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Universidad de Granada

Resumen

Las compactificaciones alabeadas fueron propuestas por L. Randall y R. Sundrum, en el
marco de la cosmologı́a de branas, como una alternativa al modelo de dimensiones extra
compactas y microscópicas de Kaluza-Klein. En los primeros capı́tulos discutiremos la
posibilidad de dimensiones adicionales, introduciendo dos clases de dimensiones extra,
según los modelos de Kaluza-Klein y de Randall-Sundrum II. Justificaremos la importan-
cia del segundo en relación al confinamiento de la gravedad en la brana y la normalización
del gravitón. Asimismo, se revisarán conceptos de Relatividad General que aparecerán
recurrentemente a lo largo del trabajo. En la segunda parte del proyecto generalizaremos
el modelo de Randall-Sundrum, centrándonos primero en la métrica y posteriormente
en la dinámica, y prestando especial atención al surgimiento de una dinámica efectiva
cuatrodimensional en la brana.



Abstract

Warped compactifications were proposed by L. Randall and R. Sundrum, in the frame
of brane cosmology, as an alternative to the Kaluza-Klein model of compact and micro-
scopic extra dimensions. In the first chapters we will discuss the possibilty of additional
dimensions, presenting two sorts of them, in relation with the Kaluza-Klein theory and
the Randall-Sundrum II model. Besides, we will justify the importance of the latter in the
confinement of gravity in the brane and the normalisation of the graviton. Furthermore,
we will review certain concepts of General Relativity which will appear throughout the
text. In the second half of the project, we will generalise the metrics and dynamics of
the Randall-Sundrum model, paying special attention to the emerging four-dimensional
dynamics in the braneworld.
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1 Introduction: A Matter of Scale

It is widely assumed that we live in a universe with three spatial (probably infinitely
large) dimensions, which evolve in a temporal “direction”, this is, a (3+1)-dimensional
spacetime. But is it a fair assumption? From our experience, it seems so, as these are
the only dimensions we can perceive, and all the well-established physical theories have
seemingly managed properly in this frame. For instance, Standard Model fields propa-
gating (a large distance) in extra dimensions would not be consistent with observations.

Experimentally, it is possible to determine the number (and even the geometry) of
spatial dimensions by studying how the gravitational field decays, as gravity describes
the geometry and dynamics of spacetime. In terms of newtonian mechanics, the grav-
itational potential Φ(r) satisfies the Laplace equation, which means that if there are d
“conventional” spatial dimensions, the equipotential surfaces are (d− 1)-dimensional hy-
perspheres of arbitrary radius r and area

Sd−1(r) =
2πd/2rd−1

Γ( d
2 )

. (1.1)

In consequence, as the gravity flux through such surfaces is constant,
�

Sd−1(r)
�g · d�S = gSd−1(r) = const, (1.2)

the gravitational field, �g, necessarily decays as ∼ 1
rd−1 . Similarly, in the frame of general

relativity, we can study the static spherical solution with mass m in an N-dimensional
spacetime (N = d + 1), this is, the Schwarzschild-Tangherlini solution [2]:

ds2
N =

�
1 − 2GNm

rN−3

�
dt2 −

�
1 − 2GNm

rN−3

�−1

dr2 − r2dΩ2
N−2, (1.3)

where GN is the N-dimensional gravitational constant. In this case, the tt component of
the metric is related to the classical gravitational potential when applying the Newtonian
limit, gtt ∼ 1

rN−3 ∼ Φ(r), which is coherent with what we mentioned before. As the well-
known inverse-square law for the gravitational field can be measured (this is, �g ∼ 1

r2 ),
spacetime is necessarily four-dimensional.

All the evidence indicates that we live in (3+1) dimensions, nevertheless, there is a way
out of all these arguments. The fact is that the ∼ 1

r decay of the gravitational potential has
been experimentally observed for distances no shorter than centimetres. Thus, as gravity
is considerably weaker than the other interactions, the evidence for possible additional
dimensions might be “hidden” at shorter scales (submillimetric scales), where there might
be deviations from the macroscopic behaviour of gravity. It is a matter of scale.

In fact, compact and microscopic additional dimensions of scale R0 might be accept-
able provided that R0 is sufficiently small compared to the minimum distance for which
the inverse-square law has been verified. This kind of extra dimensions are associated
to a factorizable geometry, which essentialy means that the metric of the four common
dimensions does not depend on the additional ones. For instance,

dŝ2 = g(x)dxµdxν − h(z)dz2, (1.4)
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where xµ are the familiar dimensions and z represents a fifth aditional dimension. The
number of dimensions observed and their geometry depends on the scale, L, which is
directly related to the energy E ∼ 1

L studied in an experiment, and the Planck mass,
which defines the scale of energies of the graviton. For n extra dimensions with topology
Cn:

• L � R0 ⇒ 4 dimensions with the topology of a Minkowski space M1,3.

• L � R0 ⇒ (4+n) dimensions with topology M1,n.

• L ∼ R0 ⇒ (4+n) dimensions with topology M1,3 × Cn.

Therefore, the four-dimensional spacetime is a low-energy image, and the n additional
dimensions and their geometry will be noticeable at energies E ∼ 1

R0
.

A traditional example of these additional dimensions is the Kaluza-Klein theory (KK
theory) [2, 9]. In 1921, Kaluza proposed an extension of general relativity to five dimen-
sions explaining how electromagnetism and gravity can be unified under the condition
that the five-dimensional metric does not depend on the fifth dimension. Although this
idea was very interesting, there was an objection: there was not a solid justification for
supressing the dependence on the extra coordinate. In 1926, Klein came to the conclusion
that such hypothesis could be dropped as long as the additional dimension was compact
and microscopic (this is, with topology S1). Hence, the topology of the spacetime would
be M1,3 × S1, rather than M1,4. The main achievement of the KK theory was explaining
electromagnetism as a consequence of pure gravity in five dimensions so that a four-
dimensional observer, this is, which is able to measure at scales L � R0, would perceive
the five-dimensional metric as three independent fields: an effective four-dimensional
metric, a gauge vector potential (which we identify as the electromagnetic potential) and
a scalar field (Kaluza-Klein scalar).

Nevertheless, we find a major inconvenience when studying the effective theory in
four dimensions associated to the five-dimensional Einstein-Hilbert action: the gravita-
tional constant in four dimensions, GN , is not a fundamental quantity, but is related to the
five-dimensional one, ĜN , and to the compactification radius, R0, [2]

GN =
ĜN

2πR0
. (1.5)

This could be a possible way to explain why gravity is ∼ 1032 times weaker than the
weak interaction, which is the so-called hierarchy problem [12]. The solution given by the
Kaluza-Klein theory suggests that this discrepancy between the two interactions might
be associated to the fact that a four-dimensional observer would measure the effective
constant, GN , in stead of the fundamental one, which would be of the order of the weak
coupling constant. But in that case, R0 would have to be macroscopic, and therefore the
fifth dimension would be noticeable. Thus, it is evident that the Kaluza-Klein scenario in
five dimensions has important phenomenological issues.

As an alternative to compact additional dimensions, in 1999, L. Randall and R. Sun-
drum proposed in their article [1] the first model of warped compactification, and proved
that non-compact dimensions are compatible with the experimental observations if the
assumption of a factorizable geometry is dropped. They considered that the observable
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universe is restricted to a (3+1)-dimensional hypersurface, a brane, embedded in a five-
dimensional space, called the bulk. Unlike the Kaluza Klein theory, here, it is the curva-
ture of the bulk which determines the Planck mass and confines gravity to a small region
near the brane, and not the size of the additional dimension. Plus, in this model, the ef-
fective gravitational constant is a fundamental quantity, avoiding the phenomenological
inconsistencies that we found for the KK theory. In section 3 we will study this model
more deeply.

2 Foundations of General Relativity

In this section we intend to review briefly some fundamental concepts that will appear
throughout the text, in order to understand the mathematical work behind it.

2.1 Funtamental tensors related to curvature

In General Relativity, it is through the (locally-valid) Equivalence Principle that Einstein
introduces heuristically the concept of gravitational interaction as a manifestation of the
curvature of spacetime, which is caused by the presence of matter and energy. This is why
differential geometry, which describes curved spaces, is the proper mathematical frame
to develop Einstein’s theory.

One of the main features of a curved space(time) is the fact that if we “parallel trans-
port” a vector from an initial point to a final one, the vector resulting from this operation
depends, generally, on the trajectory followed between this two points. When calculat-
ing the difference of the differential parallel transport of a vector Vα along two different
directions xµ and xν, we obtain,

�
∇µ,∇ν

�
Vα = R α

µνλVλ, (2.1)

where R α
µνλ is the Riemann curvature tensor:

R λ
µνρ = ∂µΓλ

νρ − ∂νΓλ
µρ + Γλ

µσΓσ
νρ − Γλ

νσΓσ
µρ, (2.2)

and Γσ
µν is the Levi-Civita connection, which can be calculated from the metric gµν:

Γσ
µν =

1
2

gσλ
�
∂µgλν + ∂νgµλ − ∂λgµν

�
. (2.3)

Hence, the metric gµν describes completely the geometry and curvature of the space.1

We say a space is of constant curvature when it is maximally symmetric, which hap-
pens when the Riemann tensor verifies the following condition [2]:

Rµνρλ = K
�

gµλgνρ − gµρgνλ

�
, (2.4)

with K a constant related to the radius of curvature R0. For K < 0, the spacetime turns
out to be of positive curvature, and for K > 0, of negative curvature. If K = 0, then the
spacetime is a Minkowski space.

1Thanks to the fact that we are using the Levi-Civita connection, which naturally appears in the frame of
General Relativity.
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pling a and the cosmological constant of the bulk Λ̂ (in contrast with the previous chap-
ter). Consequently, the effective Einstein equations for the brane depends, via the effective
cosmological constant, on the coupling constant. This expresses how effects from the bulk
manifest on the brane. In some way, introducing the dilatonic scalar field in the Ansatz
studied in chapter 6 has allowed a “communication” between the cosmological constants.

8 Conclusions

The Randall-Sundrum model introduces warped compactifications as an attractive and
original alternative to the traditional Kaluza-Klein model of compact dimensions, which
is not able to give a satisfactory explanation of the hierarchy problem if the scale of the
extra dimension is microscopic. In this frame, large non-compact dimensions are compat-
ible with the observations provided that there is a properly curved background “hiding”
the additional dimension, this is, confining gravity near the brane and allowing a normal-
isation of the massless graviton.

When generalising the Randall-Sundrum model to non-dilatonic curved braneworlds,
we have found a surprising result: a four-dimensional effective dynamics arises in the
brane due to the five-dimensional one. The first consequence of this is that an intrin-
sically four-dimensional observer could develop a four-dimensional theory for gravity
based on measurements made from the brane. This is consistent with the possibility of
additional dimensions in our universe. A second important consequence is that the effec-
tive four-dimensional cosmological constant (usually interpreted as the energy density of
the vacuum) is introduced in this context as an integration constant, offering this way a
possible explanation to the cosmological constant problem.

Another interesting aspect of this generalisation is that the constant curvature condi-
tion for the brane leads to the maximally symmetric solutions for the bulk. Furthermore,
we have obtained several combinations of five-dimensional and effective cosmological
constants, concluding that, depending on the foliation of the bulk space, an observer in
the brane could actually measure an effective constant curvature Λ completely different
from the five-dimensional curvature Λ̂.

Finally, we have noticed that introducing a dilatonic scalar field in the action of the
curved braneworlds presents potentially interesting properties. For instance, we have
found that the dependence of Λ on the bulk cosmological constant and the coupling dila-
ton, expresses how the bulk the influences the brane through the effective Einstein equa-
tions.

In conclusion, altough the Randall-Sundrum model was initially proposed as an al-
ternative to Kaluza-Klein compactification, its generalisations turn out to be powerful
tools to understand some phenomenological problems, as they allow to extract remark-
able physical conclusions.
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