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1 Introduction

Complex valued periodic differential equations have been studied by Mawhin
in several papers. He already discussed this topic in a course held in Mon-
treal, almost twenty years ago (see [7]). Motivated by his lectures, Campos
and I studied the periodic problem for the equation

z′ + z2 + Q(t) = 0, (1)

where Q : R → C is continuous and T -periodic. Notice that the independent
variable t is real but the unknown z = z(t) can take complex values. In [3] we
constructed an equation of this class without periodic solutions. A related
example had been previously constructed by Lloyd in [5], for another class of
Riccati equations. Alternative examples of non-existence were constructed
by Miklaszewski in [9] and by Gabdrakhmanov and Filippov in [4]. More
advanced results on the equation (1) were obtained later by Campos in [1]
and Zoladek in [12] and, more recently, by Wilczyński in [11]. The paper
[11] also contains an extensive list of previous works on the complex Riccati
equation. It is also interesting to point out that Campos and Mawhin have
initiated in [2] the study of the more delicate quaternionic Riccati equation.
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The purpose of this paper is to present an elementary approach for the
study of the periodic problem associated to (1). As it is well known the
change of variables

z =
w′

w

transforms the Riccati equation (1) into the second order linear equation

w′′ + Q(t)w = 0. (2)

The key observation of the paper is that the existence of T -periodic solutions
of (1) can be characterized in terms of standard properties of this linear
equation when Q(t) is real valued. After this remark, the well developed
theory of Hill’s equation can be applied to produce many results for the
periodic problem associated to (1). The propositions stated below will be
derived from classical results on Hill’s equations. The function Q(t) is real,
but complex solutions z = z(t) will be admissible.1

Proposition 1 Assume that Q(t) is a non-constant, continuous and T -
periodic real-valued function. Then there exist two numbers λ∗ < λ∗ such
that the equation

z′ + z2 + Q(t) + λ = 0

has no T -periodic solutions if λ ∈]λ∗, λ∗[.

Proposition 2 Assume that Q(t) is a continuous and T -periodic real-valued
function satisfying

T

∫ T

0
Q+(t)dt < 4, (3)

with Q+(t) = max{Q(t), 0}. Then the equation (1) has at least one T -
periodic solution.

At the end of the paper it will be proved that the number 4 is optimal in
this result.

2 Disconjugacy and stability for Hill’s equation

From now on the function Q(t) will be real-valued and the theory on Hill’s
equation developed in the book [6] will be used freely.

1Q : R→ R and z : R→ C.
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The equation (2) is called disconjugate if there exists a non-vanishing,
real-valued solution; that is, a solution w∗(t) satisfying

w∗(t) ∈ R \ {0} for each t ∈ R.

The same equation is called stable if the trivial solution w = 0 is stable in the
sense of Lyapunov. The families of stable and disconjugate Hill’s equations
are disjoint.

Theorem 3 The following conditions are equivalent:
(i) The equation (1) has at least one T -periodic solution
(ii) The equation (2) is disconjugate or stable.

To prepare the proof of this result we recall some well-known facts on Hill’s
equations. A Floquet solution of (2) is a non-trivial solution satisfying

w(t + T ) = µw(t), t ∈ R,

for some µ ∈ C \ {0}. The number µ is a multiplier and there exist at
most two of them, µ1 and µ2. They satisfy µ1 · µ2 = 1. The equation is
elliptic if µ1 = µ2 ∈ S1 \ {±1}, parabolic if µ1 = µ2 = ±1 and hyperbolic
if µ1, µ2 ∈ R \ {±1}. Elliptic equations are stable and hyperbolic equations
are unstable. In the parabolic case we must distinguish between the stable-
parabolic case (all solutions are periodic) and the unstable-parabolic case
(periodic and unbounded solutions coexist). We present a preliminary result
on elliptic equations.

Lemma 4 Assume that the equation (2) is elliptic, then Floquet solutions
do not vanish.

Proof. Assume by contradiction that w(t) is a Floquet solution vanishing at
some t0 ∈ R. Then, by uniqueness, w(t0) = 0 and w′(t0) 6= 0. The solution
ω(t) = w(t)

w′(t0) satisfies the initial conditions ω(t0) = 0 and ω′(t0) = 1. Since
Q(t) is real-valued, the same happens to ω(t). This is not possible because
ω(t) is a Floquet solution associated to a non-real multiplier.�

Remark. In the stable-parabolic case some Floquet solutions can vanish
but there always exist a non-vanishing Floquet solution. To justify this
consider the solutions φ1(t) and φ2(t) of (2) satisfying the initial conditions

φ1(0) = φ′2(0) = 1, φ′1(0) = φ2(0) = 0.
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Since we are in the stable-parabolic case both of them must be Floquet so-
lutions with the same multiplier µ = ±1. Moreover, the Wronskian satisfies

W (t) = φ1(t)φ′2(t)− φ′1(t)φ2(t) = 1

for each t. Then φ1 and φ2 cannot vanish simultaneously and w(t) = φ1(t)+
iφ2(t) is a Floquet solution that never vanishes.

Proof of Theorem 3. (ii) ⇒ (i). We will prove that there exists a Floquet
solution w(t) that does not vanish. Then the proof is easily completed
because z(t) = w′(t)

w(t) is a T -periodic solution of (1). Our assumption is that
(2) is either stable or disconjugate. If it is stable then it is either elliptic
or stable-parabolic and the previous discussions guarantee the existence of
w(t). Assume now that (2) is disconjugate. The multipliers are real and we
can find a real-valued Floquet solution w(t). From the definition we know
that if t0 is a zero of w(t) then the same is true for t0 + T . Due to Sturm
theory and the definition of disconjugacy we know that real-valued solutions
can vanish at most once and so w(t) never vanishes.

(i) ⇒ (ii) Assume that z(t) is a T -periodic solution of (1). The primitive
Z(t) =

∫ t
0 z(s)ds can be expressed as

Z(t) = Z̃(t) + At

where Z̃(t) is T -periodic and A = 1
T

∫ T
0 z(t)dt is the average of the solu-

tion. By a direct substitution we can verify that the function w(t) = eZ(t)

is a solution of (2). Moreover w(t) is a Floquet solution that never van-
ishes. Notice that the associated Floquet multiplier is µ = eTA. If the
equation (2) is elliptic or stable-parabolic then this equation is stable and
the proof is complete. From now on we will assume that (2) is hyperbolic
or unstable-parabolic and we will prove that then it is also disconjugate. In
these assumptions we know that the Floquet multiplier µ is real. Moreover,
the space of solutions satisfying ω(t + T ) = µω(t) has dimension one. In
principle this dimension must be considered in the complex sense but we
also know that this space contains real-valued Floquet solutions. In con-
sequence there exists a number σ ∈ C \ {0} such that ω∗(t) = σw(t) is a
real-valued solution. This solution never vanishes and so we have proved
the disconjugacy of the equation (2).�
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3 Proof of Proposition 1

Consider the equation with one parameter

w′′ + (Q(t) + λ)w = 0. (4)

As it is well known there exist sequences {λn}n≥0 and {λ′n}n≥1 satisfying

λ0 < λ′1 ≤ λ′2 < λ1 ≤ λ2 < λ′3 ≤ λ′4 < λ3 ≤ λ4 < · · ·

and such that the equation is hyperbolic if λ belongs to one of the instability
intervals, namely I0 =] −∞, λ0[, In =]λ2n−1, λ2n[ or I ′n =]λ′2n−1, λ

′
2n[ with

n ≥ 1. Notice that I0 is never empty but the other intervals will be empty
as soon as two consecutive eigenvalues coincide. It is also well known that
the equation is disconjugate if and only if λ belongs to the closure of I0. In
view of Theorem 3 we can say that the equation

z′ + z2 + Q(t) + λ = 0 (5)

has no T -periodic solutions if λ belongs to some instability interval different
from I0. A deep result due to Borg says that if Q(t) is non-constant then
the set In ∪ I ′n is non-empty for some n ≥ 1. A proof of this result can be
found in [6]. The proof of the Proposition is now completed if we define the
interval ]λ∗, λ∗[ as a non-empty instability interval.�

Remark. For a generic Q(t) all intervals of instability are non-empty. In
such situation the equation (2) is hyperbolic when the parameter λ lies in
an instability interval, unstable-parabolic at the boundary of In or I ′n and
elliptic otherwise. From Theorem 3 we deduce that the Riccati equation (5)
has a T -periodic solution if and only if λ is in the interval E0 =]−∞, λ′1[ or
in one of the intervals En =]λ′2n, λ2n−1[, E′

n =]λ2n, λ′2n+1[.

4 Proof of Proposition 2

In view of Theorem 3 it is enough to prove that if (3) holds then the equation
(2) is disconjugate if it is unstable. Unstable equations are either hyperbolic
or parabolic and so they have a real valued Floquet solution w(t). We will
prove by a contradiction argument that w(t) never vanishes. Assume that
t0 is a zero of w(t), from the definition of Floquet solution we deduce that
w(t0) = 0 implies w(t0 + T ) = 0. We are going to prove that this cannot
happen if the condition (3) holds. To this end we apply Lemma 3.4 in [10]
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and deduce that the distance between two consecutive zeros t0 < t1 of any
real-valued solution of (2) satisfies

(t1 − t0)
∫ t1

t0

Q+(t)dt ≥ 4.

From (3) we deduce that t0 and t0 + T cannot be two zeros of w(t).�

To finish the paper we construct an example showing that the number 4
in condition (3) is optimal. Let us fix any number M > 4. We consider any
sequence of functions Qn : R → R, n ≥ 2, satisfying

• Qn is continuous and T -periodic

• Qn(t) ≥ 0 if t ∈ [0, T
n ] and Qn(t) = 0 if t ∈ [T

n , T ]

• T
∫ T
0 Qn(t)dt = M.

We will prove that the equation

z′ + z2 + Qn(t) = 0

has no T -periodic solutions if n is large enough. Notice that T
∫ T
0 Qn(t)+dt =

M and so the number 4 cannot be replaced by M in Proposition 2.
In view of Theorem 3 it will be enough to prove that the second order

equation
w′′ + Qn(t)w = 0 (6)

is neither stable nor disconjugate. Indeed we will prove that the discriminant
∆n satisfies

∆n < −2

if n is large enough. If this condition holds then the equation is hyperbolic
and all real solutions have infinitely many zeros. We claim that

lim
n→∞

∆n = 2−M.

To compute this limit we observe that the discriminant can be expressed as

∆n = φ1,n(T ) + φ′2,n(T ),

where φ1,n(t), φ2,n(t) are the solutions of (6) with initial conditions

φ1,n(0) = φ′2,n(0) = 1, φ′1,n(0) = φ2,n(0) = 0.

The claim on the limit is a consequence of the following auxiliary result.
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Lemma 5 Let us fix numbers a, b ∈ R and let wn(t) be the solution of (6)
with initial conditions wn(0) = a, w′n(0) = b. Then wn(T ) → (1−M)a+Tb
and w′n(T ) → b− M

T a as n →∞.

Proof. The function wn(t) satisfies the integral equation

wn(t) = a + bt−
∫ t

0
(t− s)Qn(s)wn(s)ds.

For each t ∈ [0, T ],

|wn(t)| ≤ |a|+ |b|T + T

∫ t

0
Qn(s)|wn(s)|ds

and Gronwall’s inequality implies that

|wn(t)| ≤ (|a|+ |b|T )eM := B0.

The identity

w′n(t) = b−
∫ t

0
Qn(s)wn(s)ds (7)

leads to the estimate

|w′n(t)| ≤ |b|+ M

T
B0 =: B1.

Then

wn(t) = a +
∫ t

0
w′n(s)ds = a + O(

1
n

) if t ∈ [0,
T

n
].

From now on all asymptotic formulas will be uniform in n. Evaluating (7)
at t = T

n and using the conditions imposed on the support of Qn,

w′n(
T

n
) = b−

∫ T
n

0
Qn(s)wn(s)ds = b− M

T
a + O(

1
n

).

Since w′′n vanishes on [Tn , T ] we conclude that

w′n(T ) = w′n(
T

n
) = b− M

T
a + O(

1
n

)

and

wn(T ) = wn(
T

n
) + w′n(

T

n
)T (1− 1

n
) = a + Tb−Ma + O(

1
n

).�

The previous construction is based on the following observations:
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• The sequence Qn converges to a periodic measure µ.

This measure is defined as a functional by

〈µ, φ〉 =
M

T

∑
n∈Z

φ(nT ), φ ∈ C0(R),

where C0(R) is the space of continuous functions φ : R → R with
compact support. The convergence is in the weak sense, that is∫

R
Qnφ → 〈µ, φ〉

for each φ ∈ C0(R).

• The generalized differential equation

w′′ + µ(t)w = 0

has a well posed Cauchy problem.

In the interval ]0, T ] the solution is

w(t) = w(0) + w′(0+)t, t ∈]0, T ], w′(0+) = w′(0)− M

T
w(0).

From this formula we can compute the value of the associated discrim-
inant, ∆∞ = 2−M .

• The properties of continuous dependence of the generalized Hill’s equa-
tion imply that ∆n → ∆∞.

The previous claims can be made precise using the paper [8] by Meng and
Zhang. This paper contains a general theory for a generalized equation of
Hill type whose coefficient Q(t) is a periodic measure.
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