Espaces of functions

Ejercicio 1: Best approximation

Compute the distance of the function $f(x) = x^2$ to the subspace of $L^2[-1, 1]$ generated by the functions $\{\sin(x), \cos(x)\}$.

Ejercicio 2: Best approximation

Find the best approximation to the function of $L^2[0, \pi] \sin(x)$ within the subspace of polynomials of degree 1 or less. Get an estimate of the improvement of the approximation when degree 2 polynomials are included. Compare the best approximation with the Taylor expansion around x = 0 far from that point.

Ejercicio 3: Best approximation

Find the best approximation of $f(x) = \ln(1 + x)$ by means of orthonormal polynomials up to second degree in the interval [0, 1]. Compare with Taylor expansion up to x^2 .

Ejercicio 4: Spaces of functions with scalar product

Let $(P_2, ||.||)$ be the space

 $P_2 = \{ p(x) = a_0 + a_1 x + a_2 x^2, x \in [0, 1], a_{0,1,2} \in \mathbb{C} \},\$

with norm $||p(x)|| = (|a_0|^2 + |a_1|^2 + |a_2|^2)^{1/2}$. Does it satisfy the parallelogram identity? If it does, compute the associated scalar product. Is that the usual scalar product in L^2 ? Why?

Ejercicio 5: Orthogonal projection in spaces of functions

Let $H = L^2[-1, 1]$ and the following subset of H

 $M = [\{q_n\}_{n=1}^{\infty}],$

where we have defined the vectors $q_n = n\bar{P}_n(x) - \bar{P}_{n-1}(x)$, with \bar{P}_n the normalized Legrendre's polynomials. Is it a linear subspace?

(i) Find M^{\perp} .

- (ii) Is there, for any $f \in H$ a sequence of vectors in M that converges to f?
- (iii) Can we define the orthogonal projection over *M* for any function in *H*? How about over M^{\perp} ?

Ejercicio 6: Best approximation

Let $M = [\{1, \ln x, (\ln x)^2\}] \subset L^2[0, 1]$. Find the best approximation of x^2 in M and compute its distance to M.

Ejercicio 7: Fourier expansion

Find a Fourier expansion in sines and cosines that converges point-wise in [-1, 1] to the function f(x) = x.

Ejercicio 8: Fourier expansion

Find the Fourier expansion in sines in $[-\pi, \pi]$ of the function $\sin^3 x$.

Ejercicio 9: Fourier expansion

Use the Fourier expansion in sines and cosines of the function $f(x) = x^2$ to find the value of the following sums

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}.$$

Ejercicio 10: Fourier expansion (problem to hand)

Find the Fourier expansion in sines and cosines for the function $f(x) = x^2$ in $L^2([-\pi, +\pi])$ and, using Parseval's identity, show that

$$\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90} \,.$$