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Abstract

This is a theoretical work in which an anisotropic metric is considered within the
framework of general relativity in order to get cosmological solutions. Several re-
sults and conclusions are derived for different type of sources of matter and energy:
vacuum, dust, cosmological constant, scalar field and electromagnetic field.

Este es un trabajo teórico en el que se considera una métrica anisótropa dentro del
marco de la relatividad general con el propósito de obtener soluciones cosmológicas.
Se derivan numerosos resultados y conclusiones para diferentes tipos de fuentes de
materia y enerǵıa: vaćıo, polvo, constante cosmológica, campo escalar y campo
electromagnético.

Keywords: anisotropy, general relativity, cosmological model.
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1 Introduction

The Theory of General Relativity is today one of the pillars of modern physics. It
breaks with the old and classical conception of space and time, stating that both of
them are in fact part of an unique and inseparable fabric, called spacetime. Space-
time has the property of curving in presence of matter and energy, and, likewise,
matter and energy move accordingly to the geometry of spacetime.

Since the theory links matter and energy with the geometry of spacetime, it is
possible to consider the whole content of the universe as an entity and study its
geometry and its evolution. In other words, we can create cosmological models.

The current standard cosmological model is the ΛCDM model and it implies the
cosmological principle, which states that the universe is homogeneous and isotropic
at every instant at very large scales (over hundreds of Mpc). It was introduced by
Friedmann and Lemâıtre in an attempt to simplify the hard calculations, arriving
at the famous models known as FLRW models [1] [2].

On the other hand, the study of cosmological models which do not satisfy the
conditions of homogeneity and isotropy are also part of investigations in physics in
order to achieve a better understanding of the universe. During the last decades
several solutions that violate the cosmological principle have been presented. Some
of them lack homogeneity, others, isotropy and others, both of them. Some of these
metrics are Kasner metric [1] [8], Gödel metric [5], Bianchi metric [3], Lemâıtre
Tolman Bondi metric [4], Kantowski-Sachs metric [7] and Szekeres metric [6].

In this work, the interest of considering universes that do not satisfy the cosmo-
logical principle is theoretical and not phenomenological, since we derive solutions
that exhibit anisotropy at large scale and observations, on the contrary, indicate
that inhomegenity and anisotropy can only be considered as perturbations. Thus,
our goal is to study the features of spacetime when we relax the symmetries of
FLRW metric, what solutions we can get and what conclusions we can derive. We
can wonder if an isotropic source of matter and energy can be conceived in an
anisotropic universe and, ultimately, we can study the implementation of electro-
magnetic fields, which is impossible in an isotropic universe.

For that purpose, we present an anisotropic Ansatz and perform the study with
several sources of matter and energy: vacuum, dust, cosmological constant, scalar
field and electromagnetic field. Our metric is based in the Szekeres metric which
is anisotropic and inhomogeneous, however, we erase the inhomogeneity and only
keep the anisotropy, which allows us to focus exclusively in the study of anisotropy
and simplifies the expressions so that we can arrive at particular solutions, each of
them corresponding to a universe or a family of universes. Moreover, we consider
a maximally symmetric two-dimensional spatial block where Szekeres metric con-
siders a flat two-dimensional spatial block, which gives us more options to study.
Some of the solutions that we obtain are known and they have been obtained in
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a different way throughout the course of history while others may be new. In any
case, we perform a study of the features of the different cosmological models ob-
tained.

This document starts with some preliminaries to present our conventions, basics
of the theory of relativity and a brief explanation of the FLRW metric. Following
this, we present our metric in detail and try to find cosmological solutions for
different sources of matter and energy. Therefore, we try to show different scenarios
allowed by general relativity and analyse mathematically solutions that may or may
not agree with the observations in general or in a particular stage or region of the
universe to a greater or lesser extent. Some of the scenarios, even if they are not
consistent with our universe, are significant from a mathematical and physical point
of view in the development of a deeper understanding of the theory, gravity and
spacetime.

2 Preliminaries

2.1 Notation and fundamentals

In this work, conventions from [1] are applied. First of all, natural units are used,
this is, c = 1, where c is the speed of light. We also employ Einstein notation, that
implies summation over repeated lower and upper indexes:

AµB
µ ≡

3X

µ=0

AµB
µ. (2.1)

The signature used is (+,−,−,−), i.e., the temporal coordinate is positive and
the spacial coordinates are negative. Greek indexes µ, ν, ... run from 0 to 3, Latin
indexes i, j, .. run from 1 to 3 and Latin indexes a, b, ... run from 1 to 2. Our
definitions for the curvature tensors are

Rµνρ
λ = ∂µΓ

λ
νρ − ∂νΓ

λ
µρ + Γλ

µσΓ
σ
νρ − Γλ

νσΓ
σ
µρ (2.2)

for Riemann tensor,

Rµν = Rµρν
ρ (2.3)

for Ricci tensor,

R = gµνRµν (2.4)

for Ricci scalar, and

Gµν = Rµν −
1

2
R gµν (2.5)

for Einstein tensor, where gµν is the tensor metric and Γλ
µν are the Christoffel

symbols:

Γλ
µν =

1

2
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν) . (2.6)
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Tensor F ab must be isotropic and homogeneous due to the fact that the spatial
section represented by gab = e2β g̃ab meets those features. We can write tensor F ab

as

Fab = f(t)εab
p
|g̃|. (8.29)

where f(t) is a function of time and εab is the Levi-Civita tensor density. The
presence of

p
|g̃| (the determinant of gab) is required because εab is a tensor density.

Using that εab transforms with g̃ab and

εacε
bc = δba(|g̃ab|)−1, (8.30)

we get for the Einstein equations

−β̇2 − 2α̇β̇ − k

R2
0

e−2β = −κ

2
f 2(t)e−4β, (8.31)

3β̇2 + 2β̈ +
k

R2
0

e−2β =
κ

2
f 2(t)e−4β, (8.32)

β̇2 + β̈ + α̇β̇ + α̇2 + α̈ = −κ

2
f 2(t)e−4β. (8.33)

As in the electric field case, when k = 0 and α = β, the equations are incom-
patible, which indicates that no magnetic field can be considered in an isotropic
universe, which, as before, is logical since we have a magnetic field in one direction
and not in the others.

We can appreciate a huge similarity between the Einstein equations in the electric
and magnetic field. In fact, for f(t) = A, i.e., f(t) is a constant, k = 1 and β also
considered as a constant, we would have the exact same metric but with a magnetic
field described by 8

Fab = AεabR
2
0 sin θ, (8.35)

which also satisfies the Maxwell equation.

Therefore, we have proven in this section that an electromagnetic field cannot
exist in an isotropic universe, while it can in a anisotropic one, as expected.

9 Conclusions

In this theoretical work, we have started from the metric

ds2 = dt2 − e2α(t)dz2 − e2β(t)g̃ab dx
adxb (9.1)

8Remember that the metric of a sphere is given by

ds2 = R2
0(dθ

2 + sin2 θdϕ2). (8.34)
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and obtained several solutions for the Einstein equations. Let us present them all
in a schematic way.

Vacuum solutions

• Minkowski space

• Milne space in four dimensions (Minkowski space)

• Kasner metric with repeated coefficients

Dust solutions

• FLRW case for dust and k = 0.

• Milne space in three dimensions plus curved direction

Cosmological constant

• De Sitter space

• Anti-De Sitter space

• De Sitter type space in two dimension plus two-dimensional sphere

• Anti-De Sitter type space in two dimension plus two-dimensional hyperboloid

• Anisotropic universe expanding in every direction

Scalar field

• Two expanding flat dimensions plus static dimension

• Isotropic expanding universe (FLRW case)

Electromagnetic field

• Dynamical direction plus two-dimensional sphere for electric field

• Dynamical direction plus two-dimensional sphere for magnetic field

All of the sources considered are isotropic except the electromagnetic field and
yet, they all allow the existence of at least one anisotropic universe. On the other
hand, an electromagnetic field is not admissible in an isotropic universe, since all
the directions of a universe of such features are equivalent. We can conclude that
we have answered the question stated in the introduction: Can an isotropic source
give rise to an anisotropic source? Yes, even the absence of sources (vacuum) can
provide an anisotropic universe. The obtained solutions are also very dissimilar be-
tween them, even for a same source, which brings to light how polyvalent Einstein
equations are, exhibiting the possibility of Big Bang and different expansions rates.

Several solutions of the FLRW metric are also solutions of our anisotropic metric,
as expected, since all of the FLRW solutions discussed in the preliminaries, except
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Anti-De Sitter space in four dimensions, can be obtained by setting eα = eβ and
k = 0 for different sources, that is, turning our anisotropic metric into an isotropic
and homogeneous one.

We have obtained several solutions that show no expansion or contraction in a
spatial block, while exhibiting a dynamical behaviour in the other. Other solutions,
on the contrary, show a dynamical anisotropic universe that evolves in every direc-
tion.

It is remarkable the amount of solutions that have been obtained out of the
framework of the cosmological principle, which lays bare the new paths that are
opened by relaxing the symmetries of the FLRW metric. This is motivation enough
to continue the search of new solutions and explore the limits of the theory of the
general relativity and the physics and mathematics behind it, as we have done in
the study performed in this work.
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