Operators

Ejercicio 1: Bounded operators

Let A be the folloing operator in \mathbb{R}^{2} defined by the matrix

$$
A=\left(\begin{array}{cc}
2 & 0 \\
0 & -7
\end{array}\right)
$$

in an orthonormal basis. Is it bounded? Compute its norm if it is.

Ejercicio 2: Bounded operators

Let U be the following operator in \mathbb{R}^{3} with a representative matrix

$$
U=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

in an orthonormal basis. Compute its norm.

Ejercicio 3: Bounded opertors

Let $H=L^{2}[a, b]$ and $A: H \rightarrow H$ the operator defined by

$$
A f(x)=\cos (x) f(x)
$$

For which values of a and b is A bounded? Compute its norm.

Ejercicio 4: Continuous and bounded operators

Let $H=\mathbb{R}$ and the following operators
i) $A(x)=x^{2}$
ii) $B(x)= \begin{cases}1, & \text { if }|x|>1 \\ 0, & \text { if }|x| \leq 1\end{cases}$

Are they continuous? Are they bounded?

Ejercicio 5: Linear operators

Which of the following operators are linear?
i) $A\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\left(\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots\right) \in l_{\mathbb{C}}^{2}$.
ii) $A\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}, 0, \ldots, 0\right) \in \mathbb{C}^{n}$.
iii) $A(v)=v+v_{0} \in \mathbb{R}^{3}$, with v_{0} a non vanishing vector of \mathbb{R}^{3}.
iv) $A(f)=\chi_{[0,2]}(x) \chi_{[1,6]}(x) f(x) \in L^{2}$.
v) $A(f)=f(x+1) \in L^{2}(\mathbb{R})$.

Ejercicio 6: Commutator of operators

Compute the commutator of the following operators

$$
\begin{aligned}
A & : f(x) \in \mathcal{S} \in L^{2}(\mathbb{R}) \rightarrow x f^{\prime}(x) \\
B & : f(x) \in \mathcal{S} \in L^{2}(\mathbb{R}) \rightarrow x f(x)+3 f^{\prime \prime}(x)
\end{aligned}
$$

Ejercicio 7: Inverse operator

Check if the following operators are bounded in their domain, if the inverse operator exists and if it is bounded.
i) a, a^{+}, N in l_{Λ}^{2}.
ii) R rotation operator in $L^{2}\left(\mathbb{R}^{3}\right)$.
iii) $Q: f(x) \rightarrow x f(x)$ in $L^{2}[a, b]$.
iv) $Q: f(x) \rightarrow x f(x)$ in $L^{2}(\mathbb{R})$.

Ejercicio 8: Adjoint operator

Let $H=L^{2}[-1,1]$ and the operator

$$
(T f)(x)=\int_{-1}^{1} \mathrm{~d} y\left(x^{2}+y^{3}+3 \mathrm{i} x y\right) f(y) .
$$

Show that it is a continuous linear operator and compute its adjoint.

Ejercicio 9: Parity operator

Let $H=L^{2}(\mathbb{R})$ and the parity operator defined by

$$
(P f)(x)=f(-x) .
$$

Show that it is a bounded linear operator and compute its norm. Is it a projector over any direction? Is it Unitary? Is it self-adjoint? Compute its spectrum.

Ejercicio 10: Operator spectrum

Consider a Hilbert space of dimension 2 and the linar operator T defined in an orthonormal basis by

$$
T\left|e_{1}\right\rangle=\left|e_{1}\right\rangle, \quad T\left|e_{2}\right\rangle=\left|e_{1}\right\rangle+\left|e_{2}\right\rangle .
$$

Is it a bounded operator? Compute its norm if it is. Compute its adjoint operator and its spectrum.

Ejercicio 11: Adjoint operator

Consider the operator $A \in \mathcal{A}\left(l_{\mathbb{C}}^{2}\right)$ defined by

$$
A x=A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots, \alpha_{2 n}, \ldots\right)=\left(0, \alpha_{1}, 0, \alpha_{2}, \ldots, \alpha_{n}, \ldots\right) .
$$

Compute:
i) $\|A\|, A^{\dagger}, A^{+\dagger} \mathrm{y}\left\|A^{\dagger}\right\|$.
ii) Whether any of the following points $\lambda=2, \lambda=0, \lambda=\mathrm{i} / 2 \mathrm{y} \lambda=1$ belong to the spectrum (and to which).

