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Resumen

Las métricas de Vaidya son soluciones esféricamente simétricas y no-
estacionarias de las ecuaciones de Einstein. En este trabajo derivaremos
la forma de estas métricas a partir de la solución de Schwarzschild
y exploraremos la fı́sica que surge al considerarlas. Primero, la es-
tructura causal será estudiada obteniendo el Diagrama de Penrose de
esta métrica, lo que nos permitirá estudiar el concepto de horizonte
aparente, diferenciándolo del horizonte de sucesos. El hecho de que la
masa sea una función de las coordenadas cono de luz introducirá difer-
encias en el tratamiento de la energı́a, adentrándonos en el formalismo
ADM, contraponiéndolo con la energı́a Bondi y el tratamiento Misner-
Sharp. Por último, presentaremos las generalizaciones conocidas más
relevantes de estas métricas. A lo largo del proyecto daremos el con-
texto necesario para entender la importancia de estas soluciones en la
investigación actual en Astrofı́sica y la Gravedad Cuántica.

Abstract

Vaidya metrics are spherically symmetric and non-static solutions of
the Einstein equations. In the present work we will derive the form of
these metrics from the Schwarzschild solution and we will explore the
Physics that arises when considering them. First, the causal structure
will be studied by deriving the Penrose Diagram of this metric, which
will allow us to introduce the concept of apparent horizon against
event horizon. Furthermore, the fact that mass is a function of the
lightcone coordinates will introduce differences in the treatment of en-
ergy, allowing us to introduce the ADM formalism in contraposition
to both Bondi energy and Misner-Sharp treatment. Finally we will
present the known generalizations to these metrics. During the project
we will study the necessary context to understand the importance of
these metrics in the state of the art research on Astrophysics and Quan-
tum Gravity.
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1 Introduction

The development of Special Relativity in 1905 [1] and General Relativity in 1915 [2] by
Albert Einstein supposed, not only a change in the philosophical paradigms of the time,
but also a new way of understanding physics. Against Newtonian gravity, the theory
of General Relativity put on the table a revolutionary point of view, where gravity was
no longer a force but a manifestation of the curvature of spacetime. Using Differen-
tial Geometry, Einstein came to the most important result of its theory, the homonym
equation

Rµv −
1
2

gµvR = −8πGNTµv, (1.1)

where Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric tensor, GN the universal
gravitational constant and Tµν the stress-energy tensor. On the left side we have the geo-
metrical description of the spacetime and on the right the energy content of it. Quoting
the American physicist John Wheeler [3], we could sumarize equation (1.1) in:

Space-time tells matter how to move;
matter tells space-time how to curve.

Actually, expression (1.1) is not an equation, but a set of ten coupled second order par-
tial differential equations. The nonlinearity and the invariance under diffeomorphisms
makes it not possible to find a solution for the general case. Instead of this, we have to
impose symmetry restrictions or other arguments.

The first solution non-trivial flat to the Einstein’s equations was found by the German
physicist Karl Schwarzschild in 1916 [4] and it describes the gravitational field outside
a spherical and static mass, located in vacuum. After this, many generalizations were
found, adding angular momentum, electric charge or cosmological constant along other
features [5]. Kerr metric, for example, is used to introduce angular momentum in a
star [6] and the Reissner-Nördstrom solution includes electric charge [7]. Despite the
fact that there is a complete ‘zoo’ of solutions, in the standard textbooks [8–13] only
stationary solutions are discussed. A stationary spacetime is one that does not change
with time and the above cited metrics are examples of it.

In the present work we will study the physics underlying a non-stationary solution.
In 1951, at the age of 24, the Indian physicist and mathematician Prahalad Chunnilal
Vaidya found a solution to equation (1.1) generalizing the Schwarzschild metric to in-
corporate the radiation coming in or out of the star [14, 15]. Despite the simplicity of
this change, these metrics introduce many important concepts in the field of General
Relativity.

A clear example is the way energy is measured. For assymptotically flat spacetimes1

there are different ways of measuring it, such as the ADM energy and the Bondi en-
ergy. We will develop the formalism in section 5, but the essence of it is the different
ways of going to infinity (spatial or null) when measuring it. Schwarzschild metric is
characterized by just a parameter, the mass M, which is a constant, thus both treat-
ments are equivalent in this case. With Vaidya metrics this is not the case. As the mass
function varies with time the energy content of the spacetime will vary depending on

1An assymptotically flat spacetime is one in which, roughly speaking, curvature vanishes at large dis-
tances from the singularity. See section 3 for a detailed description.
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which formalism we decide to apply. Moreover, the appareance of apparent horizons, in
contraposition to event horizons serves us as a motivation in the study of these solutions.

This, along with the fact that they are widely used in the current research, make
Vaidya metrics a topic suitable, but challenging, for an undergraduate dissertation. The
study of Hawking radiation [16], a model for evaporating black holes [17] and stars in
process of gravitational collapse [18] are just a few examples of the importance of this
solution.

The fact that Vaidya metrics are a generalization of Schwarzschild metric makes it
necessary to devote some time in the introduction of them. Moreover, although it was
not initially posed as an objective, we have decided to introduce the conformal transfor-
mations and Penrose Diagrams formalism in order to illustrate the differences between
apparent and event horizonts.

In section 2 we expose our sign convention, define some basic Differential Geometry
concepts and explain what a Penrose Diagram is. In section 3 we review Schwarzschild
metric and in section 4 Vaidya Metrics are derived and characterized. We do not derive
these metrics in the same way that Vaidya did. For the sake of completeness we give
an insight into the original derivation in appendix A. Additionaly, the Diagrams for the
linear Vaidya metrics are given in appendix B. In section 5 we discuss different ways to
define energy, enhancing the exposition with the Penrose Diagrams we derived in 2. We
end the work by introducing some generalizations to these metrics in section 6.

Throughout the text we have used [19] to expose the basic concepts of General Relav-
itiy and [14, 15, 20] for those relating to Vaidya metrics. All the figures are originals and
have been made with [21] and [22], except figure 3, which is from [19]. To compute some
useful tensor quantities we have used the Python package [23].

2 Key concepts in General Relativity

We start by presenting the convention used through the project in subsection 2.1 and
introducing the formalism related to Penrose Diagrams in 2.2. To enrich this discussion
we derive the Penrose Diagram for Minkowski spacetime while we introduce concepts
such as the different ‘infinities’.

2.1 Definitions and convention

The Theory of General Relativity is built on the grounds of a mathematical object called
manifold. A N-dimensional manifold MN , is, roughly speaking, a space that locally behaves
like RN . At each point p of the manifold we can define the tangent space at the point p,
noted as Tp

�
MN�. The set of all tangent spaces of the manifold, built each of them

around each of the points p is called the tangent bundle. See [24, 25] for a rigurous
treatment.

The metric gµν, is the tensor that allows us to establish a way of measuring dis-
tances and angles between points of the manifold. The convention we will follow assigns
the (+) sign to the timelike component and (−) to the spacelike components, thus the
lorentzian metric is written as

ds2 = dt2 − dx2 − dy2 − dz2. (2.1)
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This solution is called Vaidya-Kottler and it takes the form:

ds2 =

�
1 − 2m(v)

r
− Λr2

3

�
dv2 − 2dvdr − r2dΩ2

2 (6.12)

2. If we add electrostatic charge, we would just have to add the electromagnetic stress
energy tensor, equation (2.12), with the following F :

Fµν =
q
r2

�
δ0

µδ1
ν − δ1

µδ0
ν

�
. (6.13)

This solution receives the name of Vaidya-Reissner-Nordstrom and it is:

ds2 =

�
1 − 2m(v)

r
+

q2

r2

�
dv2 − 2dvdr − r2dΩ2

2 (6.14)

3. If we allow an injection of charge apart from the outgoing mass the solution is
called the Vaidya-Bonnor:

ds2 =

�
1 − 2m(v)

r
+

q(v)2

r2

�
dv2 − 2dvdr − r2dΩ2

2 (6.15)

4. If we introduce the effect of angular momentum, the Kerr-Vaidya metric arises. It
was proposed only fifteen years ago, see [52, 53], and it describes the spacetime
outside a rotating and emitting(absorbing) null dust star.

7 Conclusions

In this work we have presented an extensive review on Vaidya metrics. We have derived
them in two different ways: a very intuitive one, from the Schwarzschild solution and
for historical purposes the one that P.C. Vaidya himself did seventy years ago. We began
by reviewing the basic concepts from Schwarzschild metric, such as event horizon or
gravitational redshift, and by computing the geodesics in Eddington-Finkelstein coordi-
nates. By letting the mass to be a function of one of the lightcone coordinates we arrive
at the Vaidya solution. This way of deriving the metrics allowed us to draw conclusions
very easily, by just applying energy conditions. The ingoing Vaidya metric represents
a star/black hole absorbing null dust and the outgoing represents the emission of null
radiation.

We have obtained a variety of results that are not usually covered in the standard
textbooks. The formalism related to Penrose Diagrams has been presented in a concise
way, giving us the required knowledge to draw conclusions from them and to enrich the
discussion on event and apparent horizons when describing the behaviour of lightcones.
With respect to the energy and mass discussion, we have discussed the Misner-Sharp and
Bondi mass against the ADM formalism. We have shown the difference in measuring
the energy along wordlines of constant r, null and future infinity respectively. While the
ADM formalism gives a constant as solution, the Bondi formalism and the Misner-Sharp
treatment give us a function, thus the Bondi mass will depend on at what w we measure
it. Being these two ways of measuring mass not conserved in spacetime
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Despite the fact that Vaidya metrics themselves are a generalization of Schwarzschild
metric we have been able to find solutions that generalize them. The easiest case, the
generalized Vaidya metric follows the same philosophy that Vaidya metrics themselves,
we just have to let the mass function be a function of both w and r and study the matter
content of the spacetime. Generalizations including charge or cosmological constant have
been also discussed and they arise when considering concrete values for the function
m(w, r).

To conclude, Vaidya metrics are often forgotten in textbooks and we have shown
through this project how they could be used in the introduction of much more complex
concepts. Although we have not stated it here explicitly, killing vectors, the formalism
of hypersurfaces or singularity theorems are the underlying points to our exposition.
Bondi mass, apparent horizons and some generalizations used in the study of black hole
evaporation or simple gravitational collapse are just a few examples of everything one
can learn when allowing the mass in Schwarzschild geometry to be a function of one of
the lightcone coordinate.
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