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a b s t r a c t

A Generalized Quantum Similarity Index is defined, quantifying the similarity among density functions.
The generalization includes, as new features (i) comparison among an arbitrary number of functions, (ii)
its ability to modify the relative contribution of different regions within the domain, and (iii) the possi-
bility of assigning different weights to each function according to its relevance on the comparative pro-
cedure. The similarity among atomic one-particle densities in both conjugated spaces, and neutral–cation
similarity in ionization processes are analyzed. The results are interpreted attending to shell-filling pat-
terns, and also in terms of experimentally accessible quantities of relevance in ionization processes.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The concepts of similarity and dissimilarity (or divergence) are
closely related, both appearing to be of fundamental importance in
a wide variety of scientific fields including, for instance, image or
texture registration [1–3], sequence analysis [4], pattern recogni-
tion [5], biodiversity [6], classification [7], homology [8], neural
networks [9], machine learning [10], artificial intelligence [11],
computational linguistics [12], fuzzy set theory [13] or quantum
information theory [14].

Quantum similarity attempts to give a quantitative measure of
the degree of similarity between two quantum objects, having its
grounds on the comparison of their one-particle densities with
later applications to other quantities, such as e.g. Fukui functions
[15]. To quantify the degree of similarity between the compared
systems, a general Quantum Similarity Measure [16] can be
defined by means of the computation of an integrated measure
between the density functions attached to the quantum systems.

The recent explosion in knowledge-based chemical research has
created a surge of interest in chemical similarity. Molecular mod-
eling, molecular similarity [16,17] and quantitative structure activ-
ity relationship (QSAR) are simple examples of such an interest
[18]. More recently the molecular quantum similarity framework
has been used to provide a new set of quantum quantitative struc-
ture–properties relationship procedures (QQSPR) [19].

For the case of molecules or atoms this kind of similarity mea-
sures can be defined as the scalar product between the first order

density functions weighted with a bielectronic definite positive
operator [20]. The simplest choice, the Dirac delta operator, leads
to the well-known Quantum Similarity Index (QSI) [21]

QSIðq1;q2Þ �
R
q1ð~rÞq2ð~rÞd~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

q2
1ð~rÞd~r

R
q2

2ð~rÞd~r
q : ð1Þ

Chemical similarity is often described as an inverse of a measure of
distance or divergence in the appropriate space. Recently different
divergence measures [22] have been used in the framework of
quantum information theory. In particular, the Jensen–Shannon
divergence [23] was applied as a measure of entanglement
[24,14], and also together with other similarity measures in the
study of multielectronic systems [25–28].

Quantifying the dissimilarity among two or more many-
electron systems by means of their one-particle densities is also
a hot topic within the physical applications of the information the-
ory. Some fundamental measures of information have been used
with this aim: Shannon [29], Rényi [30] and Tsallis [31] entropies
and Fisher information [32,33], as well as their associated diver-
gences [34–37]. Among those divergence measures susceptible of
being employed to study atomic or molecular systems, especially
relevant are the ‘Kullback–Leibler or relative entropy’ [38], the
Fisher divergence [34], and the Jensen–Tsallis divergence [35]
which constitutes a powerful generalization of the Jensen–Shan-
non divergence [34].

The aim of this work is to present a new general similarity mea-
sure. Its definition, as compared to the pioneering QSI, constitutes a
generalization modifying the number of functions to be compared
and the weights of each of them in different regions of their
domain of definition. The usefulness of the new comparative quan-
tifier is illustrated with applications for one-particle densities in
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position and momentum spaces. These densities are used as a
benchmark to study a known but extremely hierarchical and com-
plex [39] set of quantum objects: atoms, but the universality and
versatility of this technique allows its application to other more
complex or less known molecular or nuclear systems.

The Quantum Similarity Index (QSI) constitutes a particular
case of a one-parameter Generalized Quantum Similarity Index
QSIðqÞ. The analysis here provided for the QSIðqÞ of atomic systems
generalizes and improves some previous results on the QSI one.
Such an improvement mainly arises from the capability of QSIðqÞ

to modify, by means of its characteristic parameter, the relative
contribution of relevant specific regions of the atomic densities
in both conjugated spaces. The QSIðqÞ allows a deep introspection
within the structure of the atomic one-particle densities, capturing
relevant differences in any of the conjugated spaces. This is not the
case of other measures of divergence or similarity employed with
multielectronic systems, as for instance, the own QSI.

The Letter is structured as follows: Section 2 is devoted to define
the Generalized Quantum Similarity Index, and the analysis of its
main theoretical features including its advantages with respect to
the original similarity index QSI. In Section 3, applications to the
similarity-based study of atomic one-particle densities are carried
out, dealing with neutral (Section 3.1) and ionized species (Section
3.2). Concluding remarks and open problems are given in Section 4.

2. Generalized Quantum Similarity Index

Let us consider a couple of functions, f ð~rÞ and gð~rÞ, with identi-
cal domain D in the D-dimensional space RD. In what follows, all
integrations are understood to be performed over the common do-
main D. The well-known Hölder’s inequality [40] establishes the
relationship
Z

fgd~r 6
Z

f pd~r
� �1=p Z

gqd~r
� �1=q

ð2Þ

for any p; q > 1 verifying 1
p þ 1

q ¼ 1. Equality in the above expression
is reached if and only if f ð~rÞ ¼ gð~rÞ.

The definition of the quantum similarity index QSIðf ; gÞ, given
by Eq. (1), together with Hölder’s inequality for the particular case
p ¼ q ¼ 2, allows to assert that QSIðf ; gÞ 2 ½0;1�, with QSIðf ; gÞ ¼ 1 if
and only if f ð~rÞ ¼ gð~rÞ.

The Hölder’s inequality in Eq. (2) constitutes a particular case of
the so-called ‘generalized Hölder’s inequality’ [40], given byZ
ðfgÞmd~r

� �1=m

6

Z
f pd~r

� �1=p Z
gqd~r

� �1=q

; ð3Þ

with p; q > m > 0 verifying 1
pþ 1

q ¼ 1
m. The particular case m ¼ 1 pro-

vides Hölder’s inequality, namely Eq. (2).
An iterative use of the above expression allows to generalize the

inequality for an arbitrary number n P 2 of functions
ff1; f2; . . . ; f ng:Z
ðf1 . . . f nÞ

md~r
� �1=m

6

Z
f p1
1 d~r

� �1=p1

. . .

Z
f pn
n d~r

� �1=pn

; ð4Þ

with 1
p1
þ � � � þ 1

pn
¼ 1

m.
Raising to ‘m’ and defining ki � m=pi the inequality reads as

Z
ðf1 . . . f nÞ

md~r 6
Z

f p1
1 d~r

� �k1

. . .

Z
f pn
n d~r

� �kn

; ð5Þ

with
Pn

i¼1ki ¼ 1.
We now define new functions gið~rÞ through the identity

fi ¼ gq=pi
i for an arbitrary q > 0, so that

Z
ðgk1

1 . . . gkn
n Þ

qd~r 6
Z

gq
1d~r

� �k1

. . .

Z
gq

nd~r
� �kn

: ð6Þ

The left- and right-hand-side terms in the last inequality give rise to
a quotient not greater than 1, as also occurred when defining QSI.
This is the essential ingredient that allows to define the ‘qth order
Generalized Quantum Similarity Index’:

QSIðqÞ gi; kif gn
i¼1

� �
�

R
ðgk1

1 . . . gkn
n Þ

qd~rR
gq

1d~r
� �k1 . . .

R
gq

nd~r
� �kn

with
Xn

i¼1

ki ¼ 1;

ð7Þ

and 0 < ki < 1 for all i ¼ 1; . . . ; n. It is worthy to remark that (i)
QSIðqÞ 2 ½0;1� for any q > 0, and (ii) the quantity QSIðqÞ does not
depend on the normalization of the chosen functions gið~rÞ, as also
happens with the usual QSI. The last point implies that the similar-
ity index constitutes a measure of how similar the distributions are
according to their shapes rather than to their absolute values or
sizes, contrary to the aforementioned divergences.

The definition of the above similarity index, as compared to the
pioneering QSI measure, constitutes a generalization in three dif-
ferent ways, namely:

� The number ‘n’ of functions gið~rÞ under comparison, not neces-
sarily n ¼ 2 as for the QSI which constitutes a measure of over-
lap between two densities, while its generalization quantifies
the total overlap among an arbitrary number of them.
� The order q, which allows to enhance or diminish the contribu-

tion of the ‘tails’ and, in general, the surroundings of the local
extrema of each function, by considering higher or lower values
of q.
� The ‘weights’ ki, a set of parameters which control the relative

importance of each function in performing the comparison
among themselves by means of the generalized similarity index.

For the sake of simplicity in notation, the weights ki will be omit-
ted as arguments of QSIðqÞ unless necessary. Relevant particular
cases of the generalized similarity index QSIðqÞ are detailed below:

(a) Similarity between two densities.
The usual QSI in Eq. (1) is obtained from the general expres-
sion in Eq. (7) by choosing a number of densities n ¼ 2, the
second order q ¼ 2, and equal weights k1 ¼ k2 ¼ 1=2. That is,

QSIð2Þðg1; g2Þ ¼ QSIðg1; g2Þ ð8Þ

For arbitrary order and weights, the generalized similarity in-
dex reads as

QSIðqÞðg1; g2Þ ¼
R

gk
1g1�k

2

� �qd~r

ð
R

gq
1d~rÞk

R
gq

2d~r
� �1�k

ð9Þ

with 0 < k < 1.
(b) Uniformly weighted similarity.

Choosing uniform weights ki ¼ 1=n in Eq. (7) gives rise to

QSIðqÞðg1; . . . ; gnÞ ¼
R
ðg1 . . . gnÞ

q=nd~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
gq

1d~r . . .
R

gq
nd~rn

q ; ð10Þ

in particular

QSIðqÞðg1; g2Þ ¼
R
ðg1g2Þ

q=2d~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
gq

1d~r
R

gq
2d~r

q : ð11Þ

(c) Relationship among generalized QSIs of different order.
From the definition in Eq. (7), we check that

QSIðqÞðg1; . . . ; gnÞ ¼ QSIðtÞðgq=t
1 ; . . . ; gq=t

n Þ ð12Þ

for arbitrary orders q and t. The particular case t ¼ 2 provides,
in the right-hand-side, the usual QSI, and consequently
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QSIðqÞðg1; . . . ; gnÞ ¼ QSIðgq=2
1 ; . . . ; gq=2

n Þ: ð13Þ

This means that, in what concerns the dependence on the order q,
considering the generalization QSIðqÞ is equivalent to evaluate QSI
not among the considered functions, but instead among them
raised, each one, to the power q=2. It is in that way that we better
understand the role played by the order q: considering different val-
ues of the order implies to carry out a comparative study based on a
higher or lower similarity in the short- and long-range domains, in a
similar fashion as done in divergence-based previous studies
[35,36,41].

3. Numerical analysis with atomic one-particle densities

In this section we analyze the similarity among atomic one-par-
ticle densities, in both position and momentum spaces. In doing so,
accurate near-Hartree–Fock wavefunctions [42,43] are employed
as a benchmark, for both neutral and ionized species with a num-
ber of electrons up to 103 and 54, respectively. More accurate
numerical frameworks will be considered elsewhere, as pointed
out in the last Section. Atomic units (a.u.) will be used throughout.

For the sake of brevity, we will restrict the analysis of the results
according to the dependence of the generalized similarity on its or-
der q, dealing with uniformly weighted couples of functions. This
description corresponds to the functional

QSIðqÞðg1; g2Þ ¼
R
ðg1g2Þ

q=2d~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
gq

1d~r
R

gq
2d~r

q ð14Þ

in order to go far beyond the well-known results provided by QSI as
obtained for the particular case q ¼ 2 [25,26]. Further studies
including similarity among three or more functions and non-
uniform weights will be published elsewhere.

3.1. Pairs of neutral atoms

Let us consider two neutral atoms, A and B, with respective nu-
clear charges ZA and ZB and electron charge densities qAð~rÞ and
qBð~rÞ. In previous studies, the problem of checking the extent to
which the similarity between the one-particle densities of systems
A and B implies a similarity among their physico-chemical proper-
ties, and conversely, was afforded by quantifying the similarity be-
tween qA and qB according to the QSI measure given by Eq. (1). The
pioneering and very successful results obtained in comparing
molecular densities [21] appeared to be very poor when dealing
with atomic densities [25]. The main conclusion was that similarity
between atoms A and B is roughly determined by the difference
jZA � ZBj among their nuclear charges. So, the quantity QSI (Z,Z0)
as function of Z for fixed Z0 displays an unimodal shape, firstly
increasing until reaching the extremal value 1 for Z ¼ Z0 and
decreasing hereinafter. This kind of information regarding similar-
ity is very far from the physical one, where one should expect the
presence of properties such as periodicity or shell-filling patterns,
among others. A relevant improvement was provided in Ref. [44],
where periodicity patterns are displayed by means of QSI with re-
spect to closed-shell systems.

A complete displayment of periodicity patterns was achieved
for arbitrary systems A and B throughout the Periodic Table by con-
sidering the atomic momentum densities cAð~pÞ and cBð~pÞ, instead
of the position space ones. Within this context, the results obtained
were extremely rich, in the sense discussed above: similarity be-
tween A and B was strongly determined by the atomic shell-filling
patterns, and periodicity was clearly displayed.

In this section, however, we show that the position-space gen-
eralized quantum similarity index QSIðqÞ makes possible to get sim-
ilar information as that provided by QSI ¼ QSIð2Þ in momentum

space, by dealing with appropriate values of q other than q ¼ 2.
For illustration, the QSIðZ; Z0Þ and QSIðqÞðZ; Z0Þ measures in position
space (with q ¼ 0:4) among each of Z0 ¼ 18;20 (Ar and Ca) and all
other atoms throughout the Periodic Table ðZ ¼ 1� 103Þ are
displayed in Figure 1.

As previously mentioned, both curves for QSI behave in an uni-
modal way, almost overlapping one with each other because of the
closeness of the nuclear charges Z0 ¼ 18;20. Such a similarity
between curves disappears progressively as far as q becomes smal-
ler. Changes are dramatic for a value as low as q ¼ 0:4, not only
attending to the different paths followed by each curve, but also
because of their higher level of structure, displaying numerous lo-
cal extrema which location is determined by shell-filling patterns.
Let us have in mind that Z ¼ 18 corresponds to a noble gas (Argon)
while Z ¼ 20 to an alkaline-earth (Calcium), groups of the Periodic
Table characterized by extremely different physical properties. In
this sense, it is worthy to remark that the main maxima of
QSIð04Þ

r ðAr; ZÞ occur for noble gases while those of QSIð04Þ
r ðCa; ZÞ for

alkaline-earths. In both cases, additional minor extrema are usually
associated to comparisons with systems suffering from an anoma-
lous shell-filling. Similar effects are observed for systems other
than Z0 ¼ 18;20.

In order to test the usefulness of the generalized index QSIðqÞ as
compared to the usual one QSI, let us observe Figure 2 where
QSIðqÞðKr; ZÞ is displayed (Z ¼ 1–103) for different values of q, in po-
sition (Figure 2a) and momentum (Figure 2b) spaces. The funda-
mental reason for QSIr (i.e. q ¼ 2) to display a so unstructured
curve arises from the exponential long-range behavior of the
charge density qð~rÞ. This fact makes the three integrals included
in the definition of QSI to be mainly determined by the values of
the densities in the surrounding of the origin, the contribution
from outermost regions being almost negligible. Such a quick de-
crease can be attenuated by raising the density to a low power,
as controlled by the parameter q in the definition of QSIðqÞ. Conse-
quently, decreasing q makes the relative contribution of the outer-
most regions (‘tails’) in the evaluation of similarity to increase. Let
us keep in mind that the main physical and chemical properties of
atomic systems, including the shell-filling pattern, are determined
by the value of the density in the valence region, most usually the
outermost one. This effect is clearly observed in Figure 2a, with a
very apparent increase in the number of local extrema within the
curves with q 6 1 as compared to the q ¼ 2 one. Such an increase
is progressive, especially in going from q ¼ 2 to q ¼ 1, but also
for q < 1.

Let us notice the main features of systems for which QSIðqÞr ðKr; ZÞ
with q 6 1 displays local maxima: (i) other noble gases (e.g.
Z ¼ 54; 86 systematically, the rest occasionally), (ii) closed-
subshell atoms ðZ ¼ 12; 30; 48; 70; 80Þ, (iii) half-filled-subshells
ðZ ¼ 7; 15; 43; 75Þ, and (iv) systems with anomalous shell-filling
ðZ ¼ 24; 41; 42; 44; 46; 58; 64; 78; 90; 93; 96; 97Þ.

Concerning momentum space (Figure 2b), highly structured
curves were obtained in the recent past by using QSI. A detailed
analysis of the number and location of local maxima allows to as-
sert that: (i) a similar structure is obtained for values of the order
within the interval 1:5 6 q 6 3, which includes QSI as q ¼ 2; these
maxima correspond to the same systems as in the position case, (ii)
in going below such a range, a number of local extrema disappears
progressively, as e.g. Z ¼ 2; 7; 29; 78 (systems characterized in the
previous position-space analysis) for the value q ¼ 1, and (iii) an
order as low as q ¼ 0:5 provides an unimodal curve with the un-
ique maximum at Z ¼ 36.

Figure 3 shows QSIð0:4Þr , a position space index displaying extre-
mely structured curves for all noble gases. The location of local ex-
trema in each curve is determined according to similar patterns to
those just discussed. All curves appear (roughly) ordered according
to the nuclear charges of the systems involved. This behavior was
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emphasized in previous works dealing with the momentum space
similarity QSI, instead of the position one as in the present figure.

Specially remarkable are (i) the closeness to unity of the main max-
ima of QSIð0:4Þr when comparing a couple of noble gases, and (ii) the
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Figure 1. Generalized Quantum Similarity Index QSIðqÞr ðZ
0; ZÞ (for q ¼ 0:4 and 2.0) in position space among each of Argon ðZ0 ¼ 18Þ and Calcium ðZ0 ¼ 20Þ with respect to all

neutral atoms with nuclear charge Z ¼ 1–103. Atomic units are used.
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very apparent minima when a noble gas is compared with an alka-
line system.

3.2. Ionization processes

The results obtained by means of the similarity indexes and
their physical interpretation motivated us to ask ourselves about
the following questions: to which extent the ionization of a neutral
atom modifies its one-particle densities, in both conjugated
spaces? Is the similarity measure an appropriate tool to quantify
the modifications in the densities? Is there a connection between
neutral–ion similarity and relevant physical properties in describ-
ing ionization processes?

All those questions are afforded here, employing the general-
ized measure QSIðqÞðNCÞ for different values of the order q. In doing
so, a number of neutral atoms and their singly-charged cations are
considered in order to compare the respective one-particle densi-
ties of the neutral system (N) and its cation (C). The results are
interpreted according to shell-filling patterns (in particular the
subshell from which the electron is ejected) as well as in terms
of the first atomic ionization potential. Such a study is performed
in both conjugated spaces. Previous works [26] employing the
quantum similarity index QSI (NC) provided more limited results.

We first analyze Figure 4, corresponding to the position space
index QSIðqÞr ðNCÞ for different values of q, together with the atom-
ic ionization potential (AIP) of the neutral system. The most
remarkable feature is the increase of structure, according to the
number and enhancement of local extrema, as the parameter q
becomes smaller. In some cases, most local minima of
QSIðqÞr ðNCÞ correspond to systems displaying local minima in the
AIP curve. Such a resemblance does not occur for the position
space QSI.

Restricting ourselves to 0:4 6 q 6 1, the following comments
are in order:

1. The systematic appearance of minima in q-similarity for sys-
tems Z ¼ 3; 8; 11; 19; ð23; 24Þ; 31; 37; 42; 45; 47; 49 is associ-
ated to ionization processes provoking the disappearance of a
subshell (a ‘s’ one, except for Z ¼ 31), or a ‘p’ subshell which
becomes half-filled ðZ ¼ 8Þ.

2. The closeness of the above list with that of AIP minima:
Z ¼ 3; 5; 8; 11; 13; 16; 19; 23; 28; 31; 34; 37; 47; 49. Values
included in this list but not in the previous one are
Z ¼ 5; 13; 16; 28; 34, corresponding again to the disappearance
of subshells ðZ ¼ 5; 13; 28Þ or half-filled ‘p’ ones in the cation
ðZ ¼ 16; 34Þ.
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3. Nevertheless, most of the just mentioned ‘additional systems’ are
detected by low enough values of q (0.8 for Z ¼ 13; 16; 34 and
0.4 for Z ¼ 5). Such a detection occurs also for Z ¼ 52 (half-filled
‘p’ subshell in cation) with q ¼ 0:8, in spite of not displaying a
minimum of AIP.

4. Most usually, the main peaks in the curves are associated to
ionization ejecting a s-subshell electron, as compared to the
‘p’ or ‘d’ ones. This means that the s-like ionization produces
stronger changes in the electron charge density, appreciably
more relevant than those produced by removing electrons from
other types of subshells.

Conclusions from the analysis in momentum space are roughly
the same as those arising from the position space study. A few
additional comments are in order: (i) a strong resemblance among
lists of minima in generalized similarity for different q’s is ob-
served, even for an interval as wide as 0:5 6 qs 6 3:0, and (ii) those
lists share many systems enclosed in the lists of minima of both
position-space generalized similarity for low q and the atomic ion-
ization potential. The interpretation of the physical properties
characterizing the systems displaying a minimum in momentum
space can be done in a similar fashion as in the position one.

4. Conclusions and open problems

The capability of a generalization of the pioneering quantum
similarity index to gain physical insight within the structural prop-
erties of many-electron systems has been shown. In doing so, we
have taken advantage of its characteristic parameter in order to en-
hance or diminish the short- and long-range contributions in a
similarity-based analysis. The generalized index allows to deal
with a set of an arbitrary number of density functions, assigning
different weights to each one in accordance with their role within
the comparative purpose considered.

For atomic systems, a study based on one-particle densities in
position space provides clearly an interpretation by means of shell
structure. The generalization introduced in this work allows to deal
with densities of any of the conjugated spaces by choosing appro-
priately the value of its characteristic parameter.

A detailed numerical analysis has been presented, from which it
is clearly established the relationship between valence subshell
properties of the systems under comparison and the generalized
similarity values, as well as the detection of the presence of sys-
tems suffering from anomalous shell-filling.

The usefulness of the tool here defined has been shown in the
study of ionized systems, by considering the analysis of atomic
pairs neutral–cation. It appears a strong resemblance among the
extrema of similarity and those of the atomic ionization potential,
mostly determined by occupancy numbers of the outermost sub-
shell in neutral and cationic systems. In fact, it is observed that
the angular momentum quantum number ‘l’ of the electron ejected
plays a relevant role in terms of similarity.

Further applications of the generalized index, arising from its
rigorous mathematical properties here described, are planned to
be carried out in a near future, including studies (i) on the ability
in comparing different quantum models (e.g. configuration inter-
actions, relativistic effects), (ii) comparing more that two func-
tions, e.g. sequence anion–neutral–cation, groups/periods of the
Periodic Table, isoelectronic series, ‘parts’ of a given composite
system, (iii) assigning appropriate weights to each system accord-
ing to relevant physical/chemical properties, such as mass,

number of electrons, volume. Additional studies of quantum sys-
tems (e.g. molecules) and processes (reaction, excitation) will be
provided elsewhere.
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