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Mathematical Methods for Physics 
III (Hilbert Spaces)

● Lecturer:
● José Santiago: Theory and exercises (jsantiago  

@ugr.es)
– Office hours: M y J (11:00-13:00 y 14:00-15:00) office A03.

● Info on the course:
– www.ugr.es/~jsantiago/Docencia/MMIIIen/
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Mathematical Methods for Physics 
III (Hilbert Spaces)

● Main Literature:
– G. Helmberg, Introduction to spectral theory in Hilbert space, Dover, 

1997.

– P. Roman, Some modern mathematics for physicists and other 
outsiders, vol. 2, Pergamon, 1975.

– P. Lax, Functional Analysis, Wiley 2002.

– L. Abellanas y A. Galindo, Espacios de Hilbert, Eudema, 1987.

– A. Vera López y P. Alegría Ezquerra, Un curso de Análisis Funcional. 
Teoría y problemas, AVL, 1997.

– A. Galindo y P. Pascual, Mecánica Cuántica, Eudema, 1989.

– E. Romera et al, Métodos Matemáticos, Paraninfo, 2013.

● Lecture notes are very succinct: examples, proofs and relevant 
comments on the blackboard (take your own notes)
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Motivation

● Postulates of Quantum Mechanics

● But not only QM, also differential and integral equations, ...

Every physical system is associated to a complex 
separable hilbert space and every pure state is 
described by a ray    in such space

1st Postulate:

Every observable in a system is associated to a 
self-adjoint linear operator in the hilbert space 
whose eigenvalues are the possible outcomes of a 
measure of the observable

2nd Postulate:

The probability of getting a value ( ) when 
measuring an obserbable (A) in a pure state ( ) is  
       , where       is the projector on the 
eigenvalue proper subspace

3rd Postulate:



2013/2014 (2nd semester) Mathematical Methods for Physics  III 4

Motivation

● But not only QM, also differential and integral 
equations, ...

● More generally, Hilbert Spaces are the 
mathematical structure needed to generalize    
(or      ), including its geometrical features and 
operations with vectors to infinite dimensional 
vector spaces 
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Outline

● Linear and metric spaces

● Normed and Banach spaces

● Spaces with scalar product and Hilbert spaces

● Spaces of functions. Eigenvector expansions

● Functionals and dual space. Distribution theory

● Operators in Hilbert Spaces

● Spectral theory
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Why Hilbert Spaces?

● They generalize the properties of       to spaces of infinite 
dimension

Linear
Space

● (Finite) linear combinations of 
vectors. Linear independence. 
Linear basis.

Metric
Space

● Infinite linear combinations 
require limits: notion of 
distance

Normed
Space

● Translational invariant 
distance: it is enough with 
distance to the origin (norm)

(pre)Hilbert
Space

● Generalization of      : we need 
geometry (ortogonality, angles). 
Scalar product
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Linear Space

● Definition: Liear (or vector) space over a field Λ is a triad (L, +, .) 
formed by a non-empty set L and two binary operations (addition and 
scalar multiplication) that satisfy:
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Linear Space

● Trivial properties:

● Notation:
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Linear Space

● Definition: Linear subspace. Non-trivial subset of a linear space with the 
structure of a linear space.

● Properties:

● Definition. Linear span:

● Properties:
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Linear Space

● Definition: Linear independence. 

● Definition: Hamel (or linear) basis. Maximal l.i. set (i.e. that it is not contained 
in any other l.i. set).

● Properties:
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Linear Space

● Definition: Subspace direct sum. Let                be subsps. of L 

● Theorem: Let L=M1+M2

● More generally, if L=M1+...+Mn     
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Linear Space

● Summary:

● Linear (sub)space: (L,+,.) 

● Linear span: [S]={FINITE linear combinations of elements of S}

● Linear independence: finite linear combination=0        al coeffs=0

● Hamel basis: Maximal l.i. set. Unique cardinal (linear dimension). Unique linear 
expansion of elements of L in terms of elements of B.

● Directa sum of subspaces: sum of subspaces with null intersection (to the sum of 
the remaining subspaces).

● Other results and definitions (mappings, inverse mapping, isomorphisms, projectors, …) 
can be defined here but we will postpone it to Hilbert spaces
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Metric spaces

● Definition: Metric space is a pair (X,d) where X is an arbitrary but non-empty 
set and                           is a function (distance or metric) that satisfies:

● Properties
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Metric spaces

● Definitions: Let (X,d) be a metric space. 

● Open ball of radius r centered at x:

● Closed ball of radius r centered at x:

●  

● Interior of A:

●  

●  

● Closure of A:

● Closed subspace:

● Dense subspace:
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Metric spaces

● Properties of open and closed subspaces:

●



2013/2014 (2nd semester) Mathematical Methods for Physics  III 16

Metric spaces

● Definition: Convergent sequence 

● Definition: Cauchy sequence

● Property: Every convergent sequence is a Cauchy sequence

● Definition: A metric space is complete if every Cauchy sequence is convergent. 
A subspace            is complete if every Cauchy sequence in S converges in S

● Properties: Let  
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Metric spaces

● Summary:

● Metric (sub)space: (X,d)

● Open and closed balls

● Interior point: open ball centered in x inside A

● int A= set of all interior points of A. Open subspace.

● Adherence point of A, every open ball centered in x has non-zero intersection with 
A. Closure of A. Closed subspace. Dense subspace in X

● Convergent sequence

● Cauchy sequence

● Complete metric space: Cauchy         convergent

● Other properties (maps, continuity, boundedness, …) can be defined here but 
we will do it in Hilbert spaces.
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Normed spaces

● Definition: Normed space is a pair (X,||.||) where X is a linear space and             
                      is a function (norm) with the following properties:

● Every linear subspace of a normed space X is a normed subspace with the norm of X.

● Relation between normed and metric spaces

● Every nomed space is a metric space with the distance d(x,y)=||x-y||

● The associated distance satisfies

● Every metric linear space with these properties is a normed space with ||x||=d(x,0)

● Definition: Banach space. Complete normed space.
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Normed spaces

● Properties:

● Completion theorem: 

● Every normed linear space                      admits a completion     , Banach space, 
unique up to norm isomorphisms, such that     is dense in        and 

● Inifinite sums in normed spaces
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Normed spaces

● Hölder inequality (for sums):

● Minkowski inequality (for sums):
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Normed spaces

● Summary:

● Normed (sub)space: (X,||.||)

● Relation norm            distance

● Banach space (complete normed space)

● Absolute convengence            convergence in Banach spaces

● A subspace of a Banach space is Banach                 it is closed

● Completion theorem: every normed space can be made complete in a unique way

● An infinite sum converges in (X,||.||) to v if the sequence of partial sums converges 
to v

● Hölder and Minkowski inequalities
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Hilbert Space

● Definition: A pre-Hilbert space is a linear space with an associated scalar 
product.

● Scalar product:                                   with the following properties

● In particular we have
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Hilbert Space

● Property: A pre-Hilbert space is a normed space with the norm associated to 
the scalar product

● Definition: A Hilbert space is a pre-Hilbert space that is complete with the norm 
associated to the scalar product (rather the distance associated to the norm).

● Properties: Let               be a pre-Hilbert space and       the associated norm:

● Relation between scalar product and norm: a normed space             that 
satisfies the parallelogram identity is a pre-Hilbert space with a scalar product 
that satisfies
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Hilbert Space

● Properties: Let               be a pre-Hilbert space and       the associated norm:

● Schwarz-Cauchy-Buniakowski inequality

● Triangle inequality

● Continuity of the scalar product
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Hilbert Space

● Properties: Let               be a pre-Hilbert space and       the associated norm:

●

●

●

●

● (Generalized) Pythagora's Theorem:

● Pythagora's theorem
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Hilbert Space

● Properties:

● Finite Bessel inequality:

● Infinite Bessel inequality:

● Completion Theorem: 

●
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Hilbert Space

● Definition: orthogonal complement

● Properties of the orthogonal complement
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Hilbert Space

● Theorem of orthogonal projection

Equivalent:



2013/2014 (2nd semester) Mathematical Methods for Physics  III 29

Hilbert Space

● Properties:

● Definition: Orthogonal direct sum

●

●

●

●
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Hilbert Space

● Theorem:

● Theorem:
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Hilbert Space

● Orthonormalization theorem: Gram-Schmidt method

Solution:

● Definition: Orthonormal basis

● Theorem: Existence of orthonormal basis
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Hilbert Space

● Theorem: Characterization of orthonormal basis:
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Hilbert Space

● Definition: Separable topologial (and metric) space:

● A topological space X is separable if it contains a numerable subset dense in X.

● A metric space M is separable if and only if it has a numerable basis of open 
subsets.

● Separability criterion in Hilbert spaces

● Proposition: 

● All orthonormal basis of a Hilbert space H have the same cardinal (Hilbert 
dimension of H).
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Hilbert Space

● Theorem of Hilbert Space classification

Definition:

Theorem:

Corolaries:

●

●

●

–

–
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Hilbert Space

● Summary:

● (Pre-)Hilbert space: Complete linear space with scalar product

● Hilbert           Normed

● Parallelogram and polarization identities

● Schwarz and triangle inequality, continuity of scalar product

● Orthonormality. Pythagora's theorem and Bessel inequality

● Completion theorem

● Orthogonal complement and orthogonal projector. Best approximation to a vector.

● Gram-Schmidt orthonormalization method

● Orthonormal basis. Separable space

● Theorem of Hilbert Space classification
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Space of functions

● Some of the most important Hilbert spaces are spaces of functions.

● Examples:

● Example of not completeness of

● We can enlarge the space with the limits of all Cauchy sequences to complete it. 
We need a new concept of integral for that.
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Space of functions

● Riemann integral:

● Partition of the “x axis” and common convergence of upper and lower integrals

● Lebesgue integral:

● Partition of the “y axis” and measure of subsets of the “x axis”
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Space of functions

● We need a new concept of “measure”

● Borel set: 

● Borel-Lebesgue measure (of a borel set B):

– Properties: 
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Space of functions

● We need a new concept of “measure”

● Borel measurable function:

● f complex is Borel if both its real and imaginary parts are

●  

● Characterization of Borel measurable functions:

● Lebesgue integral

Easy to extend to more 
general functions
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Space of functions

● Lebesgue integrable functions

● Properties almost everywhere (a.e.). 

● L1 Spaces. 
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Space of functions

● Lp spaces:

● Properties: 

● Definition:
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Space of functions

● (Integral) Hölder and Minkowski inequalities
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Space of functions

● Some relevant orthonormal bases in L2: 

● Legendre's basis

● Hermite's basis
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Space of functions

● Some relevant orthonormal bases in L2: 

● Laguerre's basis

● Orthonormal bases of polynomial associated to a weight function
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Space of functions

● Some relevant orthonormal bases in L2: 

● Fourier's basis
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Space of functions

● Some relevant orthonormal bases in L2: 

● Fourier's basis

● Jordan convergence criterion

● Bases with only sines or cosines
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Space of functions

● Expansion in eigenvectors

● Consider the following differential operator                      

every function                                 can be expanded in eigen-functions of

with

Eigenvalues
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● Summary:

● Borel sets. Borel-Lebesgue measure. Borel measurable functions.

● Lebesgue integral.

● Lebesgue integrable functions.     Spaces 

● Properties almost everywhere.     Spaces 

●            is a Hilbert space (completion of           )

● Hölder and Minkowski integral inequalities

● Orthonormal polynomials in 

● Fourier basis. Fourier expansion.

● Expansion in eigenvectors.

Space of functions
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Linear forms

● Definitions:

●

●

●

● Theorem: Let F be a linear form in a normed space
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Linear forms

● Definition: Dual space of a Hilbert space (H,<,>) is the set of all continuous 
functional forms in H.

It is a Hilbert space (as we will see)

● Proposition: Let (H,<,>) be a Hilbert space of finite dimension:

● All functionals in H are continuous

●

● Riesz-Fréchet representation theorem: Let (H,<,>) be a Hilbert space (separable or 
not)
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Linear forms

● Properties:

●

●

●  

●

●

●
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Linear forms

● Bilinear forms: 

●

 

●

●
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Linear forms

● Strong convergence (in norm)

● Weak convergence

● Theorems:
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Distributions

● Test function spaces:

● Test functions of compact support

– Convergence

● Test functions of rapid decrease

– Convergence

● Properties
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Distributions

● Definitions and properties:

● Distribution:

● Space of distributions:

● Sufficient condition for T to be continuous

● Tempered distribution:

● Space of tempered distributions:

● The sufficient condition for continuity applies the same.

● Property: 
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Distributions

● Operations with distributions

● Multiplication by a function:

● Derivative of a distribution:

● Shift:

● These operations are continuous with respect to the following definition of 
convercend of distributions

With this notion of convergence      and     are complete and     is dense en
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Distributions

● Examples of distributions:

● Dirac's delta
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Distributions

● Examples of distributions:

● Principal value of     (tempered distribution)

● Characteristic distribution (distribution)

1
x
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Distributions

● Regularity theorem

● Fourier transform

● Fourier transform of distributions
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Linear forms and distributions

● Summary:

● Linear forms                     , bounded and continuous

● Dual space: bounded linear forms

● Riesz-Fréchet theorem: representation of linear forms in Hilbert spaces

● Bilinear forms and their representation in Hilbert spaces

● Spaces of test functions (bounded support and rapid decrease)

● (Tempered) distribution: linear form in spaces of test functions

● Operations with distributions: multiplication by a function, derivative, shift

● Examples of distributions: delta, step, PV(1/x), characteristic distribution

● Regularity theorem

● Fourier transform (of distributions).
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Operators in Hilbert spaces

● Definition:

● Properties:

●

●

●

●
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Operators in Hilbert spaces

● Definition:

●

● Definición:

●

● Theorem:

● Dual space: 
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Operators in Hilbert spaces

● Property:

● Definition: 

● Theorem (extension of operators bounded in a dense domain): 

soluction

● Properties:

●

●

●
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Operators in Hilbert spaces

● Definition:

● Criterion of existence of the inverse operator

Note:

● Theorem (criterion of inversion with boundedness):

● Corolary:
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Operators in Hilbert spaces

● Topologies en          :

● Uniform (or norm) topology

● Strong topology

● Weak topology

● In finite dimension (dim of H is finite) they are all equivalent

● In infinite dimension



2013/2014 (2nd semester) Mathematical Methods for Physics  III 66

Operators in Hilbert spaces

● Some interesting operators

● Operators in finite dimension

● Destruction, creation and number operators (in      )

● Rotation operador (in             ).

● Shift operator (in             ).
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Operators in Hilbert spaces

● Some interesting operators

● Position operador (en           ).

● Derivative operador.

● Properties: let us define the position and momentum operators in

we have
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Operators in Hilbert spaces

● Adjoint operador

● Properties:
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Operators in Hilbert spaces

● Equality of operators

● Some special types of operators:

● Symmetric or hermitian operator

● Self-adjoint operator

● Bounded self-adjoint operator
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Operators in Hilbert spaces

● Properties of bounded self-adjoint operators

● Isometric operator

property
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Operators in Hilbert spaces

● Unitary operator

● Characterization of a unitary operator.

Note:
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Operators in Hilbert spaces

● Normal operator

● Properties:

Note:

● Orthogonal projector

● Theorem:
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Operators in Hilbert spaces

● Summary

● Operator                 , bounded                 and bounded in its domain

● Continuos operador           bounded    

● Theorem of extension of bounded operators with a dense domain

● Inverse operator. Existence of inverse operator (with boundedness)

● Uniform, strong and weak topologies in 

● Examples of operators (finite dim., creation, destruction, number, position, 
derivative)

● Adjoint operator

● Hermitian, self-adjoin, isometric, unitary, normal operator

● Orthogonal projector
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Spectral theory

● Definition: Spectrum and resolvent of linear operators

●   can be split in the following subsets, depending on the behavior of the operator
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Spectral theory

● Properties:

● Eigenvectors and eigenvalues

● Linear independence of eigenvectors with different eigenvalues

● Topological properties of the spectrum and resolvent

● Spectrum of the adjoint operator:
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Spectral theory

● Properties:

● Spectrum of normal operators:

● Spectrum of unitary operators (are normal):

● Spectrum of isometric operators (not normal in general):
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Spectral theory

● Properties:

● Spectrum of orthogonal projectors:

● Spectrum of self-adjoint operators:
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Spectral theory

● Definition:

●

● Theorem:
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