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a b s t r a c t

The search of an appropriate measure of relative complexity among density functions is afforded. In doing
so, the main properties required for complexity functionals of a given distribution, as well as those for
discrimination measures among two or more distributions are considered. A proposal for a generalized
relative complexity is provided, enclosing a pioneering definition as a limiting case. A theoretical analysis
of the generalized measure for arbitrary distributions is carried out. The applications regard the electron
charge densities of neutral atoms, and the results are interpreted on the basis of the main physical prop-
erties of the systems considered.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Information-theoretical tools have been increasingly applied in
several disciplines ranging from chemistry, physics, genetics, neu-
ral networks, computer science, image recognition to linguistics or
social sciences [1–4]. Quantum Information Theory [5] and the
study of entanglement [6,7] are recent examples of the versatility
of information theory techniques to be applied in new fields of sci-
entific or technological interest. In particular there has been a tre-
mendous interest in the literature to apply information theory to
quantum mechanical systems [8,9], to study the electronic struc-
ture of atoms and molecules [10–12] or even to explore some
chemical processes such as ionization or chemical reactions
[13,14].

The concepts of uncertainty, randomness, correlation, organiza-
tion, information, disorder or delocalization are basic ingredients
in the study of relevant properties for many probability distribu-
tions appearing as descriptors of chemical or physical systems or
processes. These concepts concerning individual distributions are
quantified by means of closely related and well known density
functionals, such as Shannon entropy [15], Fisher Information
[16] or disequilibrium [17]. Other relevant magnitudes, dependent
on two (or more) different densities, have been also defined, stud-
ied and applied to detect similarity, clustering or discrepancy, as
comparative measures among them [18,19].

Another relevant concept within Information Theory is com-
plexity [20–23], strongly related, in some cases, to the aforemen-
tioned magnitudes. Indeed some of the recent definitions of

complexity consist of the product of two factors measuring,
respectively, order and disorder on the given system or process,
or equivalently localization and delocalization [24]. It is important
to note here that there is not a unique and universal definition of
complexity and therefore many mathematical quantifications exist
to explore pattern, structure or uncertainty as complexity ingredi-
ents or indicators. Complexity is used in very different fields
including, for instance, molecular and DNA (deoxyribonucleic acid)
analyses, dynamical systems, time series, spatial patterns or anal-
ysis of multielectronic systems, which is the focus of interest in
this work [22,25,26].

The product complexity measures were criticized and conse-
quently modified, leading to powerful estimators applied in a wide
variety of fields [25,27,28]. Following the pioneering product mea-
sure of López-Ruiz, Mancini and Calbet (LMC complexity) [24]
some other related and generalized complexity measures were de-
fined and successfully applied [25,29–31].

A thorough discussion on the meaning and properties of atomic
and molecular complexities can be found in Refs. [26,31–33] and
Chapter 6 of Ref. [20]. In the atomic case, it is clearly established
the connection between the complexity values of the electron den-
sities and physically relevant properties. It is worthy to remark the
interpretation in terms of the organization of electrons into shells
and subshells, for both neutral and ionized systems. Additionally,
the complexity analysis of atomic ionization processes provides
further connections with the value of the ionization potential, as
well as with the quantum numbers of the electron(s) ejected or
added. In all these studies, a more complete information is
achieved when dealing simultaneously with the one-particle den-
sities in both conjugate spaces, namely position and momentum.

Complementary with the just mentioned numerical studies, rig-
orous bounds on the complexity in terms of physical observables
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are also known [31]. Specially relevant are those expressed in
terms of radial expectation values of both the position and
momentum electron densities. Some of these observables are re-
lated to relevant physical quantities, such as e.g. the kinetic energy
and its relativistic correction, the electron-nucleus attraction en-
ergy or the diamagnetic susceptibility, among others.

Very recently new statistical relative complexities have been
defined [34,35], and the pioneering LMC-like one has been applied
to atomic densities [34]. This is an intrinsic measure that compares
more efficiently the complexity of two electronic distributions,
rather than merely the difference of their absolute complexities.
Important properties have been also shown for this relative com-
plexity, but the numerical tests are limited to some selected cases.

In this work we define a two-parameter generalized relative
complexity, which contains the above mentioned relative com-
plexity in Ref. [34] as a particular case and fulfills the most impor-
tant complexity properties. Furthermore this relative complexity is
extended and applied to more than two densities, their relative
weights can be modulated if necessary, and also allows, by using
appropriate values of its parameters, to enhance more or less dif-
ferent regions of the densities according to specific properties of
the distributions. Some numerical difficulties of the original rela-
tive complexity are also marked.

The Letter is organized as follows. In the Section 2 the general-
ized relative complexity is defined and its main properties are
shown. In Section 3 numerical tests have been done for atomic
electron densities. Conclusions and open questions are presented
in Section 4.

2. Relative complexity: a two-folded generalization

The recently introduced [34] LMC-like relative complexity of
system A with respect to system B,

CðA;BÞ ¼ DðA;BÞ � HðA;BÞ ð1Þ

is based on the definition of the pioneering LMC complexity for a
unique system [24], namely

CðAÞ ¼ DðAÞ � HðAÞ: ð2Þ

For the most general definition of a product-like complexity, the
factor HðAÞ is a measure of disorder or delocalization of the repre-
sentative density function qAð~rÞ for system A, while the factor
DðAÞ constitutes a measure of its ‘disequilibrium’, that is, of its
departure from equilibrium. In the case of the LMC complexity
[24], the delocalization factor is defined in terms of the Shannon en-
tropy [15] SðAÞ ¼ �

R
qA ln qAd~r as

HðAÞ ¼ expfSðAÞg; ð3Þ

a quantity referred as ‘exponential entropy’. On the other hand, the
disequilibrium is given by [17]

DðAÞ ¼
Z

q2
Ad~r: ð4Þ

Normalized to unity distributions will be considered throughout.
The complexity CðAÞ given by Eq. (2) constitutes a measure of

pattern, structure and correlation in systems and processes. Its rel-
ative version CðA;BÞ quantifies the complexity of system A with re-
spect to that of an ‘a priori’ or reference system B. An appropriate
symmetrization of the composing factors will allow us to consider
the relative complexity among A and B, avoiding the use of an a pri-
ori reference in order to deal with a ‘distance in complexity’, in
some sense. To define CðA;BÞ in this way, let us consider the two
factors of the complexity itself CðAÞ, building up then the relative
complexity CðA;BÞ in terms of the relative functionals DðA;BÞ and
HðA;BÞ, in a similar way as done in Ref. [34]:

DðA;BÞ � DABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAADBB
p ¼

R
qAqBd~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

q2
Ad~r

R
q2

Bd~r
q ð5Þ

is the relative disequilibrium of A with respect to B, and

HðA;BÞ � exp
1
2
½KLðA;BÞ þ KLðB;AÞ�

� �
ð6Þ

is the relative exponential entropy, given in terms of the relative or
Kullback–Leibler entropy [36]

KLðA;BÞ �
Z

qA ln
qA

qB
d~r; ð7Þ

widely employed in a huge variety of applications [37–39].
Let us notice that the definition of DðA;BÞ in Eq. (5) provides a

symmetric functional ‘per se’, being identical to the so-called
‘quantum similarity index’ QSIðA;BÞ [18], a measure of similarity
among density functions introduced in the early eighties within a
chemical framework and later applied in many different fields
[40–44]. Its main properties allows to be considered as a measure
of distance among probability distributions. Let us remark that the
QSI values are restricted to the finite interval ½0;1�, with
QSIðA;BÞ ¼ 1 only for A ¼ B.

A straightforward definition of the factor HðA;BÞ from that of
HðAÞ is proposed in Ref. [34] by replacing the Shannon entropy in
Eq. (3) by the relative entropy KLðA;BÞ. This is done there in such
a way because the Shannon entropy SðAÞ is, apart from a constant,
the relative entropy of system A with respect to an uniform distri-
bution for system B.

However, such a definition does not provide a symmetric factor,
because KLðA;BÞ – KLðB;AÞ in general. This fact justifies the sym-
metrization carried out in Eq. (6), in order to consider HðA;BÞ as
an unbiased measure of relative disorder between systems A and
B, and then preserving in the relative complexity CðA;BÞ the sym-
metry just achieved for DðA;BÞ.

The main purpose in this section is to provide a generalization
of the relative complexity functional CðA;BÞ ¼ QSIðA;BÞHðA;BÞ, by
taking advantage of well-known monoparametric generalizations
for each of the composing factors QSI and H.

In a recent work [45], the definition of the quantum similarity
index QSIðA; BÞ ¼ DðA;BÞ given by Eq. (5) has been generalized by
means of the ‘qth order generalized quantum similarity index’
QSIq ¼ Dq:

Dq fqi;xigN
i¼1

� �
�

R
qx1

1 � � �q
xN
N

� �qd~rR
qq

1d~r
� �x1 � � �

R
qq

Nd~r
� �xN

; ð8Þ

with the sum of positive numbers
PN

i¼1xi ¼ 1. The generalization
includes relevant features: (i) the application for an arbitrary num-
ber N of functions, not necessarily N ¼ 2 as for QSI, (ii) the order q to
enhance/diminish the contribution of the tails and the surroundings
of local extrema, and (iii) the weights fxig which control the rela-
tive importance of each function within the whole set fqig.

For the case of two distributions (N ¼ 2) with identical weights
(x1 ¼ x2 ¼ 1=2), the generalized similarity index reads as

DqðA;BÞ ¼
R
ðqAqBÞ

q=2d~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
qq

Ad~r
R
qq

Bd~r
q ; ð9Þ

which includes the similarity QSI ¼ D in Eq. (5) for the particular
case q ¼ 2. The generalized QSIq ¼ Dq preserves, for arbitrary q,
the relevant properties of QSI.

Let us now focus on the disorder/uncertainty factor HðA;BÞ, ex-
pressed in Eq. (6) in terms of Kullback–Leibler entropies KL. The KL
functional is a limiting case of the so-called ‘relative Rényi entropy’
[46] of order t
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RtðA;BÞ �
1

t � 1
ln
Z

qt
A

qt�1
B

d~r; ð10Þ

so that KLðA; BÞ ¼ R1ðA;BÞ. Then, the HðA; BÞ symmetrized factor ad-
mits the generalization

HtðA;BÞ � exp
1
2

RtðA;BÞ þ RtðB;AÞ½ �
� �

ð11Þ

verifying H1ðA;BÞ ¼ HðA;BÞ. A further generalized measure
Htðfqi;xigN

i¼1gÞ of weighted relative uncertainty can be defined
from an appropriate combination of relative Rényi entropies.

Now we are ready to define a two-parametric relative complex-
ity from the joint use of the two generalized factors described
above:

Cq;tðA; BÞ � DqðA;BÞHtðA;BÞ; ð12Þ

for any q; t > 0 whenever the involved integrals converge. Attending
to the descriptions provided below, the quantity Cq;tðA;BÞ consti-
tutes a generalized measure of complexity among distributions.
Some comments are in order:

(i) The identity Cq;tðA;AÞ ¼ 1 holds for any orders q; t. This
means that the relative complexity among a given system
and itself is 1.

(ii) The particular case C2;1ðA;BÞ corresponds to the LMC-like
relative complexity, with QSI as the first factor and the
exponential of the mean KL as the second one. Relevant
properties verified by C2;1ðA;BÞ (e.g. invariance under trans-
lation and rescaling transformations) are preserved in
Cq;tðA;BÞ.

(iii) The generalization can be straightforwardly extended by
considering a number of functions higher than two, as well
as by including arbitrary weights for each of them.

The just introduced definition can be applied to the study of
complexity for arbitrary probability distributions. Let us keep in
mind that the methodology employed throughout this section is
universal, having its grounds in the use of well-known mathemat-
ical techniques and information-theoretical functionals.

Next section is devoted to the analysis of the generalized rela-
tive complexity among the probability distributions arising from
the electron charge density of neutral atoms, through the whole
Periodic Table. This kind of study has been carried in the past by
using both the complexity itself [23,32,33,47,48], and more re-
cently by means of the relative complexity [34]. In those cases,
as also in next section, computations are carried out within a Har-
tree–Fock framework [49,50]. Atomic units (a.u.) are used
throughout.

3. Numerical analysis with atomic electron charge densities

Accordingly with the interpretation of the complexity and the
relative complexity as measures of structure, we wonder about
the possible connection among their values for atomic systems
and their main physical properties. Let us mention that recent
studies were carried out, by using the LMC complexity and a vari-
ety of other complexities as well [23,25,29–33,47,48] (e.g. Fisher–
Shannon, Cramér-Rao or Rényi-like ones). A clear evidence of the
aforementioned connection is provided, mainly in terms of the
atomic shell-filling patterns, for both neutral and ionized atomic
species.

More recently, a similar interpretation has been provided for
the LMC-like relative complexity measure CðA;BÞ proposed in Ref.
[34]. The numerical study was performed there as follows: first
the system A is chosen as the initial element when filling a given
subshell (of ‘p’, ‘d’ or ‘f’ type), and then system B ‘runs’ over the

subshell, starting with B ¼ A until the subshell is completely filled,
that is, when B becomes a closed-subshell system.

We give here a summary of the main conclusions derived from
that work: (i) for each subshell, characterized by the reference sys-
tem A, the initial value is CðA; B ¼ AÞ ¼ 1, (ii) the relative complex-
ity CðA;BÞ increases monotonically as far as B runs over the
subshell, and (iii) the rate of such an increase becomes progres-
sively smaller for subshells with heavier atoms, as compared to
that of lighter ones.

Consequently, the only evidence of periodicity, as displayed in
the figures enclosed in Ref. [34], arises from the choice ‘ad hoc’
of the reference systems, namely, just those enclosing a new sub-
shell as compared to the previous element, throughout the whole
Periodic Table for neutral atoms with nuclear charges Z ¼ 1—103.

We have extended the previous study, at a first step, by choos-
ing one of the aforementioned reference systems, namely Boron
(system A with ZA ¼ 5, the initial one as filling the 2p subshell),
but considering B running all over the Periodic Table
(ZB ¼ 1—103), instead of constraining A and B to the same subshell.
The results obtained in this way for Cq;tðA;BÞ are displayed in Fig-
ure 1a and b, as curves in red for the values ðq; tÞ ¼ ð2;1Þ.

Some comments are in order: (i) the results are roughly the
same independently of using for CðA;BÞ the unsymmetrized defini-
tion of Ref. [34] or the symmetrized one C2;1ðA;BÞ as in the present
work, (ii) the aforementioned monotonic behavior is clearly ob-
served when both A and B have the same valence subshell
(ZB ¼ 5—10), and (iii) for most systems with different valence sub-
shell, the relative complexity falls below unity.

Last comment is extremely important, in order to consider (or
not) CðA;BÞ as an appropriate measure of relative complexity. For
a pair of systems A and B with relative complexity lower than 1,
and keeping in mind that CðA;AÞ ¼ 1, we get the inequality
CðA;BÞ < CðA;AÞ for many elements B, This inequality holds not
only for the illustrative example ZA ¼ 5, but for any other ZA also.

Considering complexity, in this context, as a measure of struc-
ture and organization of the underlying distribution, the inequality
CðA;BÞ < CðA;AÞ introduces a strong difficulty from a conceptual
point of view, as clarified by the following comment: ‘the relative
complexity of A with respect to B is lower than that of A with re-
spect to itself’. This reading of the above inequality forbbides to
consider CðA;BÞ as a measure of structure in B as compared to that
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Figure 1. Comparison among the electron charge density of Boron (nuclear charge
Z0 ¼ 5) and those of all neutral atoms with Z ¼ 1—103, by means of the generalized
relative complexities Cq;tðZ; Z0Þ with indexes t ¼ 1 and q ¼ 2 (in red), and also
replacing one of them by (a) q ¼ 1 (in blue), and (b) t ¼ 2 (in grey). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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of A. In this sense, one should expect to obtain, for fixed A, the min-
imizer of the relative complexity CðA;BÞ for B ¼ A or, in other
words, the inequality CðA;AÞ 6 CðA;BÞ, with the equality being
reached if and only if A ¼ B.

This interpretation is used, in fact, within the comments on the
results obtained in Ref. [34] for systems belonging to the same sub-
shell, then interpreting CðA;BÞ, in some sense, as a measure of ‘dis-
tance in complexity’ of A from B. The results displayed in Figure 1
provide us with the evidence that such an interpretation fails, in
general, when dealing with systems from different subshells.

Let us now consider the generalization Cq;tðA;BÞ of the relative
complexity. All previous discussions on the behavior of the red
lines for CðA;BÞ regard, in fact, the particular case q ¼ 2 and
t ¼ 1. The difficulties arising from this choice of ðq; tÞ have been
corroborated, unless restricting the analysis to systems with iden-
tical valence subshell. We wonder now about the existence of ðq; tÞ
values, different from (2,1), allowing us to avoid the previous diffi-
culties. The answer regarding their existence is affirmative, as
shown by the blue and grey lines in Figures 1a and 1b, respectively.
The generalized relative complexity C1;1ðA;BÞ is considered in Fig-
ure 1a, enclosing the similarity factor QSI1 instead of the QSI one.
It is observed that the measure C1;1ðA;BÞ never crosses the unity
frontier for the illustrative example here considered, as also occurs
for the rest of systems in the Periodic Table. The same conclusion
arises from the analysis of C2;2ðA;BÞ in Figure 1b, where the expo-
nential of the symmetrized relative Rényi entropy of order t ¼ 2
replaces the limiting factor KL corresponding to t ¼ 1.

Consequently, it is numerically observed that the generalized
comparative functionals C1;1ðA;BÞ and C2;2ðA; BÞ comply with the
desirable properties for a measure of relative complexity, contrary
to the pioneering CðA;BÞ � C2;1ðA;BÞ one. In addition, the display-
ment of numerous local extrema in all curves is related to the
atomic shell structure of the systems under comparison, as will
be discussed later.

And, what about other arbitrary ðq; tÞ values? For several pair of
systems, with nuclear charges ZA and ZB, a plane substended by q
and t has been drawn, according to the condition Cq;tðA;BÞP 1.
The condition divides the plane into two regions, the ‘allowed’
and ‘forbbiden’ ones. An illustrative example is provided in Figure
2 for systems Z ¼ 5;17. The upper area, in color, is the allowed re-
gion when dealing with the ðq; tÞ-generalized relative complexity.
Let us notice the star in the white forbidden area, located at
ðq ¼ 2; t ¼ 1Þ, i.e. just the values corresponding to the particular
case CðA;BÞ as defined in Ref. [34].

Other planes for different pairs of atomic systems have been
also analyzed. The main comments regarding all those planes
are: (i) the shape of the frontier between the aforementioned
regions strongly depends on the choice of systems, most usually

because of their shell structure, and (ii) in spite of the different
shapes, a common feature is the existence of thresholds, which
translate into the condition t > tminðqÞ for a given q.

It still remains the problem of determining a rigorous (and
desirable) analytical condition on the parameters ðq; tÞ in order to
guarantee that the value of the relative complexity between two
arbitrary distributions is not below 1. Nevertheless, some achieve-
ments are noteworthy:

� for the particular case q ¼ 1, the inequality C1;tðf ; gÞP 1 holds
with arbitrary probability distributions f ; g for any t P 1=2 (as
far as the integrals involved converge); in particular, we have
proven the existence of a value 0 < tmin 6 1=2 so that the condi-
tion reads as t P tmin,
� for ground-state n-dimensional hydrogenic atoms (one-electron

systems), with respective nuclear charges ZA and ZB, the above
inequality is fulfilled for arbitrary q > 0 and
1=4 6 t 6 maxfZA; ZBg=jZA � ZBj. Let us remark that this condi-
tion (i) depends upon the nuclear charges through their quo-
tient ZA=ZB, and (ii) does not depend on the dimensionality n.

Continuing with the numerical analysis of the atomic relative
complexity, we compare now two curves of C1;1ðZ0; ZÞ throughout
the Periodic Table (Z ¼ 1—103), for Z0 corresponding to extremely
similar (Figure 3a) or different (Figure 3b) systems from a physical
and chemical point of view. As an illustrative example, two noble
gases are chosen in Figure 3a: Helium (Z0 ¼ 2) and Neon
(Z0 ¼ 10). In spite of the differences based on their absolute values,
the curves C1;1ð2; ZÞ and C1;1ð10; ZÞ display a very similar structure,
accordingly with the fact that both Helium and Neon belong to the
same group of the Periodic Table. In this sense, it is worthy to men-
tion that they share most local minima, at Z ¼ 2;10;18;24;29;
36;42;46;54, as well as the close ones Z ¼ 78—79 for Helium
and Neon, respectively. Let us notice that the list encloses (i) the
noble gases Z ¼ 2;10;18;36;54, and (ii) systems suffering from
the anomalous shell-filling: Z ¼ 24;29;42;46;78—79. So, the value
of the relative complexity provides information on relevant fea-
tures regarding the shell-structure of the systems compared.

We find just the opposite behavior when dealing with two sys-
tems as different as Helium (noble gas, Z0 ¼ 2) and Beryllium (alka-
line-earth, Z0 ¼ 4), as shown in Figure 3b. While different minima
of Helium’s curve occurs for the comparison with other noble
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Figure 2. Region (colored) in the ðq; tÞ plane where the generalized relative
complexity between Boron (Z ¼ 5) and Chlorine (Z ¼ 17) verifies Cq;tð5;17ÞP 1.
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Figure 3. Generalized relative complexity C1;1ðZ; Z0Þ, for Z ¼ 1� 103, and (a) two
noble gases (Helium and Neon, Z0 ¼ 2;10), and (b) a noble gas (Helium, Z0 ¼ 2) and
an alkaline-earth (Beryllium, Z0 ¼ 4).
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gases, the same comment applies for alkaline-earths with respect
to Beryllium. In fact, most minima for one system corresponds to
maxima of the other, and conversely. For instance, systems
Z ¼ 2;10;18;24;29;36;42;46 are minima of Helium and maxima
of Beryllium. Additionally, the same occurs for the close ones
Z ¼ 54� 55;62—63;78—79. As discussed previously, most of them
are either noble gases or systems with anomalous shell-filling. But
now, they are displayed as minima or maxima depending on the
performance of a comparison with a noble gas or an alkaline-earth.

Similar comments to those here provided apply also for the
numerical study by choosing other different groups of the Periodic
Table. The shell-filling patterns are clearly displayed, as provided
by the location of local maxima or minima for the curves
considered.

To conclude the numerical study, we provide here an applica-
tion of the relative complexity among a set of systems. In doing
so, we consider the filling process of the different atomic subshells.
In Ref. [34], this kind of analysis is carried out in terms of the ‘one-
to-one’ relative complexity, by fixing a reference system as the ini-
tial one of a given subshell, the second one running over such a
subshell. Here, instead, we consider the relative complexity among
all systems belonging to the same subshell. For illustration, uni-
form weights are chosen for both factors of the relative complexity,
namely QSIq and the exponential of relative Rényi entropies be-
tween each density within the set and their arithmetic mean (the
mean obtained by employing uniform weights also). Nevertheless,
different criteria could be considered in order to establish the
weights, such as e.g. relative number of electrons, masses or sizes.

The results obtained are shown in Table 1. It is observed a rough
decreasing trend of the values, as far as heavier systems are consid-
ered. This comment is in accordance with those regarding the
aforementioned analysis in Ref. [34], where the relative complexity
with respect to the initial system increases through the subshell,
but at a progressively slower rate. This means that differences in
terms of relative complexity become smaller for heavy systems
as compared to the lighter ones, as induced from the results on that
work and the present one.

Deviations from the decreasing trend occur for subshells 3d, 4f
and 5f. These subshells contain a relevant number of elements with
anomalous shell-filling. Their high values of relative complexity
are interpreted according to a mix of elements with relevant differ-
ences regarding their shell-structure. This fact is clearly revealed in
the values of Table 1. Let us point out that these comments, regard-
ing relative complexities of whole subshells, also hold for other
values of the parameters q and/or t.

4. Conclusions and open problems

In order to define an appropriate measure of relative complexity
among two or more distributions, it is essential to take into ac-

count the desirable properties which should be verified. This is
so because of the aim of dealing with a physically meaningful mea-
sure. Such is not the case of the pioneering definition, which leads
to a contradictory interpretation from a conceptual point of view.

Those difficulties can be avoided by dealing with the general-
ized relative complexity defined in the present work. Furthermore,
this generalization allows to introduce the concept of relative com-
plexity among an arbitrary number of functions, with the option of
considering different weights for each of them.

The numerical analysis for the comparison of two neutral
atoms, located anywhere at the Periodic Table, has allowed us to
provide a clear interpretation in terms of a so relevant feature of
atomic systems as their shell structure is. This kind of interpreta-
tion is even more efficient when expressed in terms of the different
groups which the systems belong to. In this sense, it is worthy to
remark that these groups are characterized by the main physical
and chemical atomic properties.

There are several open problems regarding both the definition
and applications here considered. Let us remark the following: (i)
the determination of rigorous conditions on the characteristic
parameters in order to guarantee values of the relative complexity
not below unity, and (ii) the application to more sophisticated sys-
tems (e.g. molecules), physical processes (ionization, excitation),
distributions (e.g. momentum space) or models (relativistic effects,
configuration interactions).
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