p-Wasserstein space.
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Gradient flows in spaces of probability measures.

Consider the free energy E : Pp(RN)→ (−∞,+∞] composed by

E = HF +HV +HW (19)

of the internal energy

HF (µ) :=


∫
RN

F (ρ)dx if µ = ρLN ,

+∞ if µ ∈ Pp(RN) \ Pac
p (RN),

the potential energy

HV (µ) :=


∫
RN

V dµ if µ = ρLN ,

+∞ if µ ∈ Pp(RN) \ Pac
p (RN),

and the interaction energy

HW (µ) :=

 1
2

∫
RN×RN

W (x − y)d(µ⊗ µ)(x , y) if µ = ρLN ,

+∞ if µ ∈ Pp(RN) \ Pac
p (RN),
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Gradient flows in spaces of probability measures.

We assume that the function
(F) : F : [0,+∞)→ R is a convex differential function satisfying

F (0) = 0, lim inf
s↓0

F (s)

sα
> −∞ for some α > N/(N + p), (20)

the map s 7→ sNF (s−N) is convex and non increasing in (0,+∞),
(21)

there is a CF > 0 such that

F (s + ŝ) ≤ CF (1 + F (s) + F (ŝ)) for all s, ŝ ≥ 0, and (22)

lim
s→+∞

F (s)

s
= +∞ (super-linear growth at infinity);

(23)

(V) : V : RN → (−∞,+∞] is a proper, lower semicontinuous, λ-convex
for some λ ∈ R, and the effective domain D(V ) has a convex,
nonempty interior Ω := int D(V ) ⊂ RN .

(W) : W : RN → [0,+∞) is a convex, differentiable, and even function
and there is a CW > 0 such that

W (x + x̂) ≤ CW (1 + W (x) + W (x̂)) for all x , x̂ ∈ RN . (24)
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Gradient flows in spaces of probability measures.

Proposition

Suppose, the functions F , V and W satisfy the hypotheses (F), (V)
and (W), and E : Pp(RN)→ (−∞,+∞] is the functional given by (19).
Then, for µ = ρLN ∈ D(E), one has µ ∈ D(|D−E|) if and only if

PF (ρ) ∈W 1,1
loc (Ω), ρ ξρ = ∇PF (ρ) + ρ∇V + ρ(∇W ) ∗ ρ (25)

for some ξρ ∈ Lp′ (RN ,RN ;dµ), where PF (x) := xF ′(x)− F (x) is the
associated “pressure function” of F . Moreover, the vector field ξρ
satisfies

|D−E|(µ) =

(∫
RN

|ξρ(x)|p′ dµ
) 1

p′

. (26)
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Gradient flows in spaces of probability measures.

For every µ0 ∈ D(E), there is a p-gradient flow µ : [0,+∞)→ Pp(RN)
of E with initial value limt↓0 µ(t) = µ0. Moreover, for every t > 0,
µ(t) = ρ(t)LN with supp(ρ(t)) ⊆ Ω, and ρ is a distributional solution of
the following quasilinear parabolic-elliptic boundary-value problem

ρt + div(ρUρ) = 0 in (0,+∞)× Ω,

Uρ = −|ξρ|p
′−2ξρ in (0,+∞)× Ω,

Uρ · n = 0 in (0,+∞)× ∂Ω,

(27)

with PF (ρ) ∈ L1
loc((0,+∞); W 1,1

loc (Ω)) and

ξρ =
∇PF (ρ)

ρ
+∇V + (∇W ) ∗ ρ ∈ L∞loc((0,+∞); Lp′ (Ω,RN ;dµ(·))),

where, n in (27) denotes the outward unit normal to the boundary ∂Ω
which in the case Ω = RN needs to be neglected.
If the function F ∈ C 2(0,+∞), then one has that

−Uρ = |F ′′(ρ)∇ρ+∇V +(∇W )∗ρ|p′−2 (F ′′(ρ)∇ρ+∇V + (∇W ) ∗ ρ) .
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Gradient flows in spaces of probability measures.

Problem (27) includes the

doubly nonlinear diffusion equation

ρt − div(|∇ρm|p′−2∇ρm) = 0

(V = W = 0, F (s) = m sq

q(q−1) for q = m + 1− 1
p′−1 ,

1
p′−1 6= m ≥ N−(p′−1)

N(p′−1) )

Fokker-Planck equation with interaction term through porous
medium

ρt = ∆ρm + div (ρ(∇V + (∇W ) ∗ ρ))

(p = 2, F (s) = sm

(m−1) for 1 6= m ≥ 1− 1
N ).
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Gradient flows in spaces of probability measures.

Every equilibrium point ν = ρ∞LN ∈ E|D−E| of E can be characterised by
PF (ρ∞) ∈W 1,1

loc (Ω) with

ξρ∞ =
∇PF (ρ∞)

ρ∞
+∇V + (∇W ) ∗ ρ∞ = 0 a.e. on Ω.

Further, for every p-gradient flow µ of E and equilibrium point
ν ∈ E|D−E|, we have

d
dt E(µ(t)) = −|D−E|p′ (µ(t)) = −Ip′ (µ(t)|ν),

where the generalised relative Fischer information of µ with respect to ν
is given by

Ip′ (µ|ν) =

∫
Ω

−Uρ · ξρ dµ.
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Gradient flows in spaces of probability measures.

Definition

We call a functional f : RN → (−∞,+∞] uniformly λ-p-convex for some
λ ∈ R if the interior Ω = int(D(f )) of f is nonempty, f is differentiable
on Ω and for every x ∈ Ω,

f (y)− f (x) ≥ ∇f (x) · (y − x) + λ |y − x |p for all y ∈ RN .

(V∗) V : RN → (−∞,+∞] is proper, lower semicontinuous function, the
effective domain D(V ) of V has nonempty interior Ω := int D(V ) ⊆ RN ,
and V is uniformly λV -p-convex for some λV ∈ R;
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Gradient flows in spaces of probability measures.

Theorem

Suppose that the functions F , V and W satisfy the hypotheses (F),
(V∗) with λV ∈ R and (W). Further, suppose F ∈ C 2(0,∞) ∩ C [0,+∞)
and let E : Pp(RN)→ (−∞,+∞] be the functional given by (19). Then,
the following statements hold.

(ET-inequality) For an equilibrium point ν = ρ∞LN ∈ E|D−E| of E
with ρ∞ ∈W 1,∞(Ω) and inf ρ∞ > 0, and every µ = ρLN ∈ D(E),

λV W p
p (µ, ν) ≤ E(µ|ν). (28)

(p-Talagrand transportation inequality) If λV > 0, then
entropy-transportation inequality (28) is equivalent to the
p-Talagrand inequality

Wp(µ, ν) ≤ 1

λ
1/p
V

p
√
E(µ|ν) (29)

holding for an equilibrium point ν = ρ∞LN ∈ E|D−E| of E with

ρ∞ ∈W 1,∞(Ω) and all µ = ρLN ∈ D(E).
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Gradient flows in spaces of probability measures.

Theorem

(generalised  LS-inequality) If λ̂ > 0 then for every probability
measures µ1 = ρ1LN , µ2 = ρ2LN ∈ Pac

p (Ω) with ρ2 ∈W 1,∞(Ω) and
inf ρ2 > 0, one has that

E(µ2|µ1) + (λV − λ̂) W p
p (µ1, µ2) ≤ p − 1

pp′

1

λ̂1/(p−1)
|D−E|p′ (µ2).

(generalised Log-Sobolev inequality) If λV > 0, then for every
probability measures µ1 = ρ1LN , µ2 = ρ2LN ∈ Pac

p (Ω) with

ρ2 ∈W 1,∞(Ω) and inf ρ2 > 0 and ν ∈ E|D−E|, one has that

E(µ2|µ1) ≤ p − 1

pp′

1

λ
1/(p−1)
V

Ip′ (µ2|ν).

(p-HWI inequality) For every probability measures µ1 = ρ1LN ,
µ2 = ρ2LN ∈ Pac

p (Ω) with ρ2 ∈W 1,∞(Ω) and inf ρ2 > 0, one has

E(µ2|µ1) + λV W p
p (µ1, µ2) ≤ I1/p′

p′ (µ2|ν) Wp(µ1, µ2).

J.M. Mazón trabajo en colaboración con Daniel Hauer (Sydney University) K LS-inequality for gradient flows in metric spaces



Gradient flows in spaces of probability measures.

Corollary (Equivalence between global ET-,  LS- and Log-Sobolev
inequality)

Suppose that the functions F , V and W satisfy the hypotheses (F), (V)
and (W). Further, suppose F ∈ C 2(0,∞) ∩ C [0,+∞) and let
E : Pp(RN)→ (−∞,+∞] be the functional given by (19). Then, the
following statements hold.

(1) If for ν = ρ∞LN ∈ E|D−E|, there is some λ̂ > 0 such that E satisfies
entropy transportation inequality

Wp(µ, ν) ≤ λ̂ (E(µ|ν))
1
p for all µ ∈ D(E), (30)

then E satisfies the  Lojasiewicz-Simon inequality

E(µ|µ∞)1− 1
p ≤ λ̂ |D−E|(µ) for all µ ∈ D(|D−E|), (31)

or equivalently, E satisfies the Log-Sobolev inequality

E(µ|µ∞)1− 1
p ≤ λ̂

1

1− 1
p Ip′ (µ|ν) for all µ ∈ D(|D−E|), (32)
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Corollary (Equivalence between global ET-,  LS- and Log-Sobolev
inequality)

(2) If for ν = ρ∞LN ∈ E|D−E|, there is some λ̂ > 0 such that E satisfies
Log-Sobolev inequality (32), then E satisfies entropy transportation
inequality

Wp(µ, ν) ≤ λ̂p (E(µ|ν))
1
p for all µ ∈ D(E),

Corollary (Trend to equilibrium and exponential decay rates)

Suppose that the functions F , V and W satisfy the hypotheses (F),
(V∗) with λV > 0 and (W). Further, suppose F ∈ C 2(0,∞) ∩ C [0,+∞)
and let E : Pp(RN)→ (−∞,+∞] be the functional given by
E = HF +HV +HW . Then, there is a unique minimiser
ν = ρ∞LN ∈ E|D−E| of E and for every initial value µ0 ∈ D(E), the
p-gradient flow µ of E trends to ν in Pp(Ω) as t → +∞ and for all t ≥ 0,

Wp(µ(t), ν) ≤ (p−1)1/p′

λ
1/p
V

(E(µ(t)|ν))
1
p ≤ (p−1)1/p′

λ
1/p
V

(E(µ0|ν))
1
p e−

tp
1
p

p−1λ
1

p−1
V .

J.M. Mazón trabajo en colaboración con Daniel Hauer (Sydney University) K LS-inequality for gradient flows in metric spaces



Corollary (Equivalence between global ET-,  LS- and Log-Sobolev
inequality)

(2) If for ν = ρ∞LN ∈ E|D−E|, there is some λ̂ > 0 such that E satisfies
Log-Sobolev inequality (32), then E satisfies entropy transportation
inequality

Wp(µ, ν) ≤ λ̂p (E(µ|ν))
1
p for all µ ∈ D(E),

Corollary (Trend to equilibrium and exponential decay rates)

Suppose that the functions F , V and W satisfy the hypotheses (F),
(V∗) with λV > 0 and (W). Further, suppose F ∈ C 2(0,∞) ∩ C [0,+∞)
and let E : Pp(RN)→ (−∞,+∞] be the functional given by
E = HF +HV +HW . Then, there is a unique minimiser
ν = ρ∞LN ∈ E|D−E| of E and for every initial value µ0 ∈ D(E), the
p-gradient flow µ of E trends to ν in Pp(Ω) as t → +∞ and for all t ≥ 0,

Wp(µ(t), ν) ≤ (p−1)1/p′

λ
1/p
V

(E(µ(t)|ν))
1
p ≤ (p−1)1/p′

λ
1/p
V

(E(µ0|ν))
1
p e−

tp
1
p

p−1λ
1

p−1
V .

J.M. Mazón trabajo en colaboración con Daniel Hauer (Sydney University) K LS-inequality for gradient flows in metric spaces



REFERENCES

arXiv:1707.03129

Kurdyka-ojasiewicz-Simon inequality for gradient flows in metric spaces
Daniel Hauer, José M. Mazón
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