Mathematical Methods for Physics III (Hilbert Spaces)

- Lecturer:
- José Santiago: Theory and exercises (jsantiago @ugr.es)
- Office hours: M y J (11:00-13:00 y 14:00-15:00) office A03.
- Info on the course:
- www.ugr.es/~jsantiago/Docencia/MMIIIen/

Mathematical Methods for Physics III (Hilbert Spaces)

- Main Literature:
- G. Helmberg, Introduction to spectral theory in Hilbert space, Dover, 1997.
- P. Roman, Some modern mathematics for physicists and other outsiders, vol. 2, Pergamon, 1975.
- P. Lax, Functional Analysis, Wiley 2002.
- L. Abellanas y A. Galindo, Espacios de Hilbert, Eudema, 1987.
- A. Vera López y P. Alegría Ezquerra, Un curso de Análisis Funcional. Teoría y problemas, AVL, 1997.
- A. Galindo y P. Pascual, Mecánica Cuántica, Eudema, 1989.
- E. Romera et al, Métodos Matemáticos, Paraninfo, 2013.
- Lecture notes are very succinct: examples, proofs and relevant comments on the blackboard (take your own notes)

Motivation

- Postulates of Quantum Mechanics
$1^{\text {st }}$ Postulate: Every physical system is associated to a complex Separable hilbert space and every pure state is described by a ray $|\Psi\rangle$ in such space
$2^{\text {nd }}$ Postulate: Every observable in a system is associated to a SElf-ADJoint linear operator in the hilbert space whose eigenvalues are the possible outcomes of a MEASURE OF THE OBSERVAbLE
$3{ }^{\text {rd }}$ Postulate: The probability of getting a value (a) when measuring an obserbable (a) in a pure state $|\Psi\rangle$ is $\langle\Psi| P_{A, a}|\Psi\rangle$ where $P_{A, a}$ is the projector on the eigenvalue proper subspace
- But not only QM, also differential and integral equations, ...

Motivation

- But not only QM, also differential and integral equations, ...
- More generally, Hilbert Spaces are the mathematical structure needed to generalize \mathbb{R}^{n} (or \mathbb{C}^{n}), including its geometrical features and operations with vectors to infinite dimensional vector spaces

Outline

- Linear and metric spaces
- Normed and Banach spaces
- Spaces with scalar product and Hilbert spaces
- Spaces of functions. Eigenvector expansions
- Functionals and dual space. Distribution theory
- Operators in Hilbert Spaces
- Spectral theory

Why Hilbert Spaces?

- They generalize the properties of \mathbb{R}^{n} to spaces of infinite dimension

Linear
Space

- (Finite) linear combinations of vectors. Linear independence. Linear basis.

Metric Space

- Infinite linear combinations require limits: notion of distance

Normed Space

- Generalization of \mathbb{R}^{n} we need geometry (ortogonality, angles). Scalar product
(pre)Hilbert
Space

Linear Space

- Definition: Liear (or vector) space over a field \wedge is a triad ($\mathrm{L},+$, .) formed by a non-empty set L and two binary operations (addition and scalar multiplication) that satisfy:

$$
+: L \times L \longrightarrow L \quad \cdot: \Lambda \times L \longrightarrow L
$$

(i) $(L,+)$ additive group

$$
\left\{\begin{array}{l}
\text { (ia) } x+y=y+x \\
\text { (ib) }(x+y)+z=x+(y+z) \\
(i c) \exists 0 \in L / x+0=x \\
\text { (id) } \forall x \in L, \exists(-x) \in L / x+(-x)=0
\end{array}\right.
$$

(ii) $\lambda \cdot(x+y)=\lambda \cdot x+\lambda \cdot y$
(iii) $\lambda \cdot(\mu \cdot x)=(\lambda \mu) \cdot x$

$$
\begin{aligned}
& \forall x, y, z \in L \\
& \forall \lambda, \mu \in \Lambda
\end{aligned}
$$

(iv) $(\lambda+\mu) \cdot x=\lambda \cdot x+\mu \cdot x$
(v) $1 \cdot x=x$

Linear soace

- Trivial properties:
(i) $\alpha \cdot 0=0$
(v) $\alpha \cdot x=\alpha \cdot y, \alpha \neq 0 \Rightarrow x=y$
(ii) $0 \cdot x=0$
(iii) $-x=(-1) \cdot x$
(vi) $\alpha \cdot x=\beta \cdot x, x \neq 0 \Rightarrow \alpha=\beta$
(iv) $x+y=x+z \Rightarrow y=z$
(vii) $\alpha \cdot x=0 \Rightarrow \alpha=0$ о $x=0$
- Notation:

$$
\begin{aligned}
& A+B=\{x+y, \forall x \in A, \forall y \in B\} \\
& \lambda A=\{\lambda \cdot x, \forall x \in A\} \\
& \Lambda x=\{\lambda \cdot x, \forall \lambda \in \Lambda\} \\
& \Lambda A=\{\lambda \cdot x, \forall \lambda \in \Lambda, \forall x \in A\}
\end{aligned}
$$

Linear soace

- Definition: Linear subspace. Non-trivial subset of a linear space with the structure of a linear space.
$M \subset L(\mathrm{~L}$ linear space, $M \neq \emptyset)$ linear subspace if

$$
\alpha x+\beta y \in M, \quad \forall \alpha, \beta \in \Lambda, \quad \forall x, y \in M
$$

- Properties:

$$
\begin{aligned}
& \left\{M_{\alpha}\right\}_{\alpha \in A} \text { subsp. } \Rightarrow \bigcap_{\alpha} M_{\alpha}, \sum_{i=1}^{n} M_{i} \text { subsp. } \\
& \sum_{i=1}^{n} \lambda_{i} x_{i} \in M, \forall n \text { finite, } \forall x_{1}, \ldots x_{n} \in M
\end{aligned}
$$

- Definition. Linear span: let $S \subset L$

$$
[S]=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}, \forall n \text { finite, } \forall x_{i} \in S, \forall \alpha_{i} \in \Lambda\right\} \text { (it is linear subsp.) }
$$

- Properties:
$[\mathrm{S}]$ is the smaller subsp. that contains S

$$
[S]=\bigcap_{i} M_{i},\left\{M_{i}\right\} \text { set of subsp. that contain } \mathrm{S}
$$

Linear Space

- Definition: Linear independence.

$$
\begin{aligned}
& X \subset L \text { is linearly independent (l.i.) if } \\
& \sum_{i=1}^{n} \alpha_{i} x_{i}=0, x_{i} \in X, \alpha_{i} \in \Lambda \Rightarrow \alpha_{1}=\ldots=\alpha_{n}=0
\end{aligned}
$$

- Definition: Hamel (or linear) basis. Maximal I.i. set (i.e. that it is not contained in any other I.i. set).
- Properties:

Every l.i. set can be extended to a Hamel basis
Every Hamel basis of L has the same number of elements (linear dimension)
$\mathrm{L}=[\mathrm{B}], \forall \mathrm{B}$ Hamel basis of L
B Hamel basis of $\mathrm{L} \Rightarrow x=\sum_{i=1}^{n} \alpha_{i} x_{i}, \alpha_{i} \in \Lambda, x_{i} \in B$ is unique

Linear soace

- Definition: Subspace direct sum. Let $\left\{M_{i}\right\}_{i=1}^{n}$ be subsps. of L

$$
\begin{aligned}
& L=M_{1} \vec{\oplus} \ldots \vec{\oplus} M_{n}\left(\mathrm{~L} \text { is direct sum of } M_{i}\right) \text { if } \\
& \forall x \in L \exists!x_{1} \in M_{1}, \ldots x_{n} \in M_{n} / x=x_{1}+\ldots+x_{n}
\end{aligned}
$$

- Theorem: Let $\mathrm{L}=\mathrm{M}_{1}+\mathrm{M}_{2}$

$$
L=M_{1} \vec{\oplus} M_{2} \Leftrightarrow M_{1} \bigcap M_{2}=\{0\}
$$

[M_{2} is the linear complement of M_{1} in L]

- More generally, if $L=M_{1}+\ldots+M_{n}$

$$
L=M_{1} \vec{\oplus} \ldots \vec{\oplus} M_{n} \Leftrightarrow M_{i} \bigcap \sum_{j \neq i} M_{j}=\{0\}
$$

Linear Space

- Summary:
- Linear (sub)space: (L,+,.)
- Linear span: [S]=\{FINITE linear combinations of elements of S\}
- Linear independence: finite linear combination $=0 \Rightarrow$ al coeffs $=0$
- Hamel basis: Maximal I.i. set. Unique cardinal (linear dimension). Unique linear expansion of elements of L in terms of elements of B.
- Directa sum of subspaces: sum of subspaces with null intersection (to the sum of the remaining subspaces).
- Other results and definitions (mappings, inverse mapping, isomorphisms, projectors, ...) can be defined here but we will postpone it to Hilbert spaces

Metric spaces

- Definition: Metric space is a pair (X, d) where X is an arbitrary but non-empty set and $d: X \times X \rightarrow \mathbb{R}$ is a function (distance or metric) that satisfies:
(i) $d(x, y) \geq 0$
(ii) $d(x, y)=0 \Leftrightarrow x=y$
(iii) $d(x, y)=d(y, x)$

$$
\forall x, y, z \in X
$$

(iv) $d(x, z) \leq d(x, y)+d(y, z)$

- Properties
(i) $d\left(x_{1}, x_{n}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right)$
(ii) $|d(x, z)-d(y, z)| \leq d(x, y)$
(iii) $Y \subset X, d^{\prime}\left(y_{1}, y_{2}\right)=d\left(y_{1}, y_{2}\right) \Rightarrow\left(Y, d^{\prime}\right)$ metric space with induced metric d^{\prime}

Metric spaces

- Definitions: Let (X, d) be a metric space.
- Open ball of radius r centered at $\mathrm{x}: B(x, r)=\{y \in X / d(x, y)<r\}$
- Closed ball of radius r centered at $\mathrm{x}: \bar{B}(x, r)=\{y \in X / d(x, y) \leq r\}$
- Let $A \subset X, x \in A$ is an interior point if $\exists r>0 / B(x, r) \subset A$
- Interior of A: int $\mathrm{A}=\{x \in X / x$ is an interior point of $A\}$
- A is open int $A=A$
- Given $A \subset X, x \in X$ is an adherence point if $\forall r>0, B(x, r) \cap A \neq \emptyset$
- Closure of A: $\bar{A}=\{x \in X / x$ is an adherence point in $A\}$
- Closed subspace: $A \subset X$ is closed si $A=\bar{A}$
- Dense subspace: $A \subset X$ is dense in X if $\bar{A}=X$

Metric spaces

- Properties of open and closed subspaces:
- Let (X, d) be a metric space and $A \subset X$
\emptyset, X are closed (and open)
A open $\Leftrightarrow A^{c}$ closed
$\cap_{i \in I} A_{i}$ closed if A_{i} closed
$\cap_{i=1}^{n} A_{i}$ open if A_{i} open
$\cup_{i=1}^{n} A_{i}$ closed if A_{i} closed
$\cup_{i \in I} A_{i}$ open if A_{i} open

Metric spaces

- Definition: Convergent sequence
$\left\{x_{n}\right\}_{1}^{\infty} \subset X$ converges to x in $X, x_{n} \rightarrow x$, if $\forall r>0, \exists N / x_{n} \in B(x, r), \forall n>N$ (equivalent: the sequence of real numbers $\left\{d\left(x_{n}, x\right)\right\}$ converges to 0)
- Definition: Cauchy sequence

$$
\left\{x_{n}\right\}_{1}^{\infty} \subset X \text { is Cauchy if } \forall r>0, \exists N / d\left(x_{n}, x_{m}\right)<r, \forall n, m>N
$$

- Property: Every convergent sequence is a Cauchy sequence

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x_{m}, x\right) \rightarrow 0
$$

- Definition: A metric space is complete if every Cauchy sequence is convergent. A subspace $S \subset X$ is complete if every Cauchy sequence in S converges in S
- Properties: Let $S \subset X, x \in X$

$$
x \in \bar{S} \Leftrightarrow \exists\left\{x_{n}\right\}_{1}^{\infty} \subset S / x_{n} \rightarrow x
$$

Let X be complete: S is complete $\Leftrightarrow S$ closed

Metric soaces

- Summary:
- Metric (sub)space: (X,d)
- Open and closed balls
- Interior point: open ball centered in x inside A
- int $A=$ set of all interior points of A. Open subspace.
- Adherence point of A, every open ball centered in x has non-zero intersection with A. Closure of A. Closed subspace. Dense subspace in X
- Convergent sequence
- Cauchy sequence
- Complete metric space: Cauchy \Rightarrow convergent
- Other properties (maps, continuity, boundedness, ...) can be defined here but we will do it in Hilbert spaces.

Normed spaces

- Definition: Normed space is a pair $(\mathrm{X},\|\|$.$) where \mathrm{X}$ is a linear space and $\|\|:. X \rightarrow R$ is a function (norm) with the following properties:

$$
\begin{aligned}
& \text { (i) }\|x\| \geq 0 \\
& \text { (ii) }\|x\|=0 \Leftrightarrow x=0 \\
& \text { (iii) }\|\alpha x\|=|\alpha|\|x\| \\
& \text { (iv) }\|x+y\| \leq\|x\|+\|y\| \text { (triangle inequality) }
\end{aligned}
$$

- Every linear subspace of a normed space X is a normed subspace with the norm of X.
- Relation between normed and metric spaces
- Every nomed space is a metric space with the distance $\mathrm{d}(\mathrm{x}, \mathrm{y})=\|\mathrm{x}-\mathrm{y}\|$
- The associated distance satisfies $d(x+z, y+z)=d(x, y), d(\alpha x, \alpha y)=|\alpha| d(x, y)$
- Every metric linear space with these properties is a normed space with $\|\mathrm{x}\|=\mathrm{d}(\mathrm{x}, 0)$
- Definition: Banach space. Complete normed space.

Normed spaces

- Properties: $(X, \||| |)$ normed space
(i) $|||x|\|-\| y\|\mid \leq\| x-y \|, \forall x, y \in X$
(ii) $B\left(x_{0}, r\right)=x_{0}+B(0, r), \forall x_{0} \in X, r>0$
(iii) X Banach $\Longleftrightarrow\left\{a_{n}\right\}_{1}^{\infty} \in X, \sum_{n}\left\|a_{n}\right\|<\infty \Rightarrow \sum_{n} a_{n}$ converges in X
(iv) Let X be Banach, a subspace Y is complete $\Leftrightarrow Y$ is closed in X
- Completion theorem:
- Every normed linear space $L=(L,\|\cdot\|)$ admits a completion \tilde{L}, Banach space, unique up to norm isomorphisms, such that L is dense in \tilde{L} and $\|x\|_{\tilde{L}}=\|x\|_{L}$
- Inifinite sums in normed spaces

$$
v_{n} \in X, v=\sum_{n=1}^{\infty} v_{n} \text { si } \exists v \in X /\left\|\sum_{n=1}^{k} v_{n}-v\right\| \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

Normed spaces

- Hölder inequality (for sums):

$$
\begin{aligned}
& \sum_{j=1}^{\infty}\left|a_{j} b_{j}\right| \leq\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{p}\right)^{1 / p}\left(\sum_{j=1}^{\infty}\left|b_{j}\right|^{q}\right)^{1 / q} \\
& p, q>1, \frac{1}{p}+\frac{1}{q}=1 \quad\left\{a_{j}\right\}_{1}^{\infty} \in l_{\Lambda}^{p} \quad\left\{b_{j}\right\}_{1}^{\infty} \in l_{\Lambda}^{q}
\end{aligned}
$$

- Minkowski inequality (for sums):

$$
\begin{aligned}
& \left(\sum_{j=1}^{\infty}\left|a_{j}+b_{j}\right|^{p}\right)^{1 / p} \leq\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{p}\right)^{1 / p}+\left(\sum_{j=1}^{\infty}\left|b_{j}\right|^{p}\right)^{1 / p} \\
& p \geq 1 \quad\left\{a_{j}\right\}_{1}^{\infty},\left\{b_{j}\right\}_{1}^{\infty} \in l_{\Lambda}^{p}
\end{aligned}
$$

Normed spaces

- Summary:
- Normed (sub)space: (X,||.||)
- Relation norm $\overrightarrow{\boldsymbol{\Delta}}$ distance
- Banach space (complete normed space)
- Absolute convengence \Rightarrow convergence in Banach spaces
- A subspace of a Banach space is Banach \Leftrightarrow it is closed
- Completion theorem: every normed space can be made complete in a unique way
- An infinite sum converges in ($\mathrm{X},||\cdot||$) to v if the sequence of partial sums converges to v
- Hölder and Minkowski inequalities

Hilbert Space

- Definition: A pre-Hilbert space is a linear space with an associated scalar product.
- Scalar product: $\langle.,\rangle:. X \times X \rightarrow \Lambda$ with the following properties

$$
\begin{aligned}
& \text { (i) }\langle v, v\rangle \geq 0,\langle v, v\rangle=0 \Leftrightarrow v=0 \\
& \text { (ii) }\left\langle v, v_{1}+v_{2}\right\rangle=\left\langle v, v_{1}\right\rangle+\left\langle v, v_{2}\right\rangle \\
& \text { (iii) }\langle v, \lambda w\rangle=\lambda\langle v, w\rangle \\
& \text { (iv) }\langle v, w\rangle=\overline{\langle w, v\rangle}
\end{aligned} \quad \forall v, v_{1}, v_{2}, w \in L, \forall \lambda \in \Lambda
$$

- In particular we have

$$
\begin{aligned}
& \left\langle\lambda_{1} v_{1}+\lambda_{2} v_{2}, v\right\rangle=\bar{\lambda}_{1}\left\langle v_{1}, v\right\rangle+\bar{\lambda}_{2}\left\langle v_{2}, v\right\rangle \\
& \langle v, w\rangle=0 \forall w \in L \Rightarrow v=0 \\
& \left\langle v_{1}, w\right\rangle=\left\langle v_{2}, w\right\rangle \forall w \in L \Rightarrow v_{1}=v_{2}
\end{aligned}
$$

Hilbert Space

- Property: A pre-Hilbert space is a normed space with the norm associated to the scalar product $\|v\|=+\sqrt{(v, v)}$
- Definition: A Hilbert space is a pre-Hilbert space that is complete with the norm associated to the scalar product (rather the distance associated to the norm).
- Properties: Let $(X,\langle.,\rangle$.$) be a pre-Hilbert space and ||.|| the associated norm:$

$$
\begin{aligned}
& \|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \text { (Parallelogram identity) } \\
& \operatorname{Re}[\langle x, y\rangle]=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}\right] \quad \text { Polarizatior } \\
& \operatorname{Im}[\langle x, y\rangle]=-\frac{1}{4}\left[\|x+\mathrm{i} y\|^{2}-\|x-\mathrm{i} y\|^{2}\right] \text { (if } \mathrm{X} \text { is complex) }
\end{aligned}
$$

- Relation between scalar product and norm: a normed space ($X,\|\mid\|)$ that satisfies the parallelogram identity is a pre-Hilbert space with a scalar product that satisfies $\|x\|=+\sqrt{\langle x, x\rangle}$

Hi|bert Soace

- Properties: Let $(X,\langle.,\rangle$.$) be a pre-Hilbert space and ||.|| the associated norm:$
- Schwarz-Cauchy-Buniakowski inequality

$$
|\langle v, w\rangle| \leq\|v\|\|w\|, \forall v, w \in X,("=" \Leftrightarrow v, w \text { lin. dep. })
$$

- Triangle inequality

$$
\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in X("=" \Leftrightarrow y=0 \text { о } x=c y, c \geq 0)
$$

- Continuity of the scalar product

$$
\begin{aligned}
& x_{n} \rightarrow x, y_{n} \rightarrow y \Rightarrow\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle \\
& \left\{x_{n}\right\}_{1}^{\infty},\left\{y_{n}\right\}_{1}^{\infty} \text { are Cauchy in } X \Rightarrow\left\{\left\langle x_{n}, y_{n}\right\rangle\right\}_{1}^{\infty} \text { is Cauchy in } \Lambda
\end{aligned}
$$

Hilbert Space

- Properties: Let $(X,\langle.,\rangle$.$) be a pre-Hilbert space and ||.|| the associated norm:$
- $v, w \in X$ are orthogonal if $\langle v, w\rangle=0$
- $S=\left\{v_{\alpha}\right\}_{\alpha \in A} \subset X$ is an orthogonal set if $\left\langle v_{\alpha}, v_{\beta}\right\rangle=0 \forall \alpha \neq \beta$
- $S=\left\{v_{\alpha}\right\}_{\alpha \in A} \subset X$ is an orthonormal set if $\left\langle v_{\alpha}, v_{\beta}\right\rangle=\delta_{\alpha \beta}$
- Every orthogonal set of non-vanishing vectors is l.i. (the inverse is not true)
- (Generalized) Pythagora's Theorem: Let $\left\{v_{j}\right\}_{1}^{n}$ be orthonormal in X

$$
\|v\|^{2}=\sum_{j=1}^{n}\left|\left\langle v_{j}, v\right\rangle\right|^{2}+\left\|v-\sum_{j=1}^{n}\left\langle v_{j}, v\right\rangle v_{j}\right\|^{2}, \quad \forall v \in X
$$

- Pythagora's theorem

$$
\left\|\sum_{j=1}^{n} v_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|v_{j}\right\|^{2}, \operatorname{si}\left\langle v_{i}, v_{j}\right\rangle=0 \quad(i \neq j)
$$

Hilbert Space

- Properties:
- Finite Bessel inequality: let $\left\{v_{j}\right\}_{1}^{n}$ be an orthonormal set

$$
\|v\|^{2} \geq \sum_{i=1}^{n}\left|\left\langle v_{j}, v\right\rangle\right|^{2}, \forall v \in X
$$

- Let $\left\{v_{\alpha}\right\}_{\alpha \in A}$ be an arbitrary orthonormal set

$$
A^{(v)} \equiv\left\{\alpha \in A /\left\langle v_{\alpha}, v\right\rangle \neq 0\right\} \text { is finite or numerable infinite }
$$

- Infinite Bessel inequality: let $\left\{v_{\alpha}\right\}_{\alpha \in A}$ be an arbitrary orthonormal set

$$
\|v\|^{2} \geq \sum_{\alpha \in A}\left|\left\langle v_{\alpha}, v\right\rangle\right|^{2}, \forall v \in X
$$

- Completion Theorem:

For any pre-Hilbert space $(X,\langle.,\rangle$.$) , there is a Hilbert space \mathrm{H}$ (unique up to isomorphisms) and an isomorphism $A: X \rightarrow W$ with W dense en H

Hilloptisoace

- Definition: orthogonal complement Let H Hilbert and $M \subset H, M \neq \emptyset$

$$
M^{\perp} \equiv\{v \in H / v \perp M\}\left(\text { also } M^{\perp}=H \ominus M\right)
$$

- Properties of the orthogonal complement
(i) M^{\perp} is a closed linear subspace $\forall M \subset H, H$ Hilbert
(ii) $M \cap M^{\perp} \subset\{0\}$
(iii) $M^{\perp \perp} \equiv\left(M^{\perp}\right)^{\perp} \supset M$
(iv) $M^{\perp}=(\bar{M})^{\perp}=[M]^{\perp}=(\overline{[M]})^{\perp}$
(v) $\{0\}^{\perp}=H, H^{\perp}=\{0\}$

Hilbert Space

- Theorem of orthogonal projection

> Let M be a closed linear subspace of a Hilbert space H, then $\forall v \in H: \exists!v_{1} \in M, \exists!v_{2} \in M^{\perp} / v=v_{1}+v_{2}\left(v_{1}:\right.$ orthogonal projection of v over $\left.M\right)$

Equivalent:

Let M be a closed linear subspace of a Hilbert space H, then $\forall v \in H: \exists!v_{1} \in M /\left\|v-v_{1}\right\|=\inf \{\|v-y\|, y \in M\}, v-v_{1} \in M^{\perp}$

Hilbert Space

- Properties:
- Definition: Orthogonal direct sum

Let M, N be closed linear subspaces of H Hilbert

$$
H=M \oplus N \text { si } H=M \vec{\oplus} N \text { y } M \perp N
$$

- $H=M \oplus M^{\perp}, \forall$ closed linear subspace $M \subset H$
- Orthogonal projector over M: $P_{M}: H \rightarrow M$

$$
\begin{aligned}
& P_{M} v=v_{1}, v=v_{1}+v_{2} \operatorname{con} v_{1} \in M, v_{2} \in M^{\perp} \\
& P_{M}+P_{M^{\perp}}=1_{H}, \quad P_{M} P_{M^{\perp}}=P_{M^{\perp}} P_{M}=0, \quad P_{M}^{2}=P_{M}, \quad P_{M^{\perp}}^{2}=P_{M^{\perp}}
\end{aligned}
$$

- $S^{\perp \perp}=\overline{[S]} \forall S \subset H, S \neq \emptyset\left(S\right.$ closed subspace $\left.\Rightarrow S^{\perp \perp}=\mathrm{S}\right)$
- S linear subspace of H is dense in $H \Leftrightarrow S^{\perp}=\{0\}$

Hilbert Space

- Theorem: Let $\left\{x_{n}\right\}_{1}^{\infty}$ be an orthonormal set in H (Hilbert) y $\left\{\lambda_{n}\right\}_{1}^{\infty} \subset \Lambda$, then:

$$
\sum_{1}^{\infty} \lambda_{n} x_{n} \text { converges } \Leftrightarrow \sum_{1}^{\infty}\left|\lambda_{n}\right|^{2}<\infty
$$

- Theorem: Let $S=\left\{x_{\alpha}\right\}_{\alpha \in A}$ be an orthonormal set in H (Hilbert). Let $M \equiv \overline{[S]}$
(i) $x_{M} \equiv \sum_{\alpha \in A}\left\langle x_{\alpha}, x\right\rangle x_{\alpha} \in M$
(ii) x_{M} is the only vector that satisfies $x-x_{M} \perp M$
(iii) $x \in M \Rightarrow x=x_{M}$
(iv) $d(x, M) \equiv \inf _{y \in M}\|x-y\|=d\left(x, x_{M}\right)$

> The best approximation of a vector x by elements of $M=\overline{\left[\left\{x_{\alpha}\right\}_{\alpha \in A}\right]}$ orthonormal is given by $P_{M} x$

Hilbert Space

- Orthonormalization theorem: Gram-Schmidt method

$$
\begin{aligned}
& \text { Let }\left\{v_{j}\right\}_{j \in J} \subset H \text { a l.i. set, with } J \text { finite or numerable infinite }(\mathbb{N}) \\
& \exists\left\{u_{j}\right\}_{j \in J} \text { orthonormal such that: } \\
& \text { (i) } u_{i} \in\left[\left\{v_{j}\right\}_{j \in J}\right], v_{i} \in\left[\left\{u_{j}\right\}_{j \in J}\right] \quad \text { (ii) } \overline{\left[\left\{u_{j}\right\}_{j \in J}\right]}=\overline{\left[\left\{v_{j}\right\}_{j \in J}\right]}
\end{aligned}
$$

Solution:

$$
u_{m} \equiv \frac{w_{m}}{\left\|w_{m}\right\|}, \text { con } w_{m} \equiv v_{m}-\sum_{k=1}^{m-1}\left\langle u_{k}, v_{m}\right\rangle u_{k}
$$

- Definition: Orthonormal basis

Maximal orthonormal set $S=\left\{v_{\alpha}\right\}_{\alpha \in A} \subset H$

- Theorem: Existence of orthonormal basis

Every Hilbert space $\neq\{0\}$ has an orthonormal basis

Hilbert Space

- Theorem: Characterization of orthonormal basis:

Let $S=\left\{v_{\alpha}\right\}_{\alpha \in A} \subset H \neq\{0\}$ an orthonormal set. The following statements are equivalent:
(i) S is an orthonormal basis of H
(ii) $\overline{[S]}=H$
(iii) $v \perp v_{\alpha}, \forall \alpha \in A \Rightarrow v=0 \quad S^{\perp}=\{0\}$
(iv) $\forall v \in H \Rightarrow v=\sum_{\alpha}\left\langle v_{\alpha}, v\right\rangle v_{\alpha}$ (Fourier expansion)
(v) $\forall v, w \in H \Rightarrow\langle v, w\rangle=\sum_{\alpha}\left\langle v, v_{\alpha}\right\rangle\left\langle v_{\alpha}, w\right\rangle$ (Parseval identity)
(vi) $\forall v \in H \Rightarrow\|v\|^{2}=\sum_{\alpha}\left|\left\langle v_{\alpha}, v\right\rangle\right|^{2}$ (Parseval identity)

Hilbert Space

- Definition: Separable topologial (and metric) space:
- A topological space X is separable if it contains a numerable subset dense in X.
- A metric space M is separable if and only if it has a numerable basis of open subsets.
- Separability criterion in Hilbert spaces

A Hilbert space $H \neq\{0\}$ is separable
it admits a numerable orthonormal basis (finite or numerable infinite)

- Proposition:
- All orthonormal basis of a Hilbert space H have the same cardinal (Hilbert dimension of H).

Hilbert Space

- Theorem of Hilbert Space classification

Definition: Two Hilbert spaces, H_{1}, H_{2} over Λ are isomorphic if
$\exists U: H_{1} \rightarrow H_{2}, U$ linear isomorphism $/\langle U x, U y\rangle_{H_{2}}=\langle x, y\rangle_{H_{1}}, \forall x, y \in H_{1}$ Theorem:

Every Hilbert space $H \neq\{0\}$ is isomorphic to $l_{\Lambda}^{2}(A)$
where the cardinal of $A=$ the Hilbert dimension of H

Corolaries:

- A Hilbert space of finite Hilbert dimension, n, is isomorphic to \mathbb{C}^{n}
- A separable Hilbert space of infinite Hilbert dimension is isomorphic to $l_{\Lambda}^{2}(\mathbb{N})$
- Let H be a separable Hilbert space of Hilbert dimension h and linear dimension l
- $h<\infty \Rightarrow l=h$ and any orthonormal basis is a linear basis
_ $h=\infty \Rightarrow l>h$ and no orthonormal basis is a linear basis

Hilbert Soace

- Summary:
- (Pre-)Hilbert space: Complete linear space with scalar product
- Hilbert \leftrightarrows Normed
- Parallelogram and polarization identities
- Schwarz and triangle inequality, continuity of scalar product
- Orthonormality. Pythagora's theorem and Bessel inequality
- Completion theorem
- Orthogonal complement and orthogonal projector. Best approximation to a vector.
- Gram-Schmidt orthonormalization method
- Orthonormal basis. Separable space
- Theorem of Hilbert Space classification

Space of functions

- Some of the most important Hilbert spaces are spaces of functions.
- Examples:

$$
\begin{aligned}
& \left(C_{\Lambda}[a, b],\|\cdot\| \|_{\infty}\right) \text { complete, not pre-Hilbert } \\
& \left(C_{\Lambda}[a, b],\|\cdot\| \|_{p}\right), p \geq 1 \text { not complete (} p=2 \text { pre-Hilbert) } \\
& \left(B(\mathbb{R}),\|\cdot\| \|_{\infty}\right) \text { complete, not pre-Hilbert } \\
& \left.\left(R^{p}(\mathbb{R}),\|\cdot\| \|_{p}\right), p \geq 1 \text { not complete (} p=2 \text { pre-Hilbert }\right)
\end{aligned}
$$

- Example of not completeness of $\left(C_{\Lambda}[a, b],\|.\| \|_{2}\right)$
$f_{n}(x)= \begin{cases}0, & x \leq \frac{1}{2}-\frac{1}{n}, \\ n x-\frac{n}{2}+1, & \frac{1}{2}-\frac{1}{n} \leq x \leq \frac{1}{2}, \quad \text { is Cauchy but does not converge in }\left(C_{\mathbb{R}}[0,1],\|\cdot\| \|_{2}\right) \\ 1, & \frac{1}{2} \leq x,\end{cases}$
- We can enlarge the space with the limits of all Cauchy sequences to complete it. We need a new concept of integral for that.

Space of functions

- Riemann integral:
- Partition of the "x axis" and common convergence of upper and lower integrals

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=I \\
& \text { si } I=\lim _{|\pi| \rightarrow 0} \sum_{1}^{n} R_{k}^{\inf }=\lim _{|\pi| \rightarrow 0} \sum_{1}^{n} R_{k}^{\text {sup }}<\infty
\end{aligned}
$$

- Lebesgue integral:
- Partition of the "y axis" and measure of subsets of the "x axis"

$$
\begin{aligned}
& \int_{\mathbb{R}} f(x) d x \equiv \lim _{\mid \pi x \rightarrow 0} \Sigma_{\pi}(f) \\
& \Sigma_{\pi}(f) \equiv \sum_{j=1}^{n} y_{j-1} \mu\left\{f^{-1}\left(\left[y_{j-1}, y_{j}\right]\right\}\right.
\end{aligned}
$$

Space of functions

- We need a new concept of "measure"
- Borel set: Element of \mathcal{B}, minimal family of subsets of \mathbb{R}
that contains all the open intervals (a, b) and satisfies:
(i) $\left\{B_{j}\right\}_{1}^{\infty} \subset \mathcal{B} \Rightarrow \bigcup_{j=1}^{\infty} B_{j} \subset \mathcal{B} \quad$ (ii) $B \subset \mathcal{B} \Rightarrow \mathbb{R}-B \subset \mathcal{B}$
- Borel-Lebesgue measure (of a borel set B): $\quad \mu(B) \equiv \inf _{I \supset B} l(I)$

$$
I=\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right) \text { (union of disjoint open intervals) } \quad l(I) \equiv \sum_{j=1}^{\infty}\left|b_{j}-a_{j}\right|
$$

- Properties:

$$
\begin{aligned}
& B \in \mathcal{B} \Rightarrow \mu(B)=\inf \{\mu(A), A \text { open } \supset B\}=\sup \{\mu(C), C \text { compact } \subset B\} \\
& B_{n} \in \mathcal{B}, n \geq 1, \text { disjoint in pairs } \Rightarrow \mu\left(\cup_{1}^{\infty} B_{n}\right)=\sum_{1}^{\infty} \mu\left(B_{n}\right)
\end{aligned}
$$

Space of functions

- We need a new concept of "measure"
- Borel measurable function: $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable if $f^{-1}(B) \in \mathcal{B}, \forall B \in \mathcal{B}$
- f complex is Borel if both its real and imaginary parts are
- Let f, g, be real: $f+g, \lambda f(\lambda \in \mathbb{R}), f g,|f|$ are borel
- Characterization of Borel measurable functions:
a) $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel $\Leftrightarrow f^{-1}\{(a, b)\} \in \mathcal{B}, \forall a, b$
b) $f_{n}(x) \rightarrow f(x), \forall x, f_{n}$ Borel $\Rightarrow f$ Borel
c) $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel $\Leftrightarrow\{x / f(x)<b\} \in \mathcal{B}, \forall b$
- Lebesgue integral let $f \geq 0$, bounded and Borel measurable. Its Lebesgue integral is

$$
\begin{array}{ll}
\int_{\mathbb{R}} f d x \equiv \lim _{|\pi| \rightarrow 0} \Sigma_{\pi}(f) & \pi: 0=y_{0}<y_{1}<\ldots<y_{n}=\sup f \text { partition of the range of } f \\
\left.\Sigma_{\pi}(f) \equiv \sum_{j=1}^{n} y_{j-1} \mu\left\{f^{-1}\left(\left[y_{j-1}, y_{j}\right]\right)\right\}\right\} \begin{array}{l}
\text { Easy to extend to more } \\
\text { general functions }
\end{array}
\end{array}
$$

Space of functions

- Lebesgue integrable functions

$$
\begin{aligned}
& f \in \mathcal{L}_{\mathbb{R}}^{1}(\mathbb{R}) \text { if } \int_{\mathbb{R}}|f| d x<+\infty, \quad \int_{\mathbb{R}} f d x \equiv \int_{\mathbb{R}} \frac{|f|+f}{2} d x-\int_{\mathbb{R}} \frac{|f|-f}{2} d x \\
& f \in \mathcal{L}_{\mathbb{C}}^{1}(\mathbb{R}) \text { if } \int_{\mathbb{R}}|f| d x<+\infty, \quad \int_{\mathbb{R}} f d x \equiv \int_{\mathbb{R}} \operatorname{Re}(f) d x+\mathrm{i} \int_{\mathbb{R}} \operatorname{Im}(f) d x
\end{aligned}
$$

- Properties almost everywhere (a.e.).

A property $P(x), x \in \mathbb{R}$ is satisfied almost everywhere (a.e.) if the set $\{x / P(x)$ false $\}$ has vanishing measure For instance $f_{1}=f_{2}$ a.e. $\Leftrightarrow \int_{\mathbb{R}}\left|f_{1}-f_{2}\right| d x=0$

- L1 Spaces.
$L^{1}(\mathbb{R})$ is the set of equivalence classes of functions in $\mathcal{L}^{1}(\mathbb{R})$ with the equivalence relation: $f_{1}=f_{2}$ a.e.

Space of functions

- Lp spaces:

$$
f \in \mathcal{L}^{p}(B) \text { if }\left.\left.\|f\|_{p} \equiv\left|\int_{B}\right| f\right|^{p} d x\right|^{1 / p}<+\infty, \quad 1 \leq p<+\infty
$$

- Definition: $L^{p}(B)$ set of equivalence classes of functions $f \in \mathcal{L}^{p}(B)$ with equivalence relation $f=g$ a.e.
- Properties:
(i) $\left(L^{p}(\mathbb{R}),\|\cdot\|_{p}\right),\left(L^{p}(B),\|\cdot\| \|_{p}\right)$, are Banach
(ii) $C[a, b]$ is dense in $\left(L^{p}([a, b]),\|\cdot\| \|_{p}\right)$
(iii) $\left(L^{p}([a, b]),\|\cdot\| \|_{p}\right)$ is the completion of $C[a, b]($ same $[a, b] \rightarrow \mathbb{R})$
(iv) $L^{2}(\mathbb{R})$ is Hilbert with the scalar product

$$
\langle f, g\rangle \equiv \int_{\mathbb{R}} \bar{f}(x) g(x) d x,(\text { same for }[a, b])
$$

Space of functions

- (Integral) Hölder and Minkowski inequalities

$$
\text { Let } f, h \in L^{p}(X), g \in L^{q}(X), 1<p<\infty, \frac{1}{p}+\frac{1}{q}=1
$$

Hölder inequality

$$
\int_{X}|f g| d x \leq\left\{\int_{X}|f|^{p} d x\right\}^{1 / p} \cdot\left\{\int_{X}|g|^{q} d x\right\}^{1 / q}
$$

Minkowski inequality

$$
\left\{\int_{X}|f+h|^{p} d x\right\}^{1 / p} \leq\left\{\int_{X}|f|^{p} d x\right\}^{1 / p}+\left\{\int_{X}|h|^{p} d x\right\}^{1 / p}
$$

Space of functions

- Some relevant orthonormal bases in L^{2} :
- Legendre's basis

$$
\begin{aligned}
& P_{n}(x) \equiv \frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \text { (Legendre's Polynomials) } \\
& \left\{\sqrt{n+1 / 2} P_{n}\right\}_{0}^{\infty} \text { is an orthonormal basis of } L^{2}[-1,1] \\
& \left(1-x^{2}\right) P_{n}^{\prime \prime}-2 x P_{n}^{\prime}+n(n+1) P_{n}=0, n=0,1, \ldots \text { (Legendre's eq.) }
\end{aligned}
$$

- Hermite's basis

$$
\begin{aligned}
& H_{n}(x) \equiv(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} \text { (Hermite's polynomials) } \\
& \left\{\left(\sqrt{\pi} 2^{n} n!\right)^{-1 / 2} e^{-x^{2} / 2} H_{n}\right\}_{0}^{\infty} \text { is an orthonormal basis of } L^{2}(\mathbb{R}) \\
& H_{n}^{\prime \prime}-2 x H_{n}^{\prime}+2 n H_{n}=0, n=0,1, \ldots \text { (Hermite's eq.) }
\end{aligned}
$$

Space of functions

- Some relevant orthonormal bases in L^{2} :
- Laguerre's basis

$$
\begin{aligned}
& L_{n}(x) \equiv \frac{1}{n!} e^{x} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right) \text { (Laguerre's polynomial) } \\
& \left\{e^{-x / 2} L_{n}\right\}_{0}^{\infty} \text { is an orthonormal basis of } L^{2}[0, \infty) \\
& x L_{n}^{\prime \prime}+(1-x) L_{n}^{\prime}+n L_{n}=0, n=0,1, \ldots \text { (Laguerre's eq.) }
\end{aligned}
$$

- Orthonormal bases of polynomial associated to a weight function

Let $0 \neq \rho \in L^{1}(R)$, non-negative $/ \exists \alpha>0$, for which $\int_{\mathbb{R}} e^{|\alpha| t} \rho(t) d t<\infty$ If $\left\{p_{n}(t)\right\}_{0}^{\infty}$ are orthonormal polynomial with respect to the scalar product $\langle f, g\rangle_{\rho} \equiv \int_{\mathbb{R}} \bar{f} g \rho$, obteined from $\left\{t^{n}\right\}_{0}^{\infty}$ through the Gram-Schmidt method, then $\left\{p_{n}(t) \rho^{1 / 2}(t)\right\}_{0}^{\infty}$ is an orthonormal basis of $L^{2}(\operatorname{sop} \rho)$

Space of functions

- Some relevant orthonormal bases in L^{2} :
- Fourier's basis
$\left\{e^{\mathrm{i} 2 \pi n x / L} / \sqrt{L}\right\}_{-\infty}^{+\infty}$ is an orthonormal basis in $L^{2}[a, a+L]$

$$
\left\{\frac{1}{\sqrt{L}}, \sqrt{\frac{2}{L}} \cos \left(\frac{2 \pi n x}{L}\right), \sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi n x}{L}\right),\right\}(n=1,2, \ldots) \text { is an orthonormal basis in } L^{2}[a, a+L]
$$

$$
\begin{aligned}
& f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\mathrm{i} \frac{2 \pi n x}{L}}=a_{0}+\sum_{n=1}^{\infty}\left[2 a_{n} \cos \left(\frac{2 \pi n x}{L}\right)+2 b_{n} \sin \left(\frac{2 \pi n x}{L}\right)\right] \\
& c_{n}=\frac{1}{L} \int_{a}^{a+L} e^{-\mathrm{i} \frac{2 \pi n x}{L}} f(x) d x \\
& a_{n}=\frac{1}{L} \int_{a}^{a+L} \cos \left(\frac{2 \pi n x}{L}\right) f(x) d x, \quad b_{n}=\frac{1}{L} \int_{a}^{a+L} \sin \left(\frac{2 \pi n x}{L}\right) f(x) d x
\end{aligned}
$$

Space of functions

- Some relevant orthonormal bases in L^{2} :
- Fourier's basis Convergencia en L^{2} (c.d.)

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\mathrm{i} \frac{2 \pi n x}{L}}=a_{0}+\sum_{n=1}^{\infty}\left[2 a_{n} \cos \left(\frac{2 \pi n x}{L}\right)+2 b_{n} \sin \left(\frac{2 \pi n x}{L}\right)\right]
$$

- Jordan convergence criterion

Let $f \in L_{\mathbb{C}}^{2}[a, b]$ with bounded variation in (a, b), then the Fourier series converges at every point $\mathrm{x} \in(a, b)$ to $\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon)+f(x-\epsilon)}{2}$

- Bases with only sines or cosines $f \in L_{\mathbb{C}}^{2}[a, b]$ can be expanded in Fourier series using only sines or only cosines by expanding antisymmetric or symmetric extension of the function

Space of functions

- Expansion in eigenvectors
- Consider the following differential operator

$$
\mathcal{O} \equiv \frac{d^{2}}{d x^{2}}
$$

every function $f \in L^{2}[a, a+L]$ can be expanded in eigen-functions of \mathcal{O}

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} f_{n}(x)
$$

with

$$
f_{n}(x)=e^{\mathrm{i} \frac{2 \pi n x}{L}}, \quad \mathcal{O} f_{n}=-\left(\frac{2 \pi n}{L}\right)^{2} f_{n}
$$

Eigenvalues

Space of functions

- Summary:
- Borel sets. Borel-Lebesgue measure. Borel measurable functions.
- Lebesgue integral.
- Lebesgue integrable functions. \mathcal{L}^{1} Spaces
- Properties almost everywhere. L^{p} Spaces
- $L^{2}(B)$ is a Hilbert space (completion of $C(B)$)
- Hölder and Minkowski integral inequalities
- Orthonormal polynomials in $L^{2}(B)$
- Fourier basis. Fourier expansion.
- Expansion in eigenvectors.

Linear forms

- Definitions: Let L be a linear space over the field Λ
- A linear form (or functional) is a linear mapping $F: L \rightarrow \Lambda$

$$
F(x+y)=F(x)+F(y), \quad F(\alpha x)=\alpha F(x), \forall x, y \in L, \forall \alpha \in \Lambda
$$

- A linear form in a normed space is continuous if

$$
\begin{aligned}
& \forall\left\{x_{n}\right\} \rightarrow x \Rightarrow\left\{F\left(x_{n}\right)\right\} \rightarrow F(x), \forall x \in L \\
& \forall \epsilon>0 \exists \delta>0 /\|x-y\|<\delta \Rightarrow|F(x)-F(y)|<\epsilon
\end{aligned}
$$

- A linear form in a normed space is bounded if

$$
\begin{aligned}
& \quad \exists M \geq 0 /|F(x)| \leq M\|x\|, \forall x \in L \\
& \|F\|=\sup _{x \neq 0} \frac{|F(x)|}{\|x\|}=\sup _{\|x\|=1}|F(x)|=\inf \{M \geq 0 /|F(x)| \leq M\|x\|\}
\end{aligned}
$$

- Theorem: Let F be a linear form in a normed space

$$
F \text { is bounded } \Leftrightarrow F \text { is continuous }
$$

Linear forms

- Definition: Dual space of a Hilbert space ($\mathrm{H},<,>$) is the set of all continuous functional forms in H .

$$
\tilde{H}=\{F: H \rightarrow \Lambda / F \text { linear and continuous }\} \equiv \mathcal{A}(H, \Lambda)
$$

It is a Hilbert space (as we will see)

- Proposition: Let ($\mathrm{H},<,>$) be a Hilbert space of finite dimension:
- All functionals in H are continuous
- $\operatorname{dim} \tilde{H}=\operatorname{dim} H$
- Riesz-Fréchet representation theorem: Let (H,<,>) be a Hilbert space (separable or not)

$$
\begin{aligned}
& \forall F: H \rightarrow \Lambda \text { linear and continuous } \\
& \exists!f \in H / F(g)=\langle f, g\rangle, \forall g \in H
\end{aligned}
$$

Linear forms

- Properties:
- Let $F \neq 0 \Rightarrow \operatorname{dim}\left(M_{0}^{\perp}\right)=1 \quad\left(M_{0} \equiv\{h \in H / F(h)=0\}\right)$
- Let $\left\{e_{j}\right\}_{1}^{n}$ be an orthonormal basis of $\Lambda^{n}, \forall \phi: H \rightarrow \Lambda^{n}$ linear and continuous

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n} \in H / \phi(y)=\sum_{1}^{n}\left\langle x_{j}, y\right\rangle e_{j} \\
& \left.\right|_{\mathcal{A}(H, \Lambda)}=\|x\|_{H}
\end{aligned}
$$

- F linear form in a Hilbert space is continuous \Leftrightarrow its kernel M_{0} is closed in H
- \tilde{H} is a Hilbert space with the scalar product associated to H

$$
\begin{aligned}
\langle., .\rangle: \tilde{H} \times \tilde{H} & \rightarrow \Lambda \\
F_{f}, F_{g} & \rightarrow\left\langle F_{f}, F_{g}\right\rangle \equiv\langle g, f\rangle
\end{aligned}
$$

. The mapping $f \in H \rightarrow F_{f} \in \tilde{H}$ with $F_{f}(g)=\langle f, g\rangle$,
is an anti-linear isometric bijection

Linear forms

- Bilinear forms: let $(H,\langle.,\rangle$.$) be a Hilbert space over \Lambda$
- Bilinear form (rather sesquilinear): mapping $\phi: H \times H \rightarrow \Lambda$ such that

$$
\begin{aligned}
& \text { (i) } \phi(\alpha x, \beta y)=\bar{\alpha} \beta \phi(x, y), \forall \alpha, \beta \in \Lambda, \forall x, y \in H \\
& \text { (ii) } \phi\left(x_{1}+x_{2}, y\right)=\phi\left(x_{1}, y\right)+\phi\left(x_{2}, y\right) \\
& \text { (iii) } \phi\left(x, y_{1}+y_{2}\right)=\phi\left(x, y_{1}\right)+\phi\left(x, y_{2}\right)
\end{aligned}
$$

- A bilinear form is bounded if $\exists k \geq 0 /|\phi(x, y)| \leq k\|x\|\|y\|, \forall x, y \in H$

$$
\|\phi\|=\sup _{x \neq 0 \neq y} \frac{|\phi(x, y)|}{\|x\|\|y\|} \text { (it is a norm) }
$$

- Theorem: let $\phi: H \times H \rightarrow \Lambda$, be a bilinear form bounded in H (Hilbert). $\exists!A \in \mathcal{A}(H)$ (bounded linear mapping $A: H \rightarrow H$) such that

$$
\begin{gathered}
\phi(x, y)=\langle x, A y\rangle, \forall x, y \in H \\
\text { and }\|\phi\|=\|A\| \equiv \sup _{0 \neq x \in H} \frac{\|A x\|}{\|x\|}<+\infty
\end{gathered}
$$

Linear forms

- Strong convergence (in norm) $x_{n} \xrightarrow{s} n \Leftrightarrow\left\|x_{n}-x\right\| \rightarrow 0$
- Weak convergence $\quad x_{n} \xrightarrow{w} n \Leftrightarrow F\left(x_{n}\right) \rightarrow F(x), \forall F \in \tilde{H}$
- Theorems:

$$
\begin{aligned}
x_{n} \xrightarrow{s} x \Rightarrow x_{n} \xrightarrow{w} x \\
\left.\begin{array}{l}
x_{n} \xrightarrow{w} x \\
\left\|x_{n}\right\| \\
\rightarrow \\
\|x\|
\end{array}\right\} \Leftrightarrow x_{n} \xrightarrow{s} x \\
\left.\begin{array}{l}
x_{n} \xrightarrow{w} x \\
x_{n} \xrightarrow[\rightarrow]{s} x^{\prime}
\end{array}\right\} \Rightarrow x_{n} \xrightarrow{w} x^{\prime}
\end{aligned}
$$

Distributions

- Test function spaces:
- Test functions of compact support

$$
\mathcal{D}(\mathbb{R})=\left\{f \in \mathcal{C}^{\infty}(\mathbb{R}) / \operatorname{supp}(f) \text { bounded of } \mathbb{R}\right\}, \quad(\operatorname{supp}(f)=\{x / f(x) \neq 0\})
$$

it is a linear space and algebra of functions.

- Convergence

$$
f_{n} \xrightarrow{\mathcal{D}} f \text { if }\left\{\begin{array}{l}
i) \operatorname{supp}\left(f_{n}\right) \subset K \text { bounded and independent of } n \\
i i)\left\|f_{n}^{(p)}-f^{(p)}\right\|_{\infty} \underset{n \rightarrow \infty}{\longrightarrow} 0, \forall p \geq 0
\end{array}\right.
$$

- Test functions of rapid decrease

$$
\mathcal{S}(\mathbb{R})=\left\{f \in \mathcal{C}^{\infty}(\mathbb{R}) / \sup _{k \cdot m \in \mathbb{N}}\left\|x^{k} f^{(m)}\right\|_{\infty}<\infty\right\}
$$

it is a semi-normed space $\left(\|f\|_{k m}=\left\|x^{k} f^{(m)}\right\|_{\infty}\right.$ is semi-norm)

- Convergence

$$
f_{n} \xrightarrow{\mathcal{S}} f \text { si }\left\|x^{k} f_{n}^{(m)}(x)-x^{k} f^{(m)}(x)\right\|_{\infty} \underset{n \rightarrow \infty}{\longrightarrow} 0, \forall k, m \in \mathbb{N}
$$

- Properties

$$
f_{n} \xrightarrow{\mathcal{D}} f \Rightarrow f_{n} \xrightarrow{\mathcal{S}} f, \quad \mathcal{D} \text { is dense in } \mathcal{S}
$$

Distributions

- Definitions and properties:
- Distribution: $T: \mathcal{D}(\mathbb{R}) \rightarrow \Lambda$ linear and continuous (in the sense of \mathcal{D})

$$
\begin{aligned}
& T\left(\alpha_{1} \phi_{1}+\alpha_{2} \phi_{2}\right)=\alpha_{1} T\left(\phi_{1}\right)+\alpha_{2} T\left(\phi_{2}\right), \forall \alpha_{1,2} \in \Lambda, \forall \phi_{1,2} \in \mathcal{D} \\
& \phi_{n} \xrightarrow{\mathcal{D}} \phi \Rightarrow T\left(\phi_{n}\right) \rightarrow T(\phi)
\end{aligned}
$$

- Space of distributions: $\widetilde{\mathcal{D}(\mathbb{R})}=\{T / T$ distribution $\}$
- Sufficient condition for T to be continuous
$\exists M>0$ indep. of $\phi /|T(\phi)| \leq M\|\phi\|_{\infty}, \forall \phi \in \mathcal{D}(\mathbb{R}) \Rightarrow T$ continuous in the sense of \mathcal{D}
- Tempered distribution: $T: \mathcal{S}(\mathbb{R}) \rightarrow \Lambda$ linear and continuous (in the sense of \mathcal{S})
- Space of tempered distributions: $\widetilde{\mathcal{S}(\mathbb{R})}$
- The sufficient condition for continuity applies the same.
- Property:

$$
\widetilde{\mathcal{S}(\mathbb{R})} \subset \widetilde{\mathcal{D}(\mathbb{R})}
$$

Distributions

- Operations with distributions
- Multiplication by a function:
$\rho T: \phi \rightarrow T(\rho \phi)$ is an element of $\widetilde{\mathcal{D}(\mathbb{R})}, \forall \rho \in C^{\infty}$
is an element of $\widetilde{\mathcal{S}(\mathbb{R})}, \forall \rho \in C^{\infty}$ of slow growth
- Derivative of a distribution: $\forall m, \exists N_{m} /\left\|\rho^{(m)} /\left(1+|x|^{2}\right)^{N_{m}}\right\|_{\infty}<\infty$

$$
T^{(m)}: \phi \rightarrow T\left((-1)^{m} \phi^{(m)}\right)
$$

- Shift:

$$
T_{a}: \phi \rightarrow T\left(\phi_{-a}\right) \text { with } \phi_{a}(x) \equiv \phi(x-a)
$$

- These operations are continuous with respect to the following definition of convercend of distributions

$$
T_{n} \rightarrow T \Leftrightarrow T_{n}(\phi) \rightarrow T(\phi), \forall \phi \in \mathcal{D}(\mathcal{S})
$$

With this notion of convergence \tilde{D} and \tilde{S} are complete and \tilde{S} is dense en \tilde{D}

Distributions

- Examples of distributions:
- Dirac's delta $\quad \delta_{x_{0}}: \phi \rightarrow \phi\left(x_{0}\right)$ (tempered distribution)

Normally introduced as a "function": $\delta_{x_{0}}(\phi)=\int \delta\left(x-x_{0}\right) \phi(x) d x$

$$
\delta\left(x-x_{0}\right)=\left\{\begin{array}{l}
\infty, x=x_{0} \\
0, x \neq x_{0}
\end{array}\right.
$$

and as the limit of a sequence of functions

$$
\delta_{0}=\lim _{\lambda \rightarrow \infty} \sqrt{\frac{\lambda}{\pi}} e^{-\lambda x^{2}}=\lim _{\epsilon \downarrow 0}(\pi \mathrm{i} \epsilon)^{-1 / 2} e^{\mathrm{i} x^{2} / \epsilon}=\lim _{\lambda \rightarrow \infty} \frac{\sin \lambda x}{\pi x}
$$

$$
\delta\left(x-x_{0}\right)=\frac{d}{d x} \theta\left(x-x_{0}\right), \quad \theta(x)=\left\{\begin{array}{l}
1, x>0, \\
0, x<0,
\end{array} \quad\right. \text { (Heaviside step function) }
$$

Let $f(x)$ be a function with a finite number of simple zeroes, then

$$
\delta(f(x))=\sum_{1}^{n} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|}, \quad f\left(x_{i}\right)=0
$$

Distributions

- Examples of distributions:
- Principal value of $\frac{1}{x}$ (tempered distribution) $\operatorname{PV} \frac{1}{x}(\phi)=\lim _{\epsilon \downarrow 0} \int_{|x| \geq \epsilon} d x \frac{\phi}{x}$

We have $\operatorname{PV} \frac{1}{x}=\frac{d}{d x} \ln |x|$
Taking derivatives of $\lim _{\epsilon \downarrow 0} \ln (\epsilon+\mathrm{i} x)=\ln |x|-\mathrm{i} \frac{\pi}{2}+\mathrm{i} \pi \theta(x)$, we find

$$
\frac{1}{x \mp i 0} \equiv \lim _{\epsilon \downarrow 0} \frac{1}{x \mp \mathrm{i} \epsilon}=\mathrm{VP} \frac{1}{x} \pm \mathrm{i} \pi \delta(x)
$$

- Characteristic distribution (distribution) Sea $X \subset \mathbb{R}$

$$
\chi_{X}: \phi \rightarrow \chi_{X}(\phi)=\int_{X} \phi(x) d x
$$

Usually presented as a "function" $\chi_{X}(x)=\left\{\begin{array}{l}0, \\ 1, \\ 1, x \in X\end{array}\right.$

Distributions

- Regularity theorem
$\forall T \in \widetilde{\mathcal{D}(\mathbb{R})}, \exists f$ continuous in $\mathbb{R}, \exists n \in \mathbb{N} / T=T_{f}^{(n)}$

$$
\text { where } T_{f}(\phi) \equiv \int_{\mathbb{R}} \bar{f}(x) \phi(x) d x
$$

- Fourier transform

$$
\begin{aligned}
& \hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\mathrm{i} k x} f(x) d x, \text { (direct transform) } \\
& \check{f}(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{\mathrm{i} k x} f(y) d y, \text { (inverse transform) } \quad \text { we have } \dot{\tilde{f}}=\dot{\hat{f}}=f
\end{aligned}
$$

- Fourier transform of distributions

$$
\hat{T}(\phi) \equiv T(\check{\phi}), \forall T \in \widetilde{\mathcal{D}(\mathbb{R})}
$$

Linear forms and distributions

- Summary:
- Linear forms $T: H \rightarrow \Lambda$, bounded and continuous
- Dual space: bounded linear forms
- Riesz-Fréchet theorem: representation of linear forms in Hilbert spaces
- Bilinear forms and their representation in Hilbert spaces
- Spaces of test functions (bounded support and rapid decrease)
- (Tempered) distribution: linear form in spaces of test functions
- Operations with distributions: multiplication by a function, derivative, shift
- Examples of distributions: delta, step, PV(1/x), characteristic distribution
- Regularity theorem
- Fourier transform (of distributions).

Operators in Hilbert spaces

- Definition:
(Anti)linear operator. (anti)linear univalued mapping between Hilbert spaces

$$
\begin{aligned}
T: D(T) & \subset H_{1} \rightarrow R(T) \subset H_{2} \\
T(\alpha x+\beta y) & =\left\{\begin{array}{l}
\alpha T(x)+\beta T(y), \text { (linear) } \\
\bar{\alpha} T(x)+\bar{\beta} T(y), \text { (anti-linear) }
\end{array} \quad \forall x, y \in D(T), \forall \alpha, \beta \in \Lambda\right.
\end{aligned}
$$

- Properties:
- $D(T), R(T), \operatorname{Ker}(T)$ are linear subspaces
- M linear subspace of $H_{1} \Rightarrow T M \equiv\{T x / x \in M\}$ is a linear subspace H_{2}
- $\mathcal{L}\left(H_{1}, H_{2}\right) \equiv\left\{T: D(T) \subset H_{1} \rightarrow H_{2} / T\right.$ linear $\}$ is a linear space with

$$
\left(T_{1}+T_{2}\right) x=T_{1} x+T_{2} x, \quad(\alpha T) x=\alpha(T x)
$$

- $\mathcal{L}(H) \equiv \mathcal{L}(H, H)$

Operators in Hilbert spaces

- Definition: Bounded operador. Let $T \in \mathcal{L}\left(H_{1}, H_{2}\right), D(T)=H_{1}$

$$
T \text { is bounded if } \exists M \geq 0 /\|T x\|_{H_{2}} \leq M\|x\|_{H_{1}}, \forall x \in H_{1}
$$

- $\mathcal{A}\left(H_{1}, H_{2}\right)=\left\{T: H_{1} \rightarrow H_{2} / T\right.$ bounded linear $\}$ is a normed space

$$
\text { with the norm }\|T\| \equiv \sup _{x \neq 0} \frac{\|T x\|}{\|x\|}
$$

- Definición: Continuous operador.

$$
T \in \mathcal{L}\left(H_{1}, H_{2}\right) \text { is continuous in } x \in H_{1} \text { if }
$$

$$
\forall\left\{x_{n}\right\} \rightarrow x \Rightarrow\left\{T x_{n}\right\} \rightarrow T x,\left[\left\|x_{n}-x\right\| \rightarrow 0 \Rightarrow\left\|T x_{n}-T x\right\| \rightarrow 0\right]
$$

- $T \in \mathcal{L}\left(H_{1}, H_{2}\right)$ is continuous if it is $\forall x \in H_{1} \quad T\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} T x_{n}$
- Theorem: $T \in \mathcal{L}\left(H_{1}, H_{2}\right), H_{1,2}$ Hilbert spaces

$$
T \in \mathcal{A}\left(H_{1}, H_{2}\right) \Leftrightarrow T \text { continuous } \Leftrightarrow T \text { continuous at any point of } H_{1}
$$

- Dual space: $\tilde{H}=\mathcal{A}(H, \Lambda)$

Operators in Hilbert spaces

- Property: $\quad T \in \mathcal{A}\left(H_{1}, H_{2}\right) \Rightarrow \operatorname{Ker}(T)$ is closed
- Definition: $T: D(T) \neq H_{1} \rightarrow H_{2}$ is bounded in its domain if

$$
\exists M \geq 0 /\|T x\| \leq M\|x\|, \quad \forall x \in D(T), \quad\|T\|=\sup _{0 \neq x \in D(T)} \frac{\|T x\|}{\|x\|}
$$

- Theorem (extension of operators bounded in a dense domain):

Let $T \in \mathcal{L}\left(H_{1}, H_{2}\right)$ bounded in its domain, dense in $H_{1}\left(\overline{D(T)}=H_{1}\right)$
$\exists!\tilde{T} \in \mathcal{A}\left(H_{1}, H_{2}\right)$ that extends T to all H_{1} and $\|\tilde{T}\|=\|T\|$
soluction $\tilde{T} x= \begin{cases}T x, & x \in D(T), \\ \lim _{n \rightarrow \infty} T x_{n}, & x_{n} \in D(T), \\ \lim _{n \rightarrow \infty} x_{n}=x \notin D(T)\end{cases}$

- Properties:
- $\mathcal{A}(H)$ is a Banach space and algebra of functions with $S T(x)=S(T(x))$
- $\|S T\| \leq\|S\| \||| |$
- Commutator of operators: $[S, T]=S T-T S \neq 0$ in general

Operators in Hilbert spaces

- Definition: Let $T \in \mathcal{L}\left(H_{1}, H_{2}\right)$, we define the inverse operator (when it exists) $T^{-1}: R(T) \subset H_{2} \rightarrow D(T) \subset H_{1}$ such that $\quad T^{-1} T x=x, \forall x \in D(T)=R\left(T^{-1}\right)$

$$
T T^{-1} y=y, \forall y \in R(T)=D\left(T^{-1}\right)
$$

- Criterion of existence of the inverse operator Let $T \in \mathcal{L}\left(H_{1}, H_{2}\right)$

$$
\exists T^{-1} \in \mathcal{L}\left(H_{2}, H_{1}\right) \Leftrightarrow T \text { is injective } \Leftrightarrow T x=0 \Rightarrow x=0
$$

Note: Let $T \in \mathcal{A}\left(H_{1}, H_{2}\right), R(T)=H_{2}, T$ injective $\nRightarrow T^{-1} \in \mathcal{A}\left(H_{2}, H_{1}\right)$

- Theorem (criterion of inversion with boundedness):

Let $T \in \mathcal{A}\left(H_{1}, H_{2}\right), R(T)=H_{2}, H_{1,2} \neq\{0\}$ then

$$
T^{-1} \in \mathcal{A}\left(H_{2}, H_{1}\right) \Leftrightarrow \exists k>0 /\|T v\| \geq k\|v\|, \forall v \in H_{1}
$$

- Corolary: Let $T \in \mathcal{A}(H)$ bijective, with $H \neq\{0\}$. Then

$$
T^{-1} \in \mathcal{A}(H) \Leftrightarrow \exists k>0 /\|T v\| \geq k\|v\|, \forall v \in H
$$

Operators in Hilbert spaces

- Topologies en $\mathcal{A}(H)$: let $\left\{A_{n} \in \mathcal{A}(H)\right\}_{1}^{\infty}$
- Uniform (or norm) topology

$$
A_{n} \xrightarrow{u} A \Leftrightarrow\left\|A_{n}-A\right\| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

- Strong topology

$$
A_{n} \xrightarrow{s} A \Leftrightarrow A_{n} v \underset{n \rightarrow \infty}{\longrightarrow} A v, \forall v \in H
$$

- Weak topology

$$
A_{n} \xrightarrow{w} A \Leftrightarrow\left\langle w, A_{n} v\right\rangle \underset{n \rightarrow \infty}{\longrightarrow}\langle w, A v\rangle, \forall v, w \in H
$$

- In finite dimension (dim of H is finite) they are all equivalent
- In infinite dimension

$$
\text { Uniform top. } \underset{\nexists}{ } \text { Strong top. } \nexists \text { Weak top. }
$$

Operators in Hilbert spaces

- Some interesting operators
- Operators in finite dimension

$$
\begin{aligned}
& T \in \mathcal{L}(H) \Rightarrow \text { matrix in } \Lambda^{n} \\
& \left.\mathcal{A}\left(H_{n}\right)=\mathcal{L}\left(H_{n}\right)[\text { all linear operators are bounded })\right]
\end{aligned}
$$

- Destruction, creation and number operators (in l_{Λ}^{2})

$$
\begin{aligned}
a & :\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right) \rightarrow\left(\alpha_{1}, \sqrt{2} \alpha_{2}, \ldots, \sqrt{n+1} \alpha_{n+1}, \ldots\right) \\
a^{+} & :\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right) \rightarrow\left(0, \alpha_{0}, \sqrt{2} \alpha_{1}, \ldots, \sqrt{n} \alpha_{n-1}, \ldots\right) \\
N & :\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right) \rightarrow\left(0, \alpha_{1}, 2 \alpha_{2}, \ldots, n \alpha_{n}, \ldots\right)
\end{aligned}
$$

- Rotation operador (in $L^{2}\left(\mathbb{R}^{3}\right)$). Let R be a rotation in \mathbb{R}^{3} around the origin

$$
U(R): f(x) \rightarrow f\left(R^{-1} x\right)
$$

- Shift operator (in $L^{2}\left(\mathbb{R}^{n}\right)$). Let a be a vector $\in \mathbb{R}^{n}$ fijo

$$
U_{a}: f(x) \rightarrow f(x-a)
$$

oneratorsin Hilbert soaces

- Some interesting operators
- Position operador (en $\left.L^{2}(B)\right)$.

$$
Q: f(x) \rightarrow x f(x)
$$

- Derivative operador. Let $\mathcal{S}(\mathbb{R})=\{f$ of rapid decrease $\}$, dense in $L^{2}(\mathbb{R})$

$$
P: f(x) \in \mathcal{S}(\mathbb{R}) \rightarrow-\mathrm{i} \frac{d}{d x} f(x)
$$

- Properties: let us define the position and momentum operators in $\mathcal{S}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
& Q_{j}: f(x) \rightarrow x_{j} f(x) \\
& P_{k}: f(x) \in \mathcal{S}(\mathbb{R}) \rightarrow-\mathrm{i} \frac{\partial}{\partial x_{k}} f(x)
\end{aligned} \quad(j, k=1,2, \ldots, n)
$$

we have
Q_{j}, P_{k} are not bounded and satisfy $\left[Q_{j}, P_{k}\right]=i \delta_{j k} 1_{\mathcal{S}}$

Operators in Hilbert spaces

- Adjoint operador

Given $A \in \mathcal{A}(H)$ with H a Hilbert space, the adjoint operator is defined as the only operator $A^{\dagger}(\in \mathcal{A}(H))$ that satisfies

$$
\langle w, A v\rangle=\left\langle A^{\dagger} w, v\right\rangle \quad \forall v, w \in H
$$

- Properties:
i) The mapping $A \rightarrow A^{\dagger}$ is an anti-linear isometric bijection of $\mathcal{A}(H)$
ii) $(A B)^{\dagger}=B^{\dagger} A^{\dagger} \quad\left[\left\|A^{\dagger}\right\|=\|A\|,(\alpha A+\beta B)^{\dagger}=\bar{\alpha} A^{\dagger}+\bar{b} B^{\dagger}\right]$
iii) $\left(A^{\dagger}\right)^{\dagger}=A$
iv) $A, A^{-1} \in \mathcal{A}(H) \Rightarrow\left(A^{\dagger}\right)^{-1}=\left(A^{-1}\right)^{\dagger}$
v) $\left\|A^{\dagger} A\right\|=\|A\|^{2}$
vi) $A^{\dagger}=\left(A^{\mathrm{T}}\right)^{*}$ in finite dimension

Operators in Hilbert spaces

- Equality of operators

$$
\begin{aligned}
& A=B \text { if } D(A)=D(B)=D, A x=B x, \forall x \in D \\
& \text { (equiv. if } D(A)=D(B)=D,\langle y, A x\rangle=\langle y, B x\rangle \forall x \in D, \forall y \in H)
\end{aligned}
$$

- Some special types of operators: Let $T: D(T)$ dense in $H \rightarrow H$
- Symmetric or hermitian operator

$$
T \subset T^{\dagger} \quad\left[D(T) \underset{\neq}{\subset} D\left(T^{\dagger}\right),\langle x, T y\rangle=\langle T x, y\rangle, \forall x, y \in D(T)\right]
$$

- Self-adjoint operator

$$
T=T^{\dagger} \quad\left[D(T)=D\left(T^{\dagger}\right),\langle x, T y\rangle=\langle T x, y\rangle, \forall x, y \in D(T)\right]
$$

- Bounded self-adjoint operator

$$
A \in \mathcal{A}(H) / A=A^{\dagger} \quad\left[A=A^{\dagger} \Leftrightarrow\langle x, A x\rangle \in \mathbb{R}, \forall x \in H\right]
$$

Operatorsin Hilmert soaces

- Properties of bounded self-adjoint operators

Let $A, B \in \mathcal{A}(H), A=A^{\dagger}, B=B^{\dagger}$
i) $\|A\|=\sup _{x \neq 0} \frac{|\langle x, A x\rangle|}{\|x\|^{2}}$
ii) $\alpha A+\beta B$ is a bounded self-adjoint operator $\forall \alpha, \beta \in \mathbb{R}$
iii) $A B$ is a bounded self-adjoint operator $\Leftrightarrow[A, B]=0$
iv) $\left\|A^{n}\right\|=\|A\|^{n}$

- Isometric operator

$$
T: D(T) \subset H \rightarrow H /\|T x\|=\|x\|, \forall x \in D(T)
$$

property
T isometric $\underset{ }{\neq} \Rightarrow T$ bounded in its domain with $\|T\|=1$

Operators in Hilbert spaces

- Unitary operator

$$
U \in \mathcal{A}(H) / U^{\dagger}=U^{-1}
$$

Note:

$$
\begin{aligned}
& U \in \mathcal{A}(H) \text { isometric } \Leftrightarrow U^{\dagger} U=1 \quad\left[U U^{\dagger}=1 \Leftrightarrow R(U)=H\right] \\
& U \in \mathcal{A}(H) \text { unitary } \Leftrightarrow U^{\dagger} U=U U^{\dagger}=1
\end{aligned}
$$

- Characterization of a unitary operator. Let $U \in \mathcal{A}(H)$. They are equivalent
i) U unitary
ii) $R(U)=H,\langle U x, U y\rangle=\langle x, y\rangle, \forall x, y \in H$
iii) $R(U)=H,\|U x\|=\|x\|, \forall x \in H$
iv) $\left\{e_{\alpha}\right\}_{\alpha \in A}$ orthonormal basis of $H \Rightarrow\left\{U e_{\alpha}\right\}_{\alpha \in A}$ orthonormal basis of H
v) U^{\dagger} is unitary

Operators in Hilbert spaces

- Orthogonal projector

$$
P \in \mathcal{A} \text { is an orthogonal projector if } P^{2}=P=P^{\dagger}
$$

- Theorem: Let P be an orthogonal projector, then
$\exists M$ closed linear subspace in H such that P is the orthogonal projector over M
- Normal operator

$$
A: D(A) \text { dense in } H \rightarrow H / D\left(A A^{\dagger}\right)=D\left(A^{\dagger} A\right),\left[A, A^{\dagger}\right]=0
$$

Note: $\quad A \in \mathcal{A}(H) \Rightarrow A^{\dagger} \in \mathcal{A}(H) \Rightarrow D\left(A A^{\dagger}\right)=D\left(A^{\dagger} A\right)=H$

$$
A \in \mathcal{A}(H) \text { normal } \Leftrightarrow\|A v\|=\left\|A^{\dagger} v\right\|, \forall v \in H
$$

- Properties: $\quad A$ self-adjoint $\Rightarrow A$ normal $\left(A A^{\dagger}=A^{\dagger} A=A^{2}\right)$
A hermitian $\nRightarrow A$ normal $\left(D\left(A A^{\dagger}\right) \neq D\left(A^{\dagger} A\right)\right)$
A unitary $\Rightarrow A$ normal $\left(A A^{\dagger}=A^{\dagger} A=1\right)$
A isometric $\nRightarrow A \operatorname{normal}\left(D\left(A A^{\dagger}\right) \neq D\left(A^{\dagger} A\right)\right)$

Operators in Hilbert spaces

- Summary
- Operator $\mathcal{L}\left(H_{1}, H_{2}\right)$, bounded $\mathcal{A}\left(H_{1}, H_{2}\right)$ and bounded in its domain
- Continuos operador \Leftrightarrow bounded
- Theorem of extension of bounded operators with a dense domain
- Inverse operator. Existence of inverse operator (with boundedness)
- Uniform, strong and weak topologies in $\mathcal{A}(H)$
- Examples of operators (finite dim., creation, destruction, number, position, derivative)
- Adjoint operator
- Hermitian, self-adjoin, isometric, unitary, normal operator
- Orthogonal projector

Spectral theory

- Definition: Spectrum and resolvent of linear operators

Let $A \in \mathcal{L}(H)$, with dense domain in H, separable Hilbert space over \mathbb{C}

- \mathbb{C} can be split in the following subsets, depending on the behavior of the operator $(A-\lambda I)^{-1}$

$$
\mathbb{C}=\rho \cup \sigma \equiv \rho \cup \sigma_{p} \cup \sigma_{r} \cup \sigma_{c}, \text { disjoint in pairs }
$$

$$
\lambda \in \mathbb{C} \quad(A-\lambda I)^{-1} \quad R(A-\lambda I) \quad(A-\lambda I)^{-1}
$$

$\sigma_{p}(A)$	does not exist	-	-
$\sigma_{r}(A)$	exists	not dense in H	-
$\sigma_{c}(A)$	exists	dense en H	not bounded in its domain
$\rho(A)$	exists	dense en H	bounded in its domain

Spectral theory

- Properties:
- Eigenvectors and eigenvalues $\lambda \in \sigma_{p}(A) \Leftrightarrow \exists v_{\lambda} \neq$ in $D(A) / A v_{\lambda}=\lambda v_{\lambda}$
- Linear independence of eigenvectors with different eigenvalues

$$
\left\{\lambda_{i}\right\}_{1}^{n} \subset \sigma_{p}(A), A v_{i}=\lambda_{i} v_{i}, \lambda_{i} \neq \lambda_{j}(i \neq j) \Rightarrow\left\{v_{i}\right\} \text { l.i. }
$$

- Topological properties of the spectrum and resolvent

$$
\forall A \in \mathcal{L}(H) \Rightarrow \rho(A) \text { open, } \sigma(A) \text { closed in } \mathbb{R}^{2}
$$

- Spectrum of the adjoint operator: let $A \in \mathcal{A}(H)$

$$
\begin{aligned}
& \text { i) } \lambda \in \rho(A) \Leftrightarrow \bar{\lambda} \in \rho\left(A^{\dagger}\right) \\
& \text { ii) } \lambda \in \sigma_{p}(A) \Rightarrow \bar{\lambda} \in \sigma_{p}\left(A^{\dagger}\right) \cup \sigma_{r}\left(A^{\dagger}\right) \\
& \text { iii) } \lambda \in \sigma_{r}(A) \Rightarrow \bar{\lambda} \in \sigma_{p}\left(A^{\dagger}\right) \\
& \text { iv } \lambda \in \sigma_{c}(A) \Leftrightarrow \bar{\lambda} \in \sigma_{c}\left(A^{\dagger}\right)
\end{aligned}
$$

Spectral theory

- Properties:
- Spectrum of normal operators: let $A \in \mathcal{A}(H)$ normal

$$
\begin{aligned}
& \text { a) } A v=\lambda v \Leftrightarrow A^{\dagger} v=\bar{\lambda} v \\
& \text { b) } A v_{i}=\lambda_{i} v_{i}, \lambda_{i} \neq \lambda_{j} \Rightarrow v_{i} \perp v_{j} \\
& \text { c) } \sigma_{r}(A)=\emptyset
\end{aligned}
$$

- Spectrum of unitary operators (are normal):

$$
U \text { unitary } \Rightarrow \sigma(U)=\sigma_{p}(U) \cup \sigma_{c}(U) \subset\{\lambda /|\lambda|=1\}
$$

- Spectrum of isometric operators (not normal in general):

$$
A \text { isometric } \Rightarrow \sigma_{p}(A) \subset\{\lambda /|\lambda|=1\},\left[\text { in general } \sigma(A) \not \subset\{|\lambda|=1\}, \sigma_{r} \neq \emptyset\right]
$$

Spectral theory

- Properties:
- Spectrum of orthogonal projectors:

$$
\begin{aligned}
& \sigma(0)=\{0\}, \quad \sigma(1)=\{1\}, \text { all other orthogonal projectors satisfy } \\
& P \in \mathcal{A}(H), P^{2}=P=P^{\dagger}, 0 \neq P \neq 1, \Rightarrow \sigma(P)=\sigma_{p}(P)=\{0,1\}
\end{aligned}
$$

- Spectrum of self-adjoint operators: sea $A \in \mathcal{A}(H)$ autoadjunto

1) $\sigma(A) \subset \mathbb{R}, \sigma_{r}(A)=\emptyset$
2) $\sigma(A) \subset\left[\inf _{\|v\|=1}\langle v, A v\rangle, \sup _{\|v\|=1}\langle v, A v\rangle\right]$
3) $M_{\lambda}(A)=\{v \in H / A v=\lambda v\}$ closed linear subspace
4) $\forall A \in \mathcal{A}(H), A=A^{\dagger} \Rightarrow \exists\left\{v_{i}\right\}$ orthonormal, maximal $/ A v_{i}=\lambda_{i} v_{i}$ (not necessarily complete in H)

Spectral theory

- Definition: $A \in \mathcal{L}\left(H_{1}, H_{2}\right)$ is compact $\left(A \in \mathcal{C}\left(H_{1}, H_{2}\right)\right)$
if $\overline{A(X)}$ is compact in $H_{1}, \forall X \subset H_{1}, X$ bounded $\left(\sup _{x \in X}\|x\|<\infty\right)$
- If $\operatorname{dim}(H)<\infty \rightarrow \mathcal{L}(H)=\mathcal{A}(H)=\mathcal{C}(H)$
- Theorem: $\forall A \in \mathcal{C}(H)$

1) $\sum_{\lambda \in \sigma_{p} /|\lambda|>k} \operatorname{dim} M_{\lambda}(A)<+\infty, \forall k>0$
2) $\sigma_{p}(A)$ is at most numerable, with 0 as the only possible limit point
3) $\mathbb{C}-\{0\} \subset \sigma_{p}(A) \cup \rho(A)$
4) $0 \in \sigma(A)$
5) $\sigma_{r}(A) \cup \sigma_{c}(A) \subset\{0\}$
