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Mathematical reconstruction of color-matching functions
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We calculate the fast Fourier transforms of the color-matching functions for the CIE 1931 standard observer
with reference to the XYZ primaries. From an analysis of the Fourier-transform moduli thus obtained, we
were then able to study the sampling theorem to get mathematical formulas that lead to the reconstruction of
the color-matching functions at limiting frequencies of 0.02 and 0.05 cycle/nm. This reconstruction proves to
be highly reliable at a sampling interval of 10 nm and perfectly acceptable at 25 nm and even wider intervals.

INTRODUCTION

Some researchers in colorimetry’™ have used the Fourier
analysis to represent, for example, spectral reflectance
functions in terms of frequency-limited functions, that is,
those functions whose Fourier transform is 0 above a cer-
tain frequency (limiting frequency). Buchsbaum and
Gottschalk? included a graphic representation of the mod-
ulus of the discrete Fourier transform of the color-match-
ing functions for the CIE 1931 standard observer. It can
be deduced from these representations that each of the
Fourier transforms of the three color-matching functions
vanishes above a certain frequency. Barlow* reported
similar results after applying the Fourier transform to the
Smith-Pokorny fundamental spectral sensitivities as did
Benzschawel et al.? by analyzing color-vision mechanisms
based on various different models.

In the research of Buchsbaum and Gottschalk? it is
shown that the modulus of the Fourier transform obtained
for the 7, function seems to become 0 at a frequency even
lower than 0.01 cycle/nm. This result appears to us to be
of great interest if our intention is to apply the sampling
theorem® to the color-matching functions of the standard
observer. ‘

In fact, if a function M(A) had a limiting frequency of
0.01 cycle/nm, this would mean that we could sample it at
a minimum frequency of 0.02 cycle/nm, i.e., at wavelength
intervals of 50 nm, and reproduce it, without losing any
information, in the form
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where f is the limiting frequency.

If we consider that M(A) is one of the color-matching
functions and take the visible spectrum to be 360-
760 nm, where the function has values significantly dif-
ferent from 0, it will be sufficient to sample eight values of
the function in order to obtain its analytical representa-
tion. This could imply a reduction in the number of
experimental measurements needed to determine color-
matching functions and also to arrive at analytical ex-
pressions for them, which we do not have at present.

In this way our intention has been to achieve a spectral
analysis of the color-matching functions for the CIE 1931
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standard observer and to study whether the color-match-
ing functions can really be considered as being frequency-
limited functions. If this were so, it would be possible to
arrive at their theoretical reconstruction with the use of a
mathematical expression such as formula (1). Although
this equation employs sinc functions, which admittedly
are difficult to use experimentally as they decay slowly,
mathematically it does permit the reconstruction of color-
matching functions with well-known functions, which is
our prime intention. From the results of this analysis, we
hope to formulate a more efficient experimental methodol-
ogy and also to obtain mathematical expressions for calcu-
lating the color-matching functions. Furthermore, in the
research of Barlow* and Benzschawel et al.® some features
of the color vision system as a low-pass filter could be de-
duced. This leads us to be interested in the study of the
behavior of color vision mechanisms in the frequency do-
main. '

The problem of reconstructing color-matching functions
by this method may be related to the interpolation meth-

" ods of color-matching function values of Stearns’ and Erb

and Krystek.! Actually, these papers were concerned
with the analysis of abridgment and truncation problems
in the calculation of tristimulus values. While they do
indeed elaborate on a prediction method for color-match-
ing functions outside the interval in which the reflectance
of an object is measured, this prediction is subject to the
calculation method for tristimulus values. However, we
will take as our starting point the complete definition of
color-matching functions (360-830 nm, AA = 1 nm), tak-
ing the most significant interval as being between 360
and 759 nm. :

As far as the research of Stiles et al.! is concerned,
these authors have designed a model for the representa-
tion of spectral reflectances of color objects by the sum of
sinc functions. In fact, they generated a family of this
type of sum in an attempt to represent the real reflec-
tances with the aim of solving the problem of counting
metameric objects. The limiting frequency of their sinc
functions is between 0.01 and 0.05 cycle/nm, but they indi-
cate that it is necessary to extend the sum of this type
of function to include sinc functions centered outside the
visible spectrum in both directions to make an adequate
calculation of the tristimulus values associated with the
reflectances. In our case we consider that the problem is
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somewhat different because, as is shown in formula (1),
although we are using sinc functions that decay slowly,
they are multiplied by the value of the color-matching
function in each wavelength in which they are centered,
which means that they can be used only within the visible
spectrum.

FOURIER ANALYSIS OF COLOR-MATCHING
FUNCTIONS

First we obtained the fast Fourier transform (FFT’) of
the %, 7\, and Z, color-matching functions for the CIE
1931 standard observer between 360 and 759 nm at inter-
vals of AA = 1 nm (Ref. 9, pp. 725-734).

Strictly speaking, when carrying out a discrete Fourier
transform, one should be certain that the frequency of the
sample of the signal (in our case 1 cycle/nm) is equal to or
greater than double the limiting frequency; that is, in or-
der to make the transform, we must presume that it will
vanish at frequencies of less than 0.5 cycle/nm. Thus, as
we have the color-matching functions only as a discrete
set of values, we must take it that this is in fact what
happens. Previous results of Buchsbaum and Gottschalk?
and the graphic expressions of the color-matching func-
tions by Wyszecki and Stiles® support this idea and lead
us to believe that there will be no contribution at high
frequencies.

However, we know that a function that exists only in a
finite interval cannot mathematically be band limited,
and therefore, strictly speaking, the sampling theorem
does not hold. We may therefore find that the color-
matching functions are only approximately band limited
and that the application of formula (1) extended only to
the visible spectrum will give an analytical representation
of the functions that is an approximation to the complete
analytical representation.

In order to apply the sampling theorem, we have to pre-
sume that the FFT’s of the color-matching functions
nearly vanish at a determined frequency and that this fre-
quency is the limiting frequency used to apply formula (1).
We would then have to compare graphically and numeri-
cally the reconstruction values with the real values of the
corresponding function. Furthermore, the limiting fre-
quency that we are considering would also be affected by
the application of the sampling theorem from a Fourier
transform that is discrete and not continuous, which is
when such a frequency has its exact significance.

To obtain a fine sampling of the FFT modulus and
based on the fact that color-matching functions take 0 val-
ues in the ultraviolet and the infrared regions, we added
1800 0’s equally spaced at 1-nm intervals to each end of
the visible spectrum considered and then used 4000 sam-
ples to make each of the FFT’s (Af = 0.00025 cycle/nm).
This Af is 12.5 times better than the resolution in Buchs-
baum and Gottschalk, which is Af = 0.003125 cycle/nm.

The FFT moduli for these three functions appear in
Fig. 1. The value for f = 0 cycle/nm, 0.0534, is the result
of the sum of all the values of each function divided by
half the number of samples. As the sum of the three
color-matching functions is the same, this value is the
same for the three curves of Fig. 1.

We may presume that the FFT’s for the three functions
nearly vanish, although at a different limiting frequency
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for each. This result is to be expected because ¥, and Z,,
for example, are similar in form, although the latter is
narrower, which makes its transform vary more slowly
with the frequency.

In this way the modulus value for the Fourier transform
of the ¥, function for a frequency of 0.02 cycle/nm can be
taken as 0, although the values above a frequency of
0.01 cycle/nm are almost negligible. We emphasize this
because in the figures of Buchsbaum and Gottschalk? this
Fourier transform clearly vanishes at frequencies even
lower than 0.01 cycle/nm, which is not in accord with our
results. The resolution in their study is 12.5 times lower
than that in the present calculation. This difference in
resolution is expressed, for example, in the fact that
Buchshaum and Gottschalk had values at only 3 frequency
points inside the interval of 0-0.01 cycle/nm, whereas this
study has 40 points and hence is much more accurate.

The transform for the %, function also nearly disappears
at frequencies greater than 0.02 cycle/nm, and, as we have
already mentioned, the behavior of the Fourier transform
for 2, is similar to that for 7,, except that the latter varies
more slowly with the frequency. This leads us to believe
that what holds good for 7, at 0.01 and 0.02 cycle/nm
should apply to 2, at frequencies of 0.02 and 0.04 cycle/nm.
In this case the transform nearly vanishes at a frequency
of 0.04 cycle/nm or above.

MATHEMATICAL RECONSTRUCTION OF THE
COLOR-MATCHING FUNCTIONS

On the basis of the results described above we have tried
to reconstruct mathematically the color-matching func-
tions with the use of formula (1) for two limiting frequen-
cies: 0.02 and 0.05 cycle/nm. Within the limitations
considered above with respect to the application of the
sampling theorem, the expressions that we will use
for the mathematical reconstruction of the distinct
color-matching functions will be, in the case of f; =
0.02 cycle/nm,
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Fig. 1. FFT modulus for different CIE 1931 standard-observer
color-matching functions. Ordinates are in arbitrary units.
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Table 1. Original %, and Its Reconstruction
Sampled at Two Intervals

A (nm) X, (original) X (AA = 10 nm) X)(AA = 25 nm)
375 0.0007416 0.0006141 0.0007416
395 0.0076500 0.0076036 0.0010724
415 0.0776300 0.0771594 0.1135753
435 0.3285000 0.3317251 0.3036837
455 0.3187000 0:3200262 0.3145065
475 0.1421000 0.1428042 0.1421000
495 0.0147000 0.0151026 0.0144864
515 0.0291000 0.0295138 0.0368710
535 0.2257499 0.2264903 0.2193717
555 0.5120501 0.5128741 0.5131871
575 0.8425000 0.8434121 0.8425000
595 1.0567000 1.0562970 1.0567290
615 0.9384000 0.9401727 0.9322011
635 0.5419000 0.5408514 0.5464982
655 0.2187000 0.2179515 0.2181796
675 0.0636000 0.0631961 0.0636000
695 0.0158400 0.0151778 0.0153738
715 0.0041094 0.0036076 0.0050038
735 0.0009999 0.0006371 0.0001718
755 0.0002348 —0.0000461 0.0006974

Table 2. Original j, and Its Reconstruction
Sampled at Two Intervals

A (nm) #a(original) 7r(AA = 10 nm) Fr(AA = 25 nm)
375 0.0000220 0.0002418 0.0000220
395 0.0002170 0.0004677 —0.0025288
415 0.0021800 0.0024596 0.0079333
435 0.0168400 0.0173670 0.0095020
455 0.0480000 0.0485477 0.0532351
475 0.1126000 0.1131859 0.1126000
495 0.2586000 0.2582759 0.2517048
515 0.6082000 0.6093491 0.6069945
535 0.9148501 0.9146398 0.9230018
555 1.0000000 0.9999541 0.9948903
575 0.9154000 0.9155146 0.9154000
595 0.6949000 0.6948101 0.6992706
615 0.4412000 0.4415356 0.4333621
635 0.2170000 0.2162775 0.2238835
655 0.0816000 0.0810757 0.0785629
675 0.0232000 0.0228501 0.0232000
695 0.0057230 0.0058077 0.0078686
715 0.0014840 0.0011474 —0.0015158
735 0.0003611 0.0000903 0.0030629

" 755 0.0000848 —0.0001439 —0.0014408

and, for f; = 0.05 cycle/nm,

. ) 75 n . n
- Su(hells-5]] o
where we have substituted the interval of the sum in for-
mula (1) for that in which the function has values M(A)
significantly different from 0 and that will give us an ap-
proximate analytical reconstruction M'(A) of the corre-
sponding color-matching function.

As can be observed, when f; = 0.02 cycle/nm, 16 terms
appear in the sum of the formula, and thus we sample
values of the corresponding function, at intervals of
25 nm, from 375 to 750 nm. When f; = 0.05 cycle/nm,
the result is 40 terms in the sum of the formula with
values for the function at intervals of 10 nm, from 360
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to 750 nm. The results are shown in Tables 1-3, in
which the values for the functions and for the two recon-
structions for 20 wavelengths in the visible spectrum
are listed.

If we analyze the data in Tables 1-3 we find, as might
be expected, that the three functions reconstructed at in-
tervals of 10 nm are similar to the original ones, their
values being identical to the second decimal place, and
generally to the third, even without rounding off. It can
be seen that the greatest similarities occur with the cor-
responding function at its highest values and thus the rela-
tive error at these wavelengths is small.

The results for the functions reconstructed at f; =
0.02 cycle/nm are also satisfactory for the ¥, and ¥, func-
tions but not so good for z,, as we had predicted. In Fig. 2
the original X, function is shown superimposed on the one
reconstructed at intervals of 25 nm. The slight differ-
ences shown in Table 1, which also include the inherent
error involved in computer calculations, are appreciable
only in tiny variations in the first peak of the function.
When the same thing is done for the ¥, function, no differ-

Table 3. Original z, and Its Reconstruction
Sampled at Two Intervals '

A (nm) Z)(original) Z\(AA = 10 nm) Zy(AA = 25 nm)
375 0.0034860 0.0021525 0.0034860
395 0.0362100 0.0351699 0.0023658
415 0.3713000 0.3680698 0.5474699
435 1.6229600 1.6372050 1.4964980
455 1.7441000 1.7499310 1.7201910
475 1.0419000 1.0436760 1.0419000
495 0.3533000 0.3532304 0.3718955
515 0.1117000 0.1133354 0.1049390
535 0.0298400 0.0311522 0.0301580
555 0.0057499 0.0066123 0.0053330
575 0.0018000 0.0024769 0.0018000
595 0.0010000 0.0014678 0.0011592
615 0.0002400 0.0006775 0.0000930
635 0.0000300 0.0004128 0.0001911
655 0 0.0003520 —0.0001002
675 0 0.0003265 0
695 0 0.0003033 0.0001006
715. 0 0.0002828 —0.0001667
735 0 0.0002649 0.0001695
755 0 0.0002491 —0.0001068
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Fig. 2. Original %, (dotted curve) and its reconstruction sampled
at intervals of 25 nm (solid curve).
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Fig. 3. Original 7, (dotted curve) and its reconstruction sampled
at intervals of 50 nm (solid curve).
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Fig. 4. Original 2, (dotted curve) and its reconstruction sampled
at intervals of 25 nm (solid curve).
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ence whatsoever is to be observed, and, for this reason, we
have not included the corresponding figure.

Nevertheless, we considered it worthwhile to include a
representation of the original 7, function together with its
reconstruction at f; = 0.01 cycle/nm, that is, with eight
terms in the sum of formula (1), » from 8 to 15, sampled at
intervals of 50 nm from 400 to 750 nm (Fig. 3). In this
case the reconstructed function is slightly displaced to-
ward the long wavelengths. We have included this figure
to show that, although the fitting of the two functions is
not excellent, it is no worse than that found by comparing
the color-matching functions measured by different nor-
mal observers (see Ref. 9, pp. 343-347, 383, and 396).
The same can be said for the representation in Fig. 4 of
the reconstruction of the Z, function at intervals of 25 nm.

We made a numerical estimation of the differences be-
tween the original and the reconstructed functions
(Table 4) by calculating the mean absolute error, defined as

1
@=5 2 |M@) - M@, (4)

vis

where M(A) and M'()) are the original function and the
reconstructed one, respectively; N = 400 if it is implied
that we have sampled values of the functions at intervals
of 1 nm, from 360 to 759 nm.
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The results in Table 4 support the conclusions to be
drawn from the analysis of Fig. 1 as to the number of deci-
mal places to which the reconstructed function coincides
with the original. Of %,, 7\, and Z,, the set of functions
that fits most reliably is %,, although ¥, is equally reliable
at AA = 25 nm.

Furthermore, if we calculate a relative error for the re-
construction, dividing the values of (d) in Table 4 by the
mean value of the respective function, i.e.,

o=@ /% suw, ®
we obtain the values of {r) indicated in Table 4, which may
be understood as a percentage of error in the reconstruc-
tion. Thus the reconstructions imply errors of less than
1% and 2% when AA = 10 nm and AA = 25 nm, respec-
tively, with the exception that, for zZ(A), the error is 7%
when AA = 25 nm.

We can conclude that the reconstructions of the color-
matching functions are always satisfactory when the
color-matching functions are sampled at intervals of
10 nm, which means that it is possible to reduce the num-
ber of the experimental measurements necessary for their
determination. Intervals of 25 nm, involving measure-
ments at 16 or 17 wavelengths, may even give acceptable
results. Nonetheless, the calculation of the color-matching
functions is carried out experimentally on functions that
refer to real primary colors, with all three functions being
measured simultaneously, and, for this reason, the fre-
quency of sampling depends on the results obtained for z,,
the function that behaves least reliably. Whatever the
case, the frequency of sampling will always depend on the
experimental objectives laid down.

The ¥, function is of great interest because it coincides
with the photopic luminous efficiency function V;, which
results from independent experimental measurement.
This function is of summary importance in photometry,
and so a reduction in the number of spectral measure-
ments necessary for its determination would be extremely
useful; in fact in our analysis we get the best results for
this function. We also have at our disposal a mathemati-
cal expression with a number of terms in the sum that can
be altered according to the degree of reliability desired.

We also conclude that our method for reproducing color-
matching functions is applicable to obtaining values for a
determined function at wavelengths for which it has not
been measured, for example, if the measurements have
been made at 5 nm, and values at 1 nm are required. Itis
plausible that this mathematical analysis may also be used
in other spectral functions in color vision as it is reason-
able to presume that the application of Fourier transforms

Table 4. Mean Absolute Error (d) and Relative
Error (r) for Two Reconstructions of
the Color-Matching Functions Analyzed®

AA = 10 nm AA = 25 nm
Function @) " @) "
X\ 0.000687 0.002573 0.004527 0.016955
» 0.001625 0.006086 0.005323 0.019936
Z) 0.001716 0.006426 0.017966 0.067288

°AA, interval of sampling.
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to some of them will produce analogous results, as Barlow*
has shown with the Smith-Pokorny fundamentals. In
accord with Barlow’s results, we have also found that
chromatic information above a frequency around
0.02 cycle/nm, must be poor at stimulating the color
vision system.
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