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Abstract

In the presentwork a generalized Fierz-Pauli action is proposed as an expansion of the Einstein-
Hilbert action. More speci�cally, by analogy with the Minkowski spacetime, it is attempted to
de�ne an action whose variation yields directly the �rst-order Einstein equation, linearized
around an arbitrary background metric. First of all, a succinct introduction is presented to
explain the problem and the motivation. Subsequently, a suitable theoretical framework is de-
veloped in order to contextualize the study. Among other things, the tight connection between
the Fierz-Pauli formalism and perturbation theory over the Minkowski spacetime is explained.
Then, a preamble chapter is included to study some speci�c cases; later, the so-called gene-
ralized Fierz-Pauli action is computed, by expanding up to second-order the Einstein-Hilbert
action, linearized around an arbitrary metric. Thereupon, the validity of this proposal is ana-
lyzed, varying this action and comparing its equations of motion with the �rst-order linearized
Einstein equation. The outcome happens to be positive, and thus, the work is concluded by
emphasizing the signi�cance of its results.
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Notation and Conventions

• Throughout this work we will adopt Einstein’s summation convention: if an index vari-
able appears repeated up and down in a single term, summation of that term over all the
possible values of the index is implied.

• For tensors, upper indices will correspond to the contravariant (vectorial) part, whereas
lower ones correspond to the covariant (covectorial) part.

• Lowercase greek indices 𝜇, 𝜈, 𝜌, 𝜆,… will refer to components in a coordinate basis {𝜕𝜇}
if they are up or its dual basis {𝑑𝑥𝜇} if they are down. They will run from 0 to 3.

• Lowercase latin indices 𝑖, 𝑗, 𝑘,… will refer to the spatial components; they correspond
to the part of the greek indices that run from 1 to 3. Therefore, the temporal component
will be identi�ed with the index 0.

• Usual partial derivative will be noted by 𝜕.

• Covariant derivative with regards to the Levi-Civita connection of the metric 𝑔 will be
noted by ∇.

• Bars over mathematical objects will be used to indicate that they have been exclusively
derived from the background metric �̄�.

• 𝛿𝜇𝜈 will be the usual Kronocker delta symbol.

• A number above an equal (=) or approximate symbol (≈) will be used to indicate that
the formula of the same number is being used.

• The signature (+,−,−,−) will be used for the Lorentzian metrics.
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1 Introduction and Goals

It is common ground that Einstein’s relativity theories shook up the physics to that date. First
of all, special relativity (published in 1905 [1]) abolished the classical notions of absolute time
and space, arguing that each observer measures them in a di�erent way. On the other hand,
general relativity (published in 1915 [2]) introduced the concept of the dynamical spacetime.
In fact, up until then, spacetime was just the canvass where the physical theories were built,
that is, a static scenario where physics was described. However, Einstein gave it the status of
physical entity, putting it on an equal footing of magnitudes such as mass, charge, energy etc.
Even further, he described how spacetime in�uences its content, and vice versa; as simply put
by Misner, Thorne and Wheeler [3]: “Matter tells spacetime how to curve, spacetime tells matter
how to move.”

Indeed, curve is a key concept, since general relativity identi�es the curvature of the space-
time —the newly de�ned dynamical variable— with gravity. Hence, within this theory, the
gravitational �eld stops being a �eld as such, and it is characterized through the metric of
the spacetime, a pure mathematical object that describes its geometrical properties. Then, the
dynamics of spacetime and its content can be either described by the notorious Einsteins �eld
equations or an action, namely the Einstein-Hilbert action. Nonetheless, purely geometrical
objects are always required.

Certainly, this profound relation with di�erential geometry is another unique feature of
general relativity, and also, considerably dissuasive for many physicist. Precisely, apart from
gravity, all the other known interactions are described by special-relativistic �eld theories.
Furthermore, this approach enables their quantization, as opposed to the purely geometrical
one of Einstein’s theory. Undoubtedly, the relativistic quantum �eld theories have had a major
success, and thus, several e�orts have been made to describe gravitational interactions in such
a formalism1. Specially, the Fierz-Pauli theory must be mentioned (published in 1939 [4]), the
starting point of most of these attempts, which could be summarized as: gravity is mediated by
a free, massless spin-2 particle, also known as the graviton. Based on mere special relativistic
concepts and gauge principles, Fierz-Pauli theory manages to reproduce general relativity at
leading order, for a perturbation on a �at (Minkowski) spacetime.

1For a deeper examination of this approach, please refer to the book based on Feynman’s lectures on gravita-
tion [5] and the book of T. Ortín [6].
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More speci�cally, the equation of motion of this spin-2 particle is equal to the �rst-order
Einstein equation, linearized around the Minkowski metric. Hence, the Fierz–Pauli theory
can also be considered as the lowest-order perturbation theory of general relativity in the
Minkowski spacetime. Therefore, it is natural to wonder whether this theory may be extended
to describe the same dynamic but for perturbations in an arbitrary background metric, beyond
the �at spacetime. In other words, can the Fierz-Pauli action be generalized to obtain directly
from its variation the perturbed Einstein equations, linearized around any spacetime up to
leading order?

Based on the principle of general covariance, we may think that it is su�cient to covari-
antize the mentioned Fierz-Pauli action; however, this procedure is ambiguous2. Then, another
plausible option would be to somehow associate the generalized Fierz-Pauli action with the
Einstein-Hilbert action, since the full Einstein equation is obtained through its variation. For
instance, due to the properties of the Fierz-Pauli action, it seems logical to identify its generali-
zation with the second-order weak-�eld expansion of Einstein-Hilbert, linearized around an
arbitrary metric.

Note that this hypothesis translates to: the variation and the weak-�eld expansion com-
mute for any spacetime. This property might be expected, yet, it is certainly not obvious.
Indeed, if coupling to matter is considered, the problem is not that trivial3. Hence, we will
address the present work to assess the validity of this assumption.

For this purpose, wewill approximate to leading order the Einstein equation for a perturba-
tion around an arbitrary spacetime. On the other hand, we will linearize up to second order the
Einstein-Hilbert equation —including a matter Lagrangian— and apply a variational principle.
Thereupon, we will compare the obtained equations with the �rst-order Einstein equations, to
see whether the process commutes. Surely, we will operate within the framework of general
relativity, however, we will only employ mathematical arguments, mostly based on lineariza-
tion theory. It must be noted that there is virtually no research regarding this issue4, especially
working on very general terms and considering coupling to matter, as we will. Broadly, the
structure of the work will be the following:

• Chapter 2: In this chapter we will develop the theoretical framework of our work.
Speci�cally, we will introduce basic concepts in order to contextualize our calculations,
mainly fundamental notions of general relativity and the Fierz-Pauli formalism.

• Chapter 3: This chapter will be a preamble for the next one. Before performing the
calculations for arbitrary metrics, we will study two speci�c cases: the trivial �at met-

2For a further discussion on this issue, please refer to [7].
3The coupling to matter of the Fierz-Pauli action, for instance, is a notorious issue. This problematic is exten-

sively examined in [6], among others.
4Linearization up to �rst order of Einstein’s equations is certainly very common in every introductory book

of general relativity; still, it is very rare to �nd a development up to second order, even less of the action.
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ric and a non-trivial one, with a non-vanishing curvature andmatter and energy content.

• Chapter 4: In this chapter we will carry out the entirety of the calculations, without any
computational support and in very general terms. Ultimately, we will analyze the pos-
sible commutativity of the linearization process. Indeed, it is the kernel of the work and
our most personal contribution, as opposed to the more bibliographical second chapter.

• Chapter 5: We will end the work with this �nal chapter, where we will examine the
signi�cance of our results.

The �nal appendices are not a part of the work per se; due to the extension of the cal-
culations, they just contain some longer developments and the consistency analysis of our
results.



5 Conclusions

In this �nal chapter, we conclude the present work by emphasizing the relevance of the ob-
tained results. Fort this purpose, we will recapitulate the motivation and summarize the pro-
cess of our calculations.

As studied in Section 2.2, the variation of the Einstein-Hilbert action gives raise to the
Einstein equation, the fundamental equation of general relativity. This action is of second order
in the metric 𝑔𝜇𝜈 and highly non-lineal in 𝑔𝜇𝜈 . As a consequence, the Einstein equation is also
highly non-lineal, and thus, extremely complex to solve. Therefore, as explained in Section 2.3,
it can be very convenient to approximate it by its linear expansion around a certain known
solution, i.e., a background metric. By construction, the resulting equation is linear and of
second-order.

In Section 2.4, we have proven that the variation of the Fierz-Pauli action yields exactly
this linearized equation at leading order for the Minkowski spacetime. Actually, it is a curious
coincidence, since the Fierz-Pauli formalism is a pure special-relitivistic �eld theory, which
has nothing to do with di�erential geometry as opposed to general relativity. Then, based on
this fact, it seems logical to expect some kind of connection between the Fierz-Pauli and the
Einstein-Hilbert actions. In fact, in Section 3.1 we have determined that, up to boundary terms,
the Fierz-Pauli action is the second-order weak-�eld expansion of Einstein-Hilbert. Indeed,
this result is not surprising; however, the following is implied: the variation and the weak-
�eld expansion processes commute for the Minkowski spacetime.

Certainly, we have found truly interesting the possibility to derive the linearized equations
directly from an action —the Fierz-Pauli action— instead of varying �rst the Einstein-Hilbert
action and then linearizing it. Therefore, we have tried to expand this idea to other metrics,
that is, we have attempted to generalize the Fierz-Pauli action for an arbitrary metric. First
of all, in Section 3.2 we have analyzed this problem in a “trial” background metric, namely
the FLRW spacetime. This is a non-trivial exact solution, and furthermore, the dynamic of its
perturbations is very much studied in cosmology. Hence, it seemed a suitable choice before
moving on to amore general study. For thismentioned backgroundmetric, by analogywith the
Minkowsky spacetime, we have associated the generalized Fierz-Pauli action with the second-
order weak-�eld expansion of Einstein-Hilbert. After doing the proper calculations, we have
concluded that the variation of this action yields exactly the �rst-order Einstein equation.
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Then, after this positive outcome, in Chapter 4 we have proceed to address this problem on
general terms, that is, for an arbitrary background metric. Based on the previous results, we
have once again associated the generalized Fierz-Pauli action with the second-order Einstein-
Hilbert action, but in this case linearized around an arbitrary solution. After long and exhaus-
tive calculations, we have found that the equations of motion obtained through the variation
of this action are exactly identical to the �rst-order linearized Einstein equation, for any back-
ground metric. Therefore, we have managed to propose a general expression for an action
—the so-called generalized Fierz-Pauli action— that describes directly and at leading order the
dynamic of perturbations in any spacetime.

Actually, what we have truly proven is that the variation and the weak-�eld expansion al-
ways commute, regardless of the background metric. That is, the outcome of this work may be
summarized as: the diagram of Figure 4.1 commutes. This result might be expected, however,
it is quite remarkable. In fact, prior to our calculations it did not seem so obvious, and further-
more, based on the long and arduous calculations of Chapter 4 it was certainly non-trivial.
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