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@ MAXWELL THEORY



MAXWELL’S EQUATIONS IN THE VACUUM

Maxwell's equations for an electromagnetic field (E, B) are
VxB-0E = J [Ampere law]
£V-E = p [Gauss's law]
B+VXE = 0 [Faraday's law of induction]
V-B =0 [Gauss's law for magnetism|

where p and J are respectively the charge and the current density
of an external source.



MAXWELL’S EQUATIONS IN THE VACUUM
Choosing gauge potentials A, ¢, namely assuming
B=VxA, E=-0A-Vp,
we end up with two equations

(9t((9tA—|—Vg0)+V><(V><A):J

A (&gA + V(,O) = —47’l'p.

These equations are variational, which means they are the
Euler-Lagrange equation of an action deriving from the Lagragian
(IEf” = [B*) + (J | A) — dmpep.

1
EMaacwell(A7 90) = 5



THE PROBLEM OF ENERGY DIVERGENCE

Maxwell's equations for an electrostatic field E = —V leads to

Poisson equation
—Ayp = 4mp.

If p =4 is a point charge, then
—(r*¢(r)) =0 for r >0,

and the unique solution (which vanishes at infinity) is given by

The energy of the electrostatic field is

1
E|*d dr =
] |*d =% ]a:P x = +o00.

1
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THE PROBLEM OF ENERGY DIVERGENCE

Te Feynman
PHYSICS
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We must conelude that the idea of locating the energy in the field is incon-
sistent with the assumption of the existence of point charges. One way out of the
difficulty would be to say that elementary charges, such as an eleciron, are not
points but are really small distributions of charge. Alternatively, we could say
that there is something wrong in our theory of electricity at very small distances,
or with the idea of the local conservation of energy. There are difficulties with
cither point of view. These difficulties have never been overcome; they exist to this
day. Somectime later, when we have discussed some additional ideas, such as the
maomentum in an electromagnetic field, we will give a more complete account of
these fundamental difficulties in our understanding of nature,



FINITE ENERGY FIELD

Assume
—Ayp = 4mp.

The energy of the electrostatic field is

/ |E|2dx:/ |Vg02da::4ﬂ'/ ppdx.
R3 R3 R3



FINITE ENERGY FIELD
Assume
—Ayp = 4mp.

The energy of the electrostatic field is

/ |E|2dx:/ |Vg02d9::47r/ pp dx.
R3 R3 R3

e If p € L/5(R3), the energy is finite (Sobolev ineq.)

1
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e if p € L'(R3), which is a relevant physical case, the energy is still
infinite in general, namely one can build counter-examples as for
instance p(x) = (|z|>/2 + |z|7/2)~! for which the energy is infinite
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BORN-INFELD FIELD THEORY




BORN-INFELD FIELD THEORY

Foundations of the New Field Theory

THE new field equations proposed recently! can
be derived from either of two principles, the first being
a rather obvious physical statement, the other an
equally obvious mathematical postulate,

(1) HKEinstein’s mechanics is equivalent with the
Lagrangian mye*1—(1 —v?/c®)i}. Historically, it has
been derived from the idea of relativity® ; but it could
just as well have been found from experiments which
show that electrons can not be arbitrarily accelerated.
From this follows the existence of an upper limit for the
velocity ¢; and the new Lagrangian is the simplest
expression which is real only for v<c and gives for
the limit of small velocities the classical value m, v?/2.

The problem of finding the exact law of the electro-
magnetic field can be attacked in a similar way. The
classical Lagrangian L=} (H*-E?) allows infinitely
large values for the strengths of the field. DBut
experience leads to the principle of the finite field.
For the use of the classical function L gives infinite
values of self energy and other physical quantities
which are, in fact, certainly finite. From this follows
the existence of a limit of the field, b (formerly called
a'); and by the same reasoning as in mechanies,
one constructs the new Lagrangian

L=b1—{1-b*E*—H"}] (1)

(2) The same result can be obtained by the
mathematical postulate of the mvanance af actum

Using the tensor notation, the
is L=} fy f¥, where frz=:— fk; represents the ﬁeld(H E).
The integral } / fi1f¥dr (d7 element of space-time) is
invariant for linear orthogonal, but not for general,
transformations,

If ag is any tensor and |az]| its determinant, then
/"/law|dr is an invariant®. Now every tensor can be
split up nto a symmetrical and antisymmetrical part :
ar=gr+fm;: Gu=9m fe=—fr. The symmetrical
part giz should be identified with the metrical and fi
with the electromagnetic tensor. If we demand that
the actions should be not only invariant, but should
also take the form of the well-known expression
b / fuf® dr in the case of small electromagnetic fields
and cartesian co-ordinate systems, we obtain

L=(—|gu)} ~(—|gu +ful)t (2)
This expression is entirely equivalent to the expres-
sion (1) for a statical field and a cartesian co-ordinate
system. In the general (not statical) case an additional
term, namely, b-4(EH) in the square root appears.
One can get rid of this by choosing another but also
invariant expression for L.

M. BogN.
L. INFELD.
’NATUEE, 132, 282, Aug. 19, 1933 ; Proc. Roy. Soc,, in the press.
* Comparé G, Lovi-Civita, “Absolute Difierential Calculus” (1027),
Chap. xi, pp. 286~
.”S. Eddingfon, “The 1 Theory of
(Cambridge, 1923), 107.




BORN-INFELD
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BORN-INFELD FIELD THEORY

The classical action

L= imv2

in Newton mechanics is replaced in special relativity by

and this provides a maximal admissible velocity of motion.



BORN-INFELD FIELD THEORY

In Born-Infeld field theory (1933-34), the Lagrangian density

b* \/ E[? - |BJ?
=—|1—4/1-—/— =L J-A-
Lp 47T< 02 + PP,

replace the usual Lagrangian density of Maxwell theory

1
=—(EF = B]*) +J-A - pp.
L= (EF - B[") + P
We have again chosen a gauge potential (¢, A) so that
E=—-(0;A+Vyp), B=VxA.

Yet p is the charge density while J is the current density.



BORN-INFELD FIELD THEORY

If we set
1

I=_(EP-BP),

O |

1 E 1 B
Dpr=—— Hpr = ——F——,

am - 21 VAR,

we obtain formally the Euler-Lagrange equations
V-Dpr = p,

VXHB[—atDB] = J.



BORN-INFELD FIELD THEORY

Since the new Lagragian is only invariant for the Lorentz group of
transformations, Born and Infeld quickly modified their new
Lagrangian as

b* \/ E*-|B* (E-B)?
EB[—47T<1— 1-— 12 — p —|—JA—p(p

~~ Born-Infeld, Nature 132 (1933)
~ Born-Infeld, Proc. Roy. Soc. A 144 (1934)
~ Born, ANIHP 7 (1937)



BORN-INFELD FIELD THEORY
In an electrostatic regime, we formaly have

v
—div | —2 | =4np

V|
-7

The (large) parameter b is then the maximal field intensity.

This gives rise to solution with finite field energy

1 [Vel? 2 V|2
= — b |1 —/1—
Hpi(9) 47 /Rs E b2
1- el
Rem : the field energy is the Legendre transform of the action

Ip1(¢) = | Lpi(¢) dx

]R3



SINGLE POINT CHARGE
For a single point charge, we obtain

Ve

V|2
-

and an explicit computation shows
q x

—
7“8 1+ % ||

E=Vyp=

where 79 = ¢/b is interpreted as the radius of the electron.

This Blon! has finite energy.

!Gibbons : A Blon is a finite energy solution of a nonlinear field theory with
distributional sources



L-DENSITY

For an integrable density, if

—div Ve =

[V|?
-

holds in a classical or weak sense, then using Morrey-Sobolev ineq.
we infer

Vel

Cllel <
\V °

/ oo < lellsolipllz-




EXISTENCE OF A WEAK SOLUTION

BUT, if p € L', the existence of a weak solution is open...
One can prove the existence of a solution of a relaxed problem.

Of particular interest in mathematical physics is also the
superposition of point charges:

4
. Vo
—div| ——— | =4n ady,, = € R3,
(o) = e

¢(x) -0, as|z| — oc.

One would like
-the existence of a weak solution of finite energy
-analyze the behavior around the point charges



©® LINK WITH GEOMETRY



ELECTROSTATIC FIELD WITHOUT EXTERNAL

SOURCE

Without source, the equation for the electric field is

Vo

¥
1-— ®

If we can integrate by part then Vi = 0 so that E = 0.

The finiteness of the energy justifies the integration by part.



MEAN CURVATURE IN MINKOWSKI SPACE

Let L3+ := {(z,t) € R? x R} with the flat metric + + +—.
Let 2 C R? be a bounded convex domain.

If M is the graph of a function u € C%'(Q), we say that M is
- weakly spacelike if [|[Vul| <1 a.e.

- spacelike if |u(x) —u(y)| < || — y|| whenever x # y

- strictly spacelike if u € C1(Q) and ||Vul| < 1in Q

We then define the area integral

/Q (VI=[Vu(@)P) da.



MAXIMAL HYPERSURFACES

An important problem in classical Relativity is that of
determining existence and regularity properties of
maximal and constant mean curvature hypersurfaces.
These are spacelike submanifolds of codimension one in
the spacetime manifold, with the property that the trace
of the extrinsic curvature is respectively zero, constant.
Such surfaces are important because they provide
Riemannian submanifolds with properties which reflect
those of the spacetime.



MAXIMAL HYPERSURFACES

This amounts to maximize

E(u) —/Q ( 1 — |Vu(x)]? —i—/o H(a:,t)dt) dr,

amongst

Clp, Q) = {u e C™(Q) : Lip(u) <1 & u(z) = p(z), = € IN}.

BARTNIK-SIMON

If H and ¢ are given bounded functions, the variational problem
can be solved iff C(y, §2) is non-empty.



MEAN CURVATURE IN MINKOWSKI SPACE

The maximal spacelike hypersurfaces have zero Lorentz mean
curvature

v [ ) =0
V1 —|Vul?

BERNSTEIN’S PROBLEM IN MINKOWSKI SPACE
Calabi (1968 for n < 4) and Cheng-Yau (1976) proved that any
entire maximal spacelike hypersurface must be affine.

Remarks:
- in opposition to the euclidean case (n < 7), there is no restriction
on the dimension.

- the only non-strictly spacelike entire area maximizing
hypersurfaces are hyperplanes of slope 1 (Bartnik)



PURE STATIC MAGNETIC FIELD WITHOUT

EXTERNAL SOURCE

The equation for the magnetic field is then

A
IV x AJ?
1+ ——

b2

BERNSTEIN PROBLEM FOR VECTOR FIELDS
The Calabi-Cheng-Yau result applies to the scalar field 1) defined by

V x A

IV x A2
I+ =

Vi =




REGULARITY OF MAXIMAL HYPERSURFACES

BARTNIK-SIMON
Let © be a bounded and C%“ for some a > 0. Suppose
(i) ¢ is bounded and has an extension ¢ € C%() satisfying

Vo(z)| <1 -6y, x€Q for some Oy > 0;

(i) H € C%*(Q x R) is bounded, with sup |H| < A.

Then the variational problem has a C%%(Q) solution and there is
0 =0(A, 9,6, ) > 0 such that

[Vu(z)| <1-0, =ze.

Remark: this was improved (and precised) by
Corsato-Obersnel-Omari-Rivetti in W2 for an L curvature.



@ DIRECT METHOD OF THE CALCULUS OF VARIATIONS
AND THEN...



DERIVATION OF THE EULER LAGRANGE EQUATION
Consider the basic problem of minimizing

/Q L(Vo(z)) da

where L is smooth and convex. Since for a minimizer «

i_/ (L(V(u(z) +en)) = L(Vu(z))) dz > 0,
Q

we expect that (whenever we can justify the convergence)

/ (VL(Vu(z)) - Vn(x)) de = 0.

Q

The convergence is somehow automatic on the set
VL(Vu(z))-Vn(z) =0

but not on its complementary because we usually miss the
information that

/Q IVL(Vu(x)) - Vn(z)| de < oo.



DERIVATION OF THE EULER LAGRANGE EQUATION

THEOREM [DEGIOVANNI AND MARZOCCHI|

Assume that L is convex, differentiable and defined on RY, but
without any upper growth conditions. Then the Euler Lagrange
equations holds, namely

/ﬂ (VL(Vu(z)) - Vn(z)) dz = 0.

for arbitrary compactly supported smooth 7.

Remarks:

- this result was extended by Cellina to variations which are not
necessarily regular.

- in the scalar case, Marcellini proved Wlif regularity



DERIVATION OF THE EULER LAGRANGE EQUATION

The volume integral

z<u>:/(1_m) do

is weakly lower semi-continuous by convexity but not C!

It cannot be extended in a convex way.



DERIVATION OF THE EULER LAGRANGE EQUATION

We have a scalar dependence on the gradient but we have to deal
with the restriction
[Vu(z)] <1

which is not enough to controle

2
[ (e,
Q 1 — |Vu(x)]?
Also, we can only take the variations 7 satisfying (for small ¢ > 0)

IV (u(z) +tn(x))| <1

Vu(z)-Vn(z) <0

whenever |Vu(z)| = 1.



@ CONNECTION TO OBSTACLE PROBLEMS AND FREE
BOUNDARIES 7



CONNECTION TO OBSTACLE PROBLEMS AND FREE

BOUNDARIES 7

In the problem of elastoplasticity, the convex constraint on the
gradient
[Vu(x)| <1

is replaced by adequate obstacles
u_ < u(zr) <us

See e.g. Brezis-Sibony and further developments.
Can we do that in this framework 7

Then the Euler-Lagrange equation is satisfied outside the free
boundary, see e.g. Caffarelli-Friedman.



® RELAXED FORMULATION



GENERAL SOURCES

Consider the Maxwell-Born-Infeld equation with source

Vo
v <—1 = |V¢|2> =p, xE€ RN7 (BI)
lim ¢(z)=0.

where N > 3.

We look for a solution in weak sense in the space
X = {u e DVARY) : Vu € L®(RY) and || Vul|z < 1}

assuming p € X* (which includes Radon measures).



GENERAL SOURCES

THEOREM [B., D’Aven1a, Pomponio, CMP 2016]

There is a unique solution ¢ in weak sense, namely for all
Y € X NCX(RY), we have

/ [Vl p V- Vi
RN

_ Vel Ve VY
Vv1—1|Vp|? RN /1 — V|2

which implies

dx < {p, ¢ — V).

V|

V1—1|V|?

e LYRN) and ps({z e RY | |[Vyp| =1}) =0.

BE AWARE :

pe({z € RY | |[Vp| =1}) =04 ¢ is a weak solution of the PDE !!!



GENERAL SOURCES

I(u) = 1—/1—|Vul?) dz — (p,u)
[

v~ Cases completely solved:

THEOREM [B., D’AVENIA, PoMPONIO]

If p is radially symmetric or locally bounded, then the minimizer u,
of I, is a weak solution of the PDE.

In the radial situation, we have enough test functions
(one-dimensionality greatly helps).

In the locally bounded case, we use Bartnik-Simon local regularity.



POINT CHARGES

n

p= Zn:ak&rk, I(u) = / (1 - m) dr — Z aru(xy)
k=1 RY

k=1

THEOREM [KIESSLING|,[B.-D’AVENIA-POMPONIO]
e u, is a distributional solution of (P) in RV \ {z1,...,2,}, i.e.

Vu, -V
' YU gr =0 forallve CP(RN N\ {z1,...,2,});
1— [Vu|?
e u, € CPRN\T)NCRN), T := Upz; TT5
o |Vu,| <1in RN\T and u, is classical solution of (P) in
RN\ T;
e for k # j either u, is classical solution on Z3x; or

up(tep+(1—t)x;) = tuy(x)+(1—t)uy(z;) forall t € (0,1).



ASSYMPTOTIC BEHAVIOUR AROUND THE CHARGES

For the Born-Infeld equation, an isolated singularity is removable or

THEOREM [ECKER]
For every k =1,...,n,
up(hx + 1) — up(xy)

(1) there exists hli)%l+ b =: (] (z},) for every

direction x and | (z1)| = 1;

(1) xy is a relative strict minimizer (resp. maximizer) of w, if
ar < 0 (resp. aj > 0).



POINT CHARGES
THEOREM [KIESSLING|,[B.-D’AVENIA-POMPONIO]

e If ap-a; >0, u, is a classical solution on int(Z;7;);

e Jo=o(x1,...,x,) >0s.t. if

<
s | < e

u, is a classical solution in RM \ {z1,...,2,};
e 37 =17(ay,...,a,) > 0s.t. if

min |z, — x| > T,

1<k#j<n
u, is a classical solution in R \ {z1,...,z,}.
In all these cases, u, € C®° (RN \ {z1,...,2,}), [Vu,| < 1in

RN\ {z1,...,2,}, and lim,_z, |Vu,(z)| = 1.



QUANTITATIVE

SUFFICIENT CONDITION

THEOREM [B., COLASUONNO, FOLDES, PREPRINT 2017]
Let £t :={k : ar >0} and K_ :={k : a <O0}. If

(o) CN[( Z a’f)ﬁ + (_ Z ak)ﬁ} <1<Ijr£?<n|wj_M7
; ‘

4+ ex—

1

Cyn = (L;.)N,I)N_l%' then |Vu,| <1 in RM\ {z1,...,70},
U, € CRM)NC=(R

RN\ {z1,...,7,}.

=N

\{z1,...,2n}), and w, is classical solution in

For two opposite-sign charges we have a better result by using comparison
principle and the radial symmetry of the solution with one charge.

Condition () is not sharp, we can prove a more precise (but less explicit)
sufficient condition where Cy is given by an ugly formula.



@ AN APPROXIMATED MODEL



APPROXIMATED BI EQUATION

e Maxwell's equation for E in the vacuum is formally a first-order
approximation of Born-Infeld equation

e [D.Fortunato, L.Orsina, L.Pisani, 2002] introduced a
second-order approximation to obtain a finite energy solution in
the case p € L}(R3)

e [Kiessling],[B.-D’Avenia-Pomponio] study higher-order
approximations : the Lagrangian density can be written as the
following series

= 2h — 3)!!
1 /1= 2 _ N Y, 2 _ 2h =3 0 <1

and consequently the operator can be seen as

~Qu) = =) anlopu

h=1



APPROXIMATED BI EQUATION
Let m € N. We consider the problem
(P) =Y o apAopu =Y ) apdy, in RN,
7 .

Il g m

in the space Xy, := W
1/m71/2
fulls, 5= [ [ 1o+ ([ (wupmar)”]
RN RN

e For 2m > max{N, 2*} 2* = 22 Xy = C ’ﬂm(RN)
where 5, :== 1 — —m and

COPr(RNY := {v e C%Pm . lim u(z) = 0} C Co(RY)

|z| =00

= p =711 ardy, €(Co(RV))* C (CoP™(RN))* C (Xopm)*

endowed with



CONVERGENCE

BIG ADVANTAGE: the operator in (P,,) is not singular at finite
value of the gradient

Is (P,,) a good approximation of (P)?

Associated functional

n

I (u) == }; % /RN \Vu|*dz — ;aku(xk) for all u € Ayp,.

Now u € Xy, weak solution of (P,,) < u,, is a critical point of I,,

[KIESSLING],[B.-D’AVENIA-POMPONIO]
Let 2m > max{N,2*}. Then,
e [, has one and only one critical point u,,, a minimizer;

® Uy — u, in Xy, and the convergence is uniform in compact
sets of RYV.



REGULARITY

THEOREM [B., COLASUONNO, FOLDES]|

Let 2m > max{N,2*}. Then,

U € COP"RM) N C® (RN \ {z1,. .., 20}).

* [Lieberman, 1988] + linearization + bootstrap;

* Regularity results on inhomogeneous operators of the form
A, + A, by Marcellini, Acerbi, Mingione do not apply:
they have p and ¢ close enough, while we need to let m — oc.
We strongly use the fact that «, > 0 for all h and that in the
operator sum there is also the Laplacian;

* iMoo Bm = 1 in accordance with the aim that the
solutions of (P,,) should approximate solutions of (P).



QUALITATIVE PROPERTIES

THEOREM [B., COLASUONNO, FOLDES]|
Let 2m > max{N,2*}, and k =1,...,n. Then
m U () — U (k)

1
T—T) ‘.%' . wk’%

- K,,

for some K, = Ky (ag, am, N) € R such that K,, - a; < 0.

e blow up argument (for the gradient) + Riesz potential
estimates [Baroni, 2015]

e u,, behaves near the singularities like the fundamental
solution of the Ay, [Serrin - improvement of Veron &
Kichenassamy]|

1
o 2m—1 |ak‘ 2m—1
o Ky = —sign(ax) 5= <7N\B1|am> and so

limy,—y00 Ky = —sign(ag).



CONSEQUENCES

g Vum(x . . 2m—N .
(1) Timgp, —2m@ — K7 with K, = 22N K|,
lz—zp|2m=T

(11) xy is a relative strict maximizer (resp. minimizer) of w,, if
ar > 0 (resp. ai < 0).

e (1) is an easy consequence of the fact that K, - ai < 0. We
find the same nature of the singularities of u,, ;

e lim,, oo K/, =1, and so

lim |Vun,(x)|~1 for z close to x,
m—r0o0

in accordance with |Vu,| — 1 as  — .



@ REGULARITY FOR NON-UNIFORMLY ELLIPTIC
OPERATORS



Regularity of the minimizer

It is well known that the solution of Poisson's equation
—Au = P

is C)-% as soon as p is an admissible data (say p € L>(R") with
= 2N)andpeL7’W|thp>N

= N+2
What about the Bl model ?

When p = 1/|z|%, we recover the same threshold p > N so the
result cannot be true with p < N.



Regularity of the minimizer

THEOREM [B., IACOPETTI]|

Assume that p > 2N.
o If p e LP(RN) N L% (RN), then u, € W2 (RN).

loc
e There exists a constant ¢ = ¢(N, p) such that for any
p € LP(RY) N L2 (RY) satisfying |p|, + |pl2, < c then u, is a
weak solution of the PDE, it is strictly spacelike and
u € CLY(RN), for some v € (0,1).

ocC

Difficulties :

e The "linearly frozen” operator is not uniformly elliptic
e No regularity theory available except if p € L™
e We are even not sure that the minimizer is a weak solution

e We combine
- revisited gradient estimates of Bartnik-Simon
- Mingione's regularity results (using Riesz potential)



	Maxwell Theory
	Born-Infeld Theory
	Link with geometry
	Direct method of the Calculus of variations and then... 
	Connection to obstacle problems and free boundaries ?
	Relaxed formulation
	An approximated model
	Regularity for non-uniformly elliptic operators

