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1 Introduction
Mathematical symmetry principles have become an essential part of modern theoretical physics.
The theory of a physical interaction is in modern physics always developed on the basis of an
underlying Lagrangian. The Lagrangian determines the dynamics of the observed fields. If it is
possible to transform the dynamic quantities, i.e. the fields, locally in such a way that the La-
grangian and thus the physical dynamics remain unchanged, one speaks of a local gauge symmetry
of the theory [16]. While the local gauge symmetry of the symmetry group U(1) appears rather as
an incidental attribute in the theory of (quantum) electrodynamics, the principle of gauge symme-
try is the fundamental starting point for the derivation of the Lagrangian of the weak interaction
(symmetry group U(1) × SU(2)) and the strong interaction (symmetry group SU(3)) [13]. From
work by R. Utiyama, D. Sciama and T.W. Kibble emerged around 1960 that General Relativity is
the gauge theory of the Poincaré group, which is the group of all possible transformations between
two inertial systems [1]. This means that all fundamental physical interactions known to us today
are based on a certain mathematical symmetry. So the concept of gauge theories has proven to be
an extremely effective method for constructing consistent physical theories. In this thesis, we first
discuss the basic principles of Lie groups and some groups that play an important role in modern
physics. Then, the basic concepts of gauge theory are explained using the gauge theory of the group
U(1) (electromagnetism) and the gauge theory of the group SU(2). To apply the concept of gauge
theories to gravity, the vielbein formalism of differential geometry is introduced first. While in the
standard formulation of General Relativity the gravitational field is described by the metric tensor
and the associated Christoffel symbols, the vielbein formalism uses so-called vielbeins (or tetrads)
and the spin connection to describe the gravitational field [12]. In the gauge theory of the Poincaré
group the introduced gauge fields can then be identified with the tetrads and the spin connection,
whereby one obtains the curvature scalar, known from General Relativity, as Lagrangian density.
Therefore the field equations of General Relativity follow from the gauge theory of the Poincaré
group [7].
Furthermore, as an open problem, the goal of this thesis is to investigate the gauge theory of the
group of Fock-Lorentz transformations. W. Fock showed in his book "The Theory of Space, Time
and Gravitation" that coordinate transformations between two inertial systems do not necessar-
ily have to be linear if only the principle of relativity but not the invariance of the homogeneous
wave equation is to be fulfilled [6]. The resulting Fock-Lorentz transformations are linear fractional
functions which obey a group structure. Therefore it is aimed in this thesis to derive a theory
of gravity on the basis of the Fock-Lorentz group in an analogous way to the construction of the
general theory of relativity on the basis of the Poincaré transformations. Due to the non-linearity
of the Fock-Lorentz transformations, an interesting new gravitational dynamics is expected. This
is of interest insofar as the standard theory of general relativity does not make correct predictions
for the rotation curves of spiral galaxies and the deflection of light on extremely massive objects
[14].
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6 Conclusion
In this work we have seen that continuous symmetry groups with an infinite number of elements can
be represented by a finite number of parameters and the elements can be generated by exponentiat-
ing a finite number of generators in a complex exponential function. The Lie algebra of generators
provides a method to characterize a continuous group independent of its representation. We then
applied this theory of Lie groups to derive the Lagrangian of quantum electrodynamics as well as
the Lagrangian of SU(2) gauge theory based on the requirement of invariance under local group
transformations. These methods were then applied to develop the gauge theory of the Poincaré
group on a manifold. Under certain conditions (4.68),(4.69) to the appearing gauge fields, General
Relativity could be identified with the gauge theory of the Poincaré group. In addition it gave us
the opportunity to interpret the torsion as the field strength of the vielbein field. On the other
hand, it should be noted that the Standard Model of particle physics is the gauge theory of the
group SU(3)×SU(2)×U(1) [15]. Thus there seem to be two principles underlying all fundamental
physical interactions, which are known to us today: The action principle, which determines the
dynamics of the physical fields, and the invariance of the associated Lagrangian under a certain
local gauge transformation.
Beyond the well known gauge theory of the Poincaré group, one goal of this work was to develop
the gauge theory of the group of Fock-Lorentz transformations. Because of its non-linear property,
it was expected that an interesting new dynamics for gravitational fields could arise from the as-
sociated gauge theory. This expectation was not fulfilled, since after further investigations it was
shown that the Fock-Lorentz group is isomorphic to the known Lorentz group. Thus the gauge
theory of the Fock-Lorentz group is identical to the gauge theory of the Lorentz group. Therefore
no new gravitational dynamics could be developed on the basis of the Fock-Lorentz transformations
that could have been applied to the problems of dark matter. The result of the isomorphism of
the Fock-Lorentz group was nevertheless used to formulate the special theory of relativity on the
basis of these non-linear coordinate transformations. A version of Newton’s second axiom, Maxwell
equations and the Dirac equation were found, that are invariant under Fock-Lorentz transforma-
tions. From the theoretical point of view, it may be interesting to note that the transformations
need not necessarily to be linear but still lead to the same theory. From the practical point of view,
there is no real benefit in sight for the more complicated formulation of special relativity based on
the non-linear Fock-Lorentz transformations. The question arises whether further representations
of the Lorentz group in the form of coordinate transformations on a Minkowski space exist.
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