Spaces with scalar product and Hilbert spaces

Problem 1: Spaces of finite dimension

Let X be a linear space of finite dimension and $\left\{e_{i}\right\}_{1}^{n}$ a linear basis. Show that any scalar product over X is fixed by the set of scalars $\gamma_{i j}=\left\langle e_{i}, e_{j}\right\rangle, i, j=1, \ldots, n$. Is it possible to choose an arbitrary set of scalars $\gamma_{i j}$?

Problem 2: Pythagora's theorem

Let H be a Hilbert space over the body of scalars Λ. Show that two orthogonal vectors fulfil the property $x_{1} \perp x_{2} \Rightarrow\left\|x_{1}+x_{2}\right\|=\left\|x_{1}-x_{2}\right\|$.
Is the inverse of Pythagora's theorem true? That is, any set of vectors that satisfy $\left\|\sum_{i} x_{i}\right\|^{2}=$ $\sum_{i}\left\|x_{i}\right\|^{2}$ are necessarily orthogonal?

Problem 3: Pre-Hilbert and normed spaces

Let X be a pre-Hilbert space. Show that

$$
\|\lambda x+(1-\lambda) y\|=\|x\|, \forall \lambda \in[0,1] \Rightarrow x=y .
$$

Is that true for an arbitrary normed space?

Problem 4: Norm and scalar product

Let L be the set of 2×2 traceless complex hermitian matrices (equal to the complex conjugate of its transpose). Using that L is a normed space with the norm

$$
\|A\|^{2}=\frac{1}{2} \operatorname{Tr}(A \cdot A)
$$

check if this norm comes from a scalar product and compute it in case it does. Find an orthonormal basis.

Problem 5: Norm and scalar product

Let $\mathcal{M}_{n \times n}$ the set of complex matrices with the usual sum and product by a scalar. Compute the scalar product associated to the following norm

$$
\|A\|=\frac{1}{n}\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Find an orthonormal basis for $n=2$ that contains the matrix

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and compute the projection of the identity matrix on the orthogonal complement of $[S]$.

Problem 6: Norm in Hilbert spaces

Let H be a Hilbert space and v a vector in H. Show that

$$
\|v\|=\sup _{\|w\|=1}|\langle v, w\rangle| .
$$

Problem 7: Pre-Hilbert spaces and orthogonal direct sum

Show that the space $C[-1,1]$ with scalar product

$$
\langle f, g\rangle=\int_{-1}^{1} d t \bar{f}(t) g(t)
$$

is pre-Hilbert. Is it Hilbert? Show that it can be written as the orthogonal direct sum of the set of even and odd functions in $[-1,1]$.

Problem 8: Pre-Hilbert spaces and orthogonal direct sum

Let X be the subspace of l^{2} of sequences with a finite support (they only have a finite number of non-vanishing elements). Show that X is not complete. Let M be the following subspace of X

$$
M=\left\{y \in X / y \perp x_{0}\right\}, \quad x_{0}=\left\{\frac{1}{n}\right\}_{1}^{\infty} .
$$

Show that M is closed bu that $X \neq M \oplus M^{\perp}$. What would happen if X was complete?

Problem 9: Orthogonal direct sum

Show that $Y=\left\{\left\{\xi_{n}\right\}_{1}^{\infty} \in l^{2} / \xi_{2 n}=0\right\}$ is a closed subspace of l^{2} and find Y^{\perp}. Is $l^{2}=Y \oplus Y^{\perp}$?

Problem 10: Best approximatino

Let $H=\mathbb{C}^{4}$ (Hilbert space). Find the distance of the vector $v=(1,2,1+\mathrm{i},-4)$ to the subspace generated by the two vectors $\{(0,1,0,0),(0,0,0,1)\}$.

Problem 11: l_{C}^{2} space

Discuss if the following sequences belong to l_{C}^{2} :
a) $x=(1,2-1 / 2,2-1 / 3, \ldots, 2-1 / n, \ldots)$,
b) $y=(1 / \mathrm{i}, 0,3 / 2 \mathrm{i}, \ldots,(2 n-1) /(n \mathrm{i}), \ldots)$

Problem 12: l_{C}^{2} space

Let M be the following subspace of l^{2}

$$
M=\left\{\left\{x_{k}\right\}_{1}^{\infty} / x_{2 k-1}=a_{k}+b_{k} \cos \frac{1}{k^{\prime}} x_{2 k}=b_{k} \sin \frac{1}{k^{\prime}},\left\{a_{k}\right\},\left\{b_{k}\right\} \in l^{2}\right\},
$$

Show that it is not closed by proving that $\bar{M}=l^{2}$ and that the following vector of l^{2}

$$
z=\left\{\left\{z_{k}\right\}_{1}^{\infty} / z_{2 k-1}=0, z_{2 k}=\sin \frac{1}{k}\right\}
$$

does not belong to M.

Problem 13: Dense subspaces

Let $\left\{e_{k}\right\}_{1}^{\infty}$ be an orthonormal basis of a Hilbert space. Consider the following subspaces

$$
M_{1}=\left[\left\{x_{k}\right\}_{1}^{\infty}\right], \quad M_{2}=\left[\left\{u_{k}\right\}_{1}^{\infty}\right], \quad M_{3}=\left[\left\{w_{k}\right\}_{2}^{\infty}\right], \quad M_{4}=\left[\left\{y_{k}\right\}_{1}^{\infty}\right],
$$

where we have defined the vectors

$$
x_{k}=e_{k}+e_{k+1}, \quad v_{k}=\sum_{j=1}^{k} e_{j}, \quad w_{k}=(-1)^{k} e_{k}-e_{1}, \quad y_{k}=e_{k} /(k+1)-e_{k+1} .
$$

Are M_{i} dense in H ? Are the closed? Can we define the best approximation of any vector of H within M_{i} ?

Problem 14: Orthogonal projection

Show that the following statements are equivalent in a Hilbert space
i) P is an orthogonal projector.
ii) P is idempotent, that is $P^{2}=P$, and it has $R(P) \perp R(I-P)$ (R codomain or image of the projector).
iii) P is idempotent and $(R(P))^{\perp}=\{x \in H / P(x)=0\}$.

Problem 15: Orthonormal bases

Let $\left\{e_{n}\right\}$ be an orthonormal basis of a complex separable Hilbert space H of dimension N (can be numerable infinite). Show that

$$
N \text { finite } \Leftrightarrow \exists v \in H, v \neq 0 /\left\{e_{j}-v\right\} \text { is orthonormal. }
$$

Problem 16: Best approximation (Problem to hand)

Let $H=l_{\mathbb{C}}^{2}$ and $B=\left\{e_{1}, e_{2}+e_{3}, e_{1}+e_{2}-e_{3}\right\}$, with $\left\{e_{n}\right\}_{n=1}^{\infty}$ the canonical basis of H. Which one is the smallest subspace M that contains B ? Is B an orthonormal basis of M ? If it is not, find such a basis. Find the distance of the following vectors to M :

$$
\begin{aligned}
& x_{1}=(1,1,1,1,0, \ldots) \\
& x_{2}=(0,0,0,1,0, \ldots), \\
& x_{3}=(1,0,0,0,0, \ldots) .
\end{aligned}
$$

Problem 17: Best approximation (Problem to hand)

Consider the Hilbert space of real 2×2 matrices with the scalar product

$$
\langle A, B\rangle=\frac{1}{2} \operatorname{Tr}\left(A^{T} B\right) .
$$

Find the distance of the matrices

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

to the subspace generated by the matrices

$$
S=\left\{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\} .
$$

