Linear Forms and distributions

Ejercicio 1: Continuous linear forms

Consider the space of real 2×2 matrices with scalar product

$$
\langle A, B\rangle=\operatorname{Tr}\left[A^{T} B\right] .
$$

Find, if possible, the vector associated to the following functionals:
(i) $F(A)=\operatorname{Tr}[A]$,
(ii) $F(A)=a_{11} a_{12}+a_{21} a_{22}$.

Ejercicio 2: Continuous linear forms

Consider the Hilbert space $L^{2}(\mathbb{R})$. Discuss which of the following forms are linear and continuous and find the associated vector for those which are:
(a) $F_{1}(f)=\int_{-\pi}^{\pi} f \mathrm{dx}$.
(b) $F_{2}(f)=\int_{0}^{1} f^{2} d x$.
(c) $F_{3}(f)=1+\int_{\mathbb{R}}|f| \mathrm{dx}$.

Ejercicio 3: Continuous linear forms

Consider the following functionals acting on $l_{\mathbb{R}}^{2}$
(i) $F\left(\left\{a_{n}\right\}_{1}^{\infty}\right)=\sum_{1}^{\infty} \frac{a_{n}}{n}$,
(ii) $F\left(\left\{a_{n}\right\}_{1}^{\infty}\right)=\sum_{1}^{\infty} a_{2 n+1}$.

Check if they are continuous and compute their norms when possible. Show that $M=$ $\left\{\left\{a_{n}\right\}_{1}^{\infty} / \sum_{k=1}^{\infty} a_{2 k-1}=0\right\}$ is not closed.

Ejercicio 4: Continuous linear forms

Let $\mathcal{P} \in H=L^{2}[0,2 \pi]$ be the set of polynomials $P(x)$ in $[0,2 \pi]$. Provide an example, if it exists, of a continuous linear form F over H such that
(i) $F(P)=1, \forall P \in \mathcal{P}$,
(ii) $F(P)=0, \forall P \in \mathcal{P}$.

Ejercicio 5: Bilinear forms

Find the operator A_{j} that represents each of the following continous bilinear forms, defined over $H=l_{\mathbb{C}}^{2} \cdot v=\left\{\alpha_{n}\right\}, w=\left\{\beta_{n}\right\}$, in certain orthonormal basis $\left\{e_{j}\right\}$ of H.
(i) $\phi_{1}(w, v) \equiv \bar{\beta}_{2} \alpha_{1}$,
(ii) $\phi_{2}(w, v)=\sum_{1}^{10} \bar{\beta}_{j} \alpha_{j}$,
(iii) $\phi_{3}(w, v)=\sum_{1}^{\infty} \frac{\bar{\beta}_{j} \alpha_{j+1}}{j}$.

Ejercicio 6: Strong and weak convergence

Study the strong and weak convergence of the following sequences in $l^{2}, v_{n}=n e_{n}$ and $w_{n}=e_{n} / n$, with e_{n} the canonical basis.

Ejercicio 7: Distributions

Compute the limit, in the sense of distributions, of

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{\epsilon}} \exp \left(-x^{2} / \epsilon\right)
$$

Ejercicio 8: Distributions

Compute the third derivative of $x^{2} \theta(x) / 2$ in the sense of distributions.

Ejercicio 9: Distributions

How would you define the complex conjugation of a distribution?

Ejercicio 10: Distributions

Let $f(x)$ be a function that is discontinuous at $x=0$ with a finite discontinuity given by $\sigma=f\left(0^{+}\right)-f\left(0^{-}\right)$but continuous and differentiable everywhere else in \mathbb{R}. Let $\left\{f^{\prime}\right\}$ be the usual derivative for $x \neq 0$ and 0 in $x=0$. Show that the derivative in the sense of distributions satisfies

$$
f^{\prime}=\left\{f^{\prime}\right\}+\sigma \delta_{0} .
$$

Ejercicio 11: Linear forms (Problem to hand)

Let $H=l_{\mathrm{C}}^{2}$ and the following maps

$$
\begin{aligned}
& A: H \rightarrow \mathbb{C}, \quad A\left(\left\{\alpha_{n}\right\}_{n=1}^{\infty}\right)=\alpha_{1} \sum_{n=1}^{157} \alpha_{3 n} \\
& B: H \rightarrow \mathbb{C}, \quad B\left(\left\{\alpha_{n}\right\}_{n=1}^{\infty}\right)=\alpha_{1}+\frac{1}{300} \alpha_{300}+\frac{1}{5} \alpha_{500} \\
& C: H \times H \rightarrow \mathbb{C}, \quad C\left(\left\{\alpha_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty}\right)=\sum_{n=1}^{\infty} \bar{\alpha}_{2 n+1} \beta_{2 n+1} .
\end{aligned}
$$

Are A and B linear forms? If they are, are they continuous? Find the associated vector when possible. Is C a bounded bilinear (sesquilinear) form? Find the associated linear operator.

