

The baryon vertex with magnetic flux

Bert Janssen

Universidad de Granada & CAFPE

Instituto de Física Teórica, U.A.M./C.S.I.C

In collaboration with: Y. Lozano (U. Oviedo) and D. Rodríguez Gómez (U. Oviedo & U.A.M) References: in preparation.

- 1. Introduction
 - Brief review of AdS/CFT
 - Witten's baryon vertex

- 1. Introduction
 - Brief review of AdS/CFT
 - Witten's baryon vertex
- 2. The baryon vertex with magnetic flux
 - Construction
 - Stability
 - Supersymmetry

- 1. Introduction
 - Brief review of AdS/CFT
 - Witten's baryon vertex
- 2. The baryon vertex with magnetic flux
 - Construction
 - Stability
 - Supersymmetry
- 3. Microscopic description
 - Brief review of the dielectric effect
 - Microscopic description in terms of D1-strings
 - F1's in the microscopic description
 - Comment on S-duality
- 4. Conclusions

1 Introduction

1.1 Brief review of AdS/CFT

Explicit example of gauge/gravity correspondence:

[Maldacena]

Type IIB Supergravity (strings) on $AdS_5 \times S^5$ ~ $\mathcal{N} = 4$ Super Yang-Mills with gauge group SU(N)

1 Introduction

1.1 Brief review of AdS/CFT

Explicit example of gauge/gravity correspondence:

[Maldacena]

Type IIB Supergravity (strings) on $AdS_5 \times S^5$ ~ $\mathcal{N} = 4$ Super Yang-Mills with gauge group SU(N)

$$ds^{2} = \frac{u^{2}}{L^{2}}\eta_{ab}dx^{a}dx^{b} + \frac{L^{2}}{u^{2}}du^{2} + L^{2}d\Omega_{5}^{2}, \qquad G_{5} = 4L^{-1}\sqrt{|g_{AdS}|} + 4L^{4}\sqrt{|g_{S}|}$$

 $AdS_5 \times S^5$: near horizon limit of *N* D3-branes $\mathcal{N} = 4 SU(N)$ Super Yang-Mills: Gauge theory on D3 worldvolume

 $\longrightarrow D = 4$ gauge theory captures holographically D = 10 gravity

 $AdS_5 \times S^5$: near horizon limit of *N* D3-branes $\mathcal{N} = 4 SU(N)$ Super Yang-Mills: Gauge theory on D3 worldvolume

- $\longrightarrow D = 4$ gauge theory captures holographically D = 10 gravity
- \longrightarrow Dictonary between D = 4 gauge theory and D = 10 gravity:
 - $N = \int_{S^5} F_5$: \ddagger of branes = rank of SYM gauge group
 - Coupling constants: $g_{YM}^2 N = 4\pi g_s N = (L/\ell_s)^4$
 - SO(4,2) × SO(6) isometry group of AdS₅ × S⁵
 ∼ SO(4,2) × SU(4)_R conformal group of N = 4 SYM
 - Fields in $AdS_5 \sim \text{operators in SYM}$
 - Quark (q) in SYM \sim string stretched between boundary and horizon

Probe D3-brane at radial distance u

- \rightarrow massive string between D3 and horizon with $m \sim u$ in vector representation of U(N)
- \rightarrow massive quark in gauge theory
- $\rightarrow u \sim \infty \Leftrightarrow m \sim \infty \Leftrightarrow$ non-dynamical quark of SYM

 \sim F1 between horizon and boundary

Quark physics in AdS

non-dynamical quark of SYM \sim F1 between horizon and boundary $q\bar{q}$ -pair in SYM \sim string "hanging" from boundary

Wilson line C in SYM \sim string worldsheet ending on C

[Maldacena]

Quark physics in AdS

non-dynamical quark of SYM \sim F1 between horizon and boundary $q\bar{q}$ -pair in SYM \sim string "hanging" from boundary

Wilson line C in SYM \sim string worldsheet ending on C

[Maldacena]

Solution:

$$x = \frac{L}{u_o} \int_1^{u/u_0} \frac{dz}{z^2 \sqrt{z^2 - 1}} \qquad E = \frac{u_0}{\pi} \int_1^\infty dz \left(\frac{z^2}{\sqrt{z^4 - 1}} - 1\right) - \frac{u_0}{\pi} \sim \frac{\sqrt{g_{YM}^2 N}}{\ell}$$

1.2 Witten's baryon vertex

 $q\bar{q}$ -pair (meson) in SYM ~ string "hanging" from boundary

Does there exist a baryon configuration?

- = colourless antisymmetric bound state of *N* quarks
- \rightarrow D5-brane wrapped around S^5 with N strings extending to boundary

Consider a D5-brane wrapped around S^5 at fixed point u_0 in AdS

$$S_{CS} = -T_5 \int_{\mathbb{R} \times S^5} P[C^{(4)}] \wedge F$$
$$= T_5 \int_{\mathbb{R} \times S^5} P[G^{(5)}] \wedge A$$

[Witten]

Consider a D5-brane wrapped around S^5 at fixed point u_0 in AdS

[Witten]

$$S_{CS} = -T_5 \int_{\mathbb{R} \times S^5} P[C^{(4)}] \wedge F$$
$$= T_5 \int_{\mathbb{R} \times S^5} P[G^{(5)}] \wedge A$$

Ansatz: $A = A_t(t)dt$

$$= T_5 \int_{S^5} P[G^{(5)}] \int_{\mathbb{R}} dt A_t$$

Consider a D5-brane wrapped around S^5 at fixed point u_0 in AdS

 $S_{CS} = -T_5 \int_{\mathbb{R} \times S^5} P[C^{(4)}] \wedge F$ $= T_5 \int_{\mathbb{R} \times S^5} P[G^{(5)}] \wedge A$

Ansatz: $A = A_t(t)dt$

$$= T_5 \int_{S^5} P[G^{(5)}] \int_{\mathbb{R}} dt A_t$$

Background: $\int_{S^5} G^{(5)} = 4\pi^2 N$

 $= NT_1 \int dt A_t,$

 $\rightarrow N$ units of string charge induced on D5 worldvolume

Consistency of Ansatz $A = A_t(t)dt$:

$$S = S_{DBI} + NT_1 \int dt A_t$$

Equation of motion:

$$0 \equiv \frac{\partial \mathcal{L}}{\partial A_t} = NT_1.$$

Consistency of Ansatz $A = A_t(t)dt$:

$$S = S_{DBI} + NT_1 \int dt A_t$$

Equation of motion:

$$0 \equiv \frac{\partial \mathcal{L}}{\partial A_t} = NT_1.$$

However, we can add *N* fundamental strings, ending on D5:

$$S_{\text{total}} = S_{DBI} + NT_1 \int dt A_t + NS_{F1} - NT_1 \int dt A_t$$
$$= S_{DBI} + NS_{F1}$$

Consistency of Ansatz $A = A_t(t)dt$:

$$S = S_{DBI} + NT_1 \int dt A_t$$

Equation of motion:

$$0 \equiv \frac{\partial \mathcal{L}}{\partial A_t} = NT_1.$$

However, we can add *N* fundamental strings, ending on D5:

$$S_{\text{total}} = S_{DBI} + NT_1 \int dt A_t + NS_{F1} - NT_1 \int dt A_t$$
$$= S_{DBI} + NS_{F1}$$

 \rightarrow *N* F1 with same orientation (all *q*'s), stretched between D5 and boundary \rightarrow Configuration is antisymmetric under interchange of any two F1's

 \implies Baryon vertex

[Witten]

2 The baryon vertex with magnetic flux

2.1 Construction

Baryon vertex = D5-brane wrapped around S^5

 S^5 is U(1) fibre bundle over ${\cal CP}^2$

$$d\Omega_5^2 = (d\chi - B)^2 + ds_{CP^2}^2,$$

$$B = -\frac{1}{2}\sin^2\varphi_1(d\varphi_4 + \cos\varphi_2d\varphi_3),$$

$$ds_{CP^2}^2 = d\varphi_1^2 + \frac{1}{4}\sin^2\varphi_1\left(d\varphi_2^2 + \sin^2\varphi_2d\varphi_3^2 + \cos^2\varphi_1\left(d\varphi_4 + \cos\varphi_2d\varphi_3\right)\right)$$

Fibre connection B satisfies

$$dB = {}^{\star}(dB), \qquad \qquad dB \wedge dB \sim \sqrt{g_{CP^2}} \sim \sqrt{g_{S^5}}$$

 \rightarrow *B* non-trivial gauge field on *CP*², with non-zero instanton number

Turn on magnetic Born-Infeld flux

$$F = \sqrt{2n} \ dB$$

$$\Rightarrow \int_{CP^2} F \wedge F = 8\pi^2 n.$$

Turn on magnetic Born-Infeld flux

$$F = \sqrt{2n} \; dB$$

$$\Rightarrow \int_{CP^2} F \wedge F = 8\pi^2 n.$$

F is magnetic \Rightarrow no extra terms in Chern-Simons action New contributions to Born-Infeld action

$$S_{DBI} = -T_5 \int d^6 \xi \, \frac{u}{L} \sqrt{\det\left(g_{\alpha\beta} + F_{\alpha\beta}\right)}$$
$$= -T_5 \int d^6 \xi \, u \sqrt{g_{S^5}} \left(L^4 + 2F_{\alpha\beta}F^{\alpha\beta}\right)$$
$$E = 8\pi^3 T_5 \, u \left(n + \frac{L^4}{8}\right)$$

 $F = \sqrt{2n} \, dB$ induces D1 charge in D5 worldvolume

$$S_{D5} = \frac{1}{2} T_5 \int_{\mathbb{R} \times S^5} P[C^{(2)}] \wedge F \wedge F$$
$$= n T_1 \int_{\mathbb{R} \times S^1} P[C^{(2)}]$$
$$= n S_{D1}$$

 \rightarrow *n* D1-branes: extended in *t*- and χ -directions dissolved in D5 worldvolume

NB: *n* dissolved D-strings should not be confused with the *N* baryon vertex F-strings!

→ Alternative, microscopic description in terms of non-Abelian D1's? Cfr Dielectric effect: [Emparan] [Myers]

Spherical D2-brane with dissolved D0-charge (Abelian) \sim dielectric D0's expanding into fuzzy D2 (Non-Abelian)

→ Alternative, microscopic description in terms of non-Abelian D1's? Cfr Dielectric effect: [Emparan] [Myers]

> Spherical D2-brane with dissolved D0-charge (Abelian) ~ dielectric D0's expanding into fuzzy D2 (Non-Abelian)

> > \longrightarrow See section 3

2.2 Bound on n

baryon vertex with n = 0: stable under perturbations in x^i stable under perturbations in u \rightarrow analysis of dynamics due to external F1's

[Brandhuber, Itzhaki, Sonnensshein, Yankielowicz]

2.2 Bound on n

baryon vertex with n = 0: stable under perturbations in x^i stable under perturbations in u \rightarrow analysis of dynamics due to external F1's

[Brandhuber, Itzhaki, Sonnensshein, Yankielowicz]

What is the influence of $n \neq 0$?

2.2 Bound on n

baryon vertex with n = 0: stable under perturbations in x^i stable under perturbations in u \rightarrow analysis of dynamics due to external F1's

[Brandhuber, Itzhaki, Sonnensshein, Yankielowicz]

What is the influence of $n \neq 0$?

$$S = S_{D5} - NT_1 \int dt dx \sqrt{(u')^2 + \frac{u^4}{L^4}}$$

Bulk eqn:

$$\frac{u^4}{\sqrt{(u')^2 + \frac{u^4}{L^4}}} = \text{const}$$

Boundary eqn:

$$\frac{u_0'}{\sqrt{(u_0')^2 + \frac{u_0^4}{L^4}}} = \frac{\pi L^4}{4N} \left(1 + \frac{8n}{L^4}\right)$$

Equations combine into

$$\frac{u^4}{\sqrt{(u')^2 + \frac{u^4}{L^4}}} = \beta \, u_0^2 L^2$$

with

$$\beta^2 = 1 - \frac{1}{16} \left(1 + \frac{8\pi n}{N} \right)^2$$

Equations combine into

$$\frac{u^4}{\sqrt{(u')^2 + \frac{u^4}{L^4}}} = \beta \, u_0^2 L^2$$

with

$$\beta^2 = 1 - \frac{1}{16} \left(1 + \frac{8\pi n}{N} \right)^2$$

Observation:

u is real $\implies \beta$ should be real $\iff 0 \le \frac{n}{N} \le \frac{3}{8\pi}$ (Remember: $F = \sqrt{2n} \, dB \implies n > 0$)

\rightarrow Upper bound on $\frac{n}{N}$ (relation to string exclusion principle?)

[Maldacena, Strominger]

Solution: Size ℓ of the baryon vertex (in boundary)

$$\ell = \frac{L^2}{u_0} \int_1^\infty dy \frac{\beta}{y^2 \sqrt{y^4 - \beta^2}}$$

NB: Size of baryon vertex is inversely proporcional to u_0 Size of baryon vertex is function of n/N

Energy *E* of the baryon vertex

$$E = T_1 u_0 \bigg\{ \int_1^\infty dy \bigg[\frac{y^2}{\sqrt{y^4 - \beta^2}} - 1 \bigg] - 1 \bigg\}.$$

Energy *E* of the baryon vertex is:

proportional to u_0 (conformal invariance) proportional to $\sqrt{g_{YM}N}$ a function of n/N Energy *E* of the baryon vertex

$$E = T_1 u_0 \bigg\{ \int_1^\infty dy \bigg[\frac{y^2}{\sqrt{y^4 - \beta^2}} - 1 \bigg] - 1 \bigg\}.$$

Energy *E* of the baryon vertex is:

proportional to u_0 (conformal invariance) proportional to $\sqrt{g_{YM}N}$ a function of n/N

2.3 Supersymmetry

Witten's baryon vertex: $\frac{1}{2}$ (D5-brane) $\times \frac{1}{2}$ (*N* F1) = $\frac{1}{4}$ total

2.3 Supersymmetry

Witten's baryon vertex: $\frac{1}{2}$ (D5-brane) $\times \frac{1}{2}$ (N F1) = $\frac{1}{4}$ total Generalised vertex: N F1 break $\frac{1}{2}$ (no influence of $F = \sqrt{2n}dB$) D5-brane supersymmetry due to $F = \sqrt{2n}dB$?

D5-brane κ -symmetry:

$$\Gamma_n \epsilon = \mathcal{L}_{BI}^{-1} \Big(\Gamma_{(6)} + F \wedge F \Gamma_2 \Big) \epsilon = \epsilon$$

2.3 Supersymmetry

Witten's baryon vertex: $\frac{1}{2}$ (D5-brane) $\times \frac{1}{2}$ (N F1) = $\frac{1}{4}$ total Generalised vertex: N F1 break $\frac{1}{2}$ (no influence of $F = \sqrt{2n}dB$) D5-brane supersymmetry due to $F = \sqrt{2n}dB$?

D5-brane κ -symmetry:

$$\Gamma_n \epsilon = \mathcal{L}_{BI}^{-1} \Big(\Gamma_{(6)} + F \wedge F \Gamma_2 \Big) \epsilon = \epsilon$$

in S^5 fibre coordinates:

$$\Gamma_n \epsilon = \mathcal{L}_{BI}^{-1} \Big(\Gamma_{ijkl} + (F \wedge F)_{ijkl} \Big) \Gamma_{t\chi} \epsilon = \epsilon$$

 \rightarrow Operator with $\text{Tr}(\Gamma_n) = 0$ and $\Gamma_n^2 = 1$ in $AdS_5 \times S^5$

[Bergshoeff, Kallosh, Ortín, Papadopoulos]

 \rightarrow Generalised baryon vertex breaks preserves same susy as original

3 The microscopical description

3.1 Brief review of the dielectric effect

$n \text{ coinciding D-branes} \implies U(1)^n \rightarrow U(n) \text{ gauge enhancement} \qquad [Witten]$ $\implies \text{non-Abelian action} \qquad [Myers]$

3 The microscopical description

3.1 Brief review of the dielectric effect

 $n \text{ coinciding D-branes} \implies U(1)^n \rightarrow U(n) \text{ gauge enhancement} \qquad [Witten]$ $\implies \text{non-Abelian action} \qquad [Myers]$

$$S_{nD1} = -T_1 \int d^2 \xi \operatorname{STr} \left\{ \sqrt{\left| \det \left(P[g_{\mu\nu} + g_{\mu i} (Q^{-1} - \delta)^i{}_j g^{jk} g_{k\nu}] \right) \det Q \right|} \right\} + T_1 \int d^2 \xi \operatorname{STr} \left\{ P[i(\mathbf{i}_X \mathbf{i}_X) C^{(4)} - \frac{1}{2} (\mathbf{i}_X \mathbf{i}_X)^2 C^{(4)} \wedge \mathcal{F} \right\}$$

with

$$Q^{i}{}_{j} = \delta^{i}{}_{j} + i[X^{i}, X^{k}]g_{kj} \qquad \left((i_{X}i_{X})C^{(4)}\right)_{\mu\nu} = \frac{1}{2}[X^{\lambda}, X^{\rho}]C^{(4)}_{\rho\lambda\mu\nu}$$
$$\mathcal{F} = 2\partial\mathcal{A} + i[\mathcal{A}, \mathcal{A}] \qquad (i_{X}i_{X})^{2}C^{(4)} = \frac{1}{4}[X^{\lambda}, X^{\rho}][X^{\nu}, X^{\mu}]C^{(4)}_{\mu\nu\rho\lambda}$$

$\frac{1}{2}[X^{\lambda}, X^{\rho}]C^{(4)}_{\rho\lambda\mu\nu}$ is dipole coupling

• Flat space: *n* D1's expand into fuzzy D3

[Myers]

$\frac{1}{2}[X^{\lambda}, X^{\rho}]C^{(4)}_{\rho\lambda\mu\nu}$ is dipole coupling

• Flat space: *n* D1's expand into fuzzy D3

• $AdS_5 \times S^5$: D1's expand into fuzzy S^5 \rightarrow Fuzzy S^5 is Abelian U(1) fibre over fuzzy CP^2

[B.J., Lozano, Rodr.-Gómez]

[Myers]

NB: Chern-Simons couplings are zero \Rightarrow purely gravitational effect

 CP^2 is coset manifold SU(3)/U(2)embedded in \mathbb{R}^8 via

$$\sum_{i=1}^{8} x^{i} x^{i} = 1 \qquad \qquad \sum_{j,k=1}^{8} d^{ijk} x^{j} x^{k} = \frac{1}{\sqrt{3}} x^{i}$$

Fuzzy CP^2 generated by SU(3) generators T^i in (anti-)fundamental repres

$$X^{i} = \frac{T^{i}}{\sqrt{(2n-2)/3}} \qquad [X^{i}, X^{j}] = \frac{if^{ijk}}{\sqrt{(2n-2)/3}} X^{k}$$

[Alexanian, Balachandran, Immirzi, Ydri]

 CP^2 is coset manifold SU(3)/U(2)embedded in \mathbb{R}^8 via

$$\sum_{i=1}^{8} x^{i} x^{i} = 1 \qquad \qquad \sum_{j,k=1}^{8} d^{ijk} x^{j} x^{k} = \frac{1}{\sqrt{3}} x^{i}$$

Fuzzy CP^2 generated by SU(3) generators T^i in (anti-)fundamental repres

$$X^{i} = \frac{T^{i}}{\sqrt{(2n-2)/3}} \qquad [X^{i}, X^{j}] = \frac{if^{ijk}}{\sqrt{(2n-2)/3}}X^{k}$$

[Alexanian, Balachandran, Immirzi, Ydri]

Substituting in D1 action:

$$S_{nD1} = -T_1 \int dt d\chi \, u \, \text{STr} \left\{ 1 + \frac{L^4}{4(2n-2)} 1 \right\}$$
$$E_{nD1} = 2\pi u T_1 \left(n + \frac{nL^4}{8(n-1)} \right)$$
$$\left[E_{D5} = 8\pi^2 u T_5 \left(n + \frac{L^4}{8} \right), \qquad T_1 = 4\pi^2 T_5 \right]$$

D5-brane in baryon vertex is expanded D1-branes Where are F1's that form vertex?

D5-brane in baryon vertex is expanded D1-branes Where are F1's that form vertex?

 \rightarrow Chern-Simons coupling:

$$S_{CS} = T_1 \int dt d\chi \operatorname{STr} \left\{ P[(\mathbf{i}_X \mathbf{i}_X) C^{(4)}] - P[(\mathbf{i}_X \mathbf{i}_X)^2 C^{(4)}] \wedge \mathcal{F} \right\}$$
$$= -\frac{T_1}{4} \int dt d\chi \operatorname{STr} \left\{ [X^i, X^j] [X^k, X^l] G_{\chi i j k l}^{(5)} \mathcal{A}_t \right\}$$

D5-brane in baryon vertex is expanded D1-branes Where are F1's that form vertex?

 \rightarrow Chern-Simons coupling:

$$S_{CS} = T_1 \int dt d\chi \operatorname{STr} \left\{ P[(\mathbf{i}_X \mathbf{i}_X) C^{(4)}] - P[(\mathbf{i}_X \mathbf{i}_X)^2 C^{(4)}] \wedge \mathcal{F} \right\}$$
$$= -\frac{T_1}{4} \int dt d\chi \operatorname{STr} \left\{ [X^i, X^j] [X^k, X^l] G_{\chi i j k l}^{(5)} \mathcal{A}_t \right\}$$
$$\to G_{\chi i j k l}^{(5)} = L^4 f_{[i j}^m f_{k l]}^n X^m X^n$$
$$= \frac{L^4 T_1}{2(n-1)} \int dt d\chi \operatorname{STr} \left\{ \mathcal{A}_t \right\}$$

D5-brane in baryon vertex is expanded D1-branes Where are F1's that form vertex?

 \rightarrow Chern-Simons coupling:

$$S_{CS} = T_1 \int dt d\chi \operatorname{STr} \left\{ P[(\mathbf{i}_X \mathbf{i}_X) C^{(4)}] - P[(\mathbf{i}_X \mathbf{i}_X)^2 C^{(4)}] \wedge \mathcal{F} \right\}$$
$$= -\frac{T_1}{4} \int dt d\chi \operatorname{STr} \left\{ [X^i, X^j] [X^k, X^l] G_{\chi i j k l}^{(5)} \mathcal{A}_t \right\}$$
$$\to G_{\chi i j k l}^{(5)} = L^4 f_{[ij}^m f_{kl]}^n X^m X^n$$
$$= \frac{L^4 T_1}{2(n-1)} \int dt d\chi \operatorname{STr} \left\{ \mathcal{A}_t \right\}$$
$$\to \mathcal{A} = A_t(t) \operatorname{1} dt$$
$$= \frac{n}{n-1} N T_1 \int dt A_t$$

D5-brane in baryon vertex is expanded D1-branes Where are F1's that form vertex?

 \rightarrow Chern-Simons coupling:

$$S_{CS} = T_1 \int dt d\chi \operatorname{STr} \left\{ P[(\mathbf{i}_X \mathbf{i}_X) C^{(4)}] - P[(\mathbf{i}_X \mathbf{i}_X)^2 C^{(4)}] \wedge \mathcal{F} \right\}$$
$$= -\frac{T_1}{4} \int dt d\chi \operatorname{STr} \left\{ [X^i, X^j] [X^k, X^l] G_{\chi i j k l}^{(5)} \mathcal{A}_t \right\}$$
$$\to G_{\chi i j k l}^{(5)} = L^4 f_{[ij}^m f_{kl]}^n X^m X^n$$
$$= \frac{L^4 T_1}{2(n-1)} \int dt d\chi \operatorname{STr} \left\{ \mathcal{A}_t \right\}$$
$$\to \mathcal{A} = A_t(t) \operatorname{1} dt$$
$$= \frac{n}{n-1} N T_1 \int dt A_t$$

 \Rightarrow *N* BI charges as $n \rightarrow \infty$, cancelled by *N* extrnal F1's

 $AdS_5 \times S^5$ is S-duality invariant ($\phi = 0$) \rightarrow distinction between D1 and F1 artificial.

 $AdS_5 \times S^5$ is S-duality invariant ($\phi = 0$)

 \rightarrow distinction between D1 and F1 artificial.

 \rightarrow construct baryon vertex from dielectric F1's?

[Brecher, B.J., Lozano]

 $AdS_5 \times S^5$ is S-duality invariant ($\phi = 0$) \rightarrow distinction between D1 and F1 artificial.

 \rightarrow construct baryon vertex from dielectric F1's?

[Brecher, B.J., Lozano]

$$S_{nF1} = -T_1 \int d\tau d\sigma \operatorname{STr} \left\{ \sqrt{\left| \det \left(P[E_{\mu\nu} + E_{\mu i} (Q^{-1} - \delta)^i{}_j E^{jk} E_{k\nu}] \right) \det Q \right|} \right\} - T_1 \int d\tau d\sigma \operatorname{STr} \left\{ P[B^{(2)}] + i P[(\mathbf{i}_X \mathbf{i}_X) C^{(4)}] - \frac{1}{2} P[(\mathbf{i}_X \mathbf{i}_X)^2 B^{(6)}] \right\}$$

with

$$E_{\mu\nu} = g_{\mu\nu} + e^{\phi} C^{(2)}_{\mu\nu}$$
$$Q^{i}_{\ j} = \delta^{i}_{\ j} + i e^{-\phi} [X^{i}, X^{k}] E_{kj}$$

 $AdS_5 \times S^5$ is S-duality invariant ($\phi = 0$) \rightarrow distinction between D1 and F1 artificial.

 \rightarrow construct baryon vertex from dielectric F1's?

[Brecher, B.J., Lozano]

$$S_{nF1} = -T_1 \int d\tau d\sigma \operatorname{STr} \left\{ \sqrt{\left| \det \left(P[E_{\mu\nu} + E_{\mu i} (Q^{-1} - \delta)^i {}_j E^{jk} E_{k\nu}] \right) \det Q \right|} \right\} - T_1 \int d\tau d\sigma \operatorname{STr} \left\{ P[B^{(2)}] + i P[(\mathbf{i}_X \mathbf{i}_X) C^{(4)}] - \frac{1}{2} P[(\mathbf{i}_X \mathbf{i}_X)^2 B^{(6)}] \right\}$$

with

$$E_{\mu\nu} = g_{\mu\nu} + e^{\phi} C^{(2)}_{\mu\nu}$$
$$Q^{i}_{\ j} = \delta^{i}_{\ j} + i e^{-\phi} [X^{i}, X^{k}] E_{kj}$$

$$\rightarrow E_{nF1} = 2\pi u T_1 \left(n + \frac{nL^4}{8(n-1)} \right)$$

N D1 strings via WV scalar

• Witten's baryon vertex is D5-brane wrapped around S^5 in $AdS_5 \times S^5$

- Witten's baryon vertex is D5-brane wrapped around S^5 in $AdS_5 \times S^5$
- $S^5 \xrightarrow{S^1} CP^2$ permits to add magnetic BI flux $F = \sqrt{2n} \, dB$ \Rightarrow Generalised baryon vertex
- Upperbound on n/N, related to string exclusion principle?

- Witten's baryon vertex is D5-brane wrapped around S^5 in $AdS_5 \times S^5$
- $S^5 \xrightarrow{S^1} CP^2$ permits to add magnetic BI flux $F = \sqrt{2n} \, dB$ \Rightarrow Generalised baryon vertex
- Upperbound on n/N, related to string exclusion principle?
- Generalised baryon vertex 1/2 supersymmetric
- $F = \sqrt{2n} \, dB$ introduces n D1-branes in D5 worldvolume

- Witten's baryon vertex is D5-brane wrapped around S^5 in $AdS_5 \times S^5$
- $S^5 \xrightarrow{S^1} CP^2$ permits to add magnetic BI flux $F = \sqrt{2n} \, dB$ \Rightarrow Generalised baryon vertex
- Upperbound on n/N, related to string exclusion principle?
- Generalised baryon vertex 1/2 supersymmetric
- $F = \sqrt{2n} \, dB$ introduces n D1-branes in D5 worldvolume
- Microscopic description: D1-branes expanding into S^5

 \Rightarrow agreement for $n \gg 1$

(Witten's baryon vertex not included)

Fuzzy odd-spheres as Abelian fibre bundles over fuzzy bases

[B.J., Lozano, Rodr.-Gómez]

Fuzzy odd-spheres as Abelian fibre bundles over fuzzy bases

[B.J., Lozano, Rodr.-Gómez]

- $W \to S^{n-2}$ in $S^n \subset AdS_m \times S^n$: genuine giant gravitons
- $W \to S^{m-2}$ in $AdS_m \subset AdS_m \times S^n$: dual giant gravitons

Fuzzy odd-spheres as Abelian fibre bundles over fuzzy bases

[B.J., Lozano, Rodr.-Gómez]

- $W \to S^{n-2}$ in $S^n \subset AdS_m \times S^n$: genuine giant gravitons
- $W \to S^{m-2}$ in $AdS_m \subset AdS_m \times S^n$: dual giant gravitons
- $W \to S^3$ in $AdS_3 \times S^3 \times T^4$: black hole

[Rodr.-Gómez]

• $D1 \rightarrow S^5$ in $AdS_5 \times S^5$: baryon vertex

Fuzzy odd-spheres as Abelian fibre bundles over fuzzy bases

[B.J., Lozano, Rodr.-Gómez]

- $W \to S^{n-2}$ in $S^n \subset AdS_m \times S^n$: genuine giant gravitons
- $W \to S^{m-2}$ in $AdS_m \subset AdS_m \times S^n$: dual giant gravitons
- $W \to S^3$ in $AdS_3 \times S^3 \times T^4$: black hole [Rodr.-Gómez]
- $D1 \rightarrow S^5$ in $AdS_5 \times S^5$: baryon vertex
- $W \to S^5$ in $AdS_5 \times S^5$: new giant graviton! [in preparation]
- $D1 \to S^3$ in $S^5 \subset AdS_5 \times S^5$
- $D1 \to S^3$ in $AdS^5 \subset AdS_5 \times S^5$

Fuzzy odd-spheres as Abelian fibre bundles over fuzzy bases

[B.J., Lozano, Rodr.-Gómez]

- $W \to S^{n-2}$ in $S^n \subset AdS_m \times S^n$: genuine giant gravitons
- $W \to S^{m-2}$ in $AdS_m \subset AdS_m \times S^n$: dual giant gravitons
- $W \to S^3$ in $AdS_3 \times S^3 \times T^4$: black hole [Rodr.-Gómez]
- $D1 \rightarrow S^5$ in $AdS_5 \times S^5$: baryon vertex
- $W \to S^5$ in $AdS_5 \times S^5$: new giant graviton! [in preparation]
- $D1 \to S^3$ in $S^5 \subset AdS_5 \times S^5$
- $D1 \to S^3$ in $AdS^5 \subset AdS_5 \times S^5$
- $W \to S^3$ in $AdS_7 \subset AdS_7 \times S^4$
- $W \to S^3$ in $S^7 \subset AdS_4 \times S^7$: S^3 is non-contractable!

• • •