Espaces of functions

Ejercicio 1: Best approximation

Compute the distance of the function $f(x)=x^{2}$ to the subspace of $L^{2}[-1,1]$ generated by the functions $\{\sin (x), \cos (x)\}$.

Ejercicio 2: Best approximation

Find the best approximation to the function of $L^{2}[0, \pi] \sin (x)$ within the subspace of polynomials of degree 1 or less. Get an estimate of the improvement of the approximation when degree 2 polynomials are included. Compare the best approximation with the Taylor expansion around $x=0$ far from that point.

Ejercicio 3: Best approximation

Find the best approximation of $f(x)=\ln (1+x)$ by means of orthonormal polynomials up to second degree in the interval $[0,1]$. Compare with Taylor expansion up to x^{2}.

Ejercicio 4: Spaces of functions with scalar product

Let $\left(P_{2}, \| .| |\right)$ be the space

$$
P_{2}=\left\{p(x)=a_{0}+a_{1} x+a_{2} x^{2}, x \in[0,1], a_{0,1,2} \in \mathbb{C}\right\},
$$

with norm $\|p(x)\|=\left(\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}\right)^{1 / 2}$. Does it satisfy the parallelogram identity? If it does, compute the associated scalar product. Is that the usual scalar product in L^{2} ? Why?

Ejercicio 5: Orthogonal projection in spaces of functions

Let $H=L^{2}[-1,1]$ and the following subset of H

$$
M=\left[\left\{q_{n}\right\}_{n=1}^{\infty}\right],
$$

where we have defined the vectors $q_{n}=n \bar{P}_{n}(x)-\bar{P}_{n-1}(x)$, with \bar{P}_{n} the normalized Legrendre's polynomials. Is it a linear subspace?
(i) Find M^{\perp}.
(ii) Is there, for any $f \in H$ a sequence of vectors in M that converges to f ?
(iii) Can we define the orthogonal projection over M for any function in H ? How about over M^{\perp} ?

Ejercicio 6: Best approximation

Let $M=\left[\left\{1, \ln x,(\ln x)^{2}\right\}\right] \subset L^{2}[0,1]$. Find the best approximation of x^{2} in M and compute its distance to M.

Ejercicio 7: Fourier expansion

Find a Fourier expansion in sines and cosines that converges point-wise in $[-1,1]$ to the function $f(x)=x$.

Ejercicio 8: Fourier expansion

Find the Fourier expansion in sines in $[-\pi, \pi]$ of the function $\sin ^{3} x$.

Ejercicio 9: Fourier expansion

Use the Fourier expansion in sines and cosines of the function $f(x)=x^{2}$ to find the value of the following sums

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} .
$$

Ejercicio 10: Fourier expansion (problem to hand)

Find the Fourier expansion in sines and cosines for the function $f(x)=x^{2}$ in $L^{2}([-\pi,+\pi])$ and, using Parseval's identity, show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}
$$

