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Abstract

In this work, the compatibility of Lovelock gravity and Kaluza-Klein dimensional reduction is
studied. First, the Lovelock action is presented as a generalisation of the Einstein-Hilbert action
for an arbitrary number of dimensions. This theory involves an action that consists of a sum
of subsequently higher-order terms but it does not provide a numerical value for the coupling
constants. In order to obtain them, the gauge principle is applied giving the value of the constants
of the theory in D and D − 2 dimensions. With this two actions, Kaluza-Klein dimensional
reduction is applied over two dimensions and after comparing the coupling constants, they are
found to be different. The dimensional reduction is later applied to an arbitrary number N of
compact dimensions in order to find a particular case of compatibility without any successful
result.
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Chapter 1

Introduction

1.1 Background and Motivation

Einstein’s general relativity is a successful theory of gravitation that has explained a wide range
of phenomena since it was published in 1915. In this theory, the Einstein-Hilbert action, which
is linear in terms of the curvature, yields second-order differential equations of motion of the
metric. Although others terms of higher curvature can be added to the action, generally they
involve higher-order derivatives of the metric and therefore they are excluded.

However, in 1938, Lanczos proposed a quadratic term of curvature which leads to second-
order equations of motion as well and therefore is not to be excluded when considering a valid
action for gravity. This term is known as Gauss-Bonnet term. It turns out that in a four dimen-
sional world with three spatial directions and one temporal direction, the Gauss-Bonnet term is
a topological term and therefore it does not contribute to the equations of motion. On the other
hand, if the gravitational theory is made to live in a higher dimensional world, five or more, the
Gauss-Bonnet term becomes dynamical and then it does modify the equations of motion.

In 1971, Lovelock extended the result of Lanczos to an arbitrary number of dimensions. In his
theory, the action was built as a sum of subsequently higher-order curvature terms in a generic
number of dimensions, each of them with a coupling constant. He was also able to give a descrip-
tion of which of the terms are dynamical in the equations of motion and which do not contribute
to them relating the number of dimensions to the curvature order. A great success of this theory
is to include the Einstein-Hilbert action as a four-dimensional particular case. The fact of being a
solving, inclusive theory concedes to Lovelock gravity an important argument to be studied with
further detail: its implications, predictions, compatibility with other well-established theories,
etc. Regrettably, Lovelock gravity suffers from a major problem, it does not provide the values
of the coupling constants of each term. A complementary theory must be used in order to obtain
their numerical values and this theory it is found in the gauge formulation of gravity.

Previously in 1956, Utiyama applied the gauge principle to the Poincaré algebra and obtained
successfully Einstein’s general relativity. This is an impressive result because if Einstein had not
discover general relativity geometrically, Utiyama would have done algebraically in a lapse of
almost forty years. With a modification of the Poincaré algebra and extending the number of
dimensions, the theory can provide the undetermined coupling constants that the Lovelock the-
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Dimensional Reduction in Lovelock Gravity 1. Introduction

ory alone was not able to yield.

However, an unresolved question when applying the gauge principle in Lovelock theory is
the uniqueness of the coupling constants for each term in different dimensions. Since their value
depends on the dimension in which the theory lives, it is unclear whether it will coincide with
another higher-dimensional theory in which dimensional reduction has been applied. In other
words, if the coupling constants of the (D−N)-dimensional Lovelock action are computed using
the gauge principle, will they coincide with the coupling constants of a D-dimensional Lovelock
action in which N dimensions have been reduced?

The procedure of dimensional reduction is described in Kaluza-Klein theory. In 1919, Kaluza
considered a pure gravitational theory in five dimensions and decomposed it in a four dimen-
sional gravitational field coupled to electromagnetic and to a massless scalar field. In 1926, Klein
solved some issues present in the theory of Kaluza. His major contribution was its consider-
ation of the fifth dimension to be a compact dimension. With this approach they unified the
gravitational and electromagnetic interaction. Even though the theory was discarded because its
phenomenological implications could not meet the observations, it has inspired many unification
theories due to its simplicity, elegance and mathematical consistence. This last attributes make
the dimensional reduction suitable to compare the coupling constants of the two Lagrangians.

When applying dimensional reduction from a higher to a lower dimensional theory a consistent
truncation can be made so that the theory keeps only the gravitational part allowing to compare
two purely gravitational actions, namely, the Lovelock actions discussed above.

1.2 Objectives and Procedure

The objective of the present work is to provide an answer to the unresolved question posed in
the previous section.

In order to do so, the Lovelock action is to be presented as theD-dimensional generalisation of
the Einstein-Hilbert and Gauss-Bonnet actions. When the problem with the coupling coefficients
is presented, the gauge formulation of the Einstein-Hilbert action is discussed from Poincaré al-
gebra. Since gauging this algebra the cosmological constant is not included a modification is
necessary. The solution is found gauging the (A)dS algebra, and doing so the zeroth-order and
the second-order curvature term, i.e. the cosmological constant and the Gauss-Bonnet term,
are included in the theory. Once this action is reproduced, a higher dimensional extension is
constructed following the structure of the Lovelock gravity presented in the previous chapter
using the Levi-Civita tensor.

Since this extension has its coupling constants determined, a D-dimensional and (D − N)-
dimensional actions are considered. After applying dimensional reduction to the former, the two
actions will have the same dimensions and then the coupling constants are compared. If they
coincide, the uniqueness of the coupling constants is granted and they do not depend on the
dimensions in which they are built.
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Chapter 4

Kaluza-Klein Dimensional Reduction

In this chapter the uniqueness of the found coupling constants using the gauge principle is to
be analysed through Kaluza-Klein dimensional reduction. The Kaluza-Klein theory describes a
procedure to obtain a four dimensional gravitation theory coupled to electromagnetic field when
applying dimensional reduction to a five dimensional gravitational theory. The existence of this
fifth dimension was justified with the concept of compact, periodic dimension, an imperceptible
coordinate with similar length to the Planck scale. In the present work this theory is to be
used as a tool to check the uniqueness of the coupling constants for each term of the Lovelock
Lagrangian. Instead of reducing from five dimensions to four dimensions, the D-dimensional
Lovelock action is to be reduced to D −N dimensions.

The structure of the present chapter is the following: First, one dimensional reduction is
applied and the results are discussed and interpreted focussing on the gravitational part of the
decomposition. Afterwards, dimensional reduction is again applied over another dimension so
that the total number of reductions is even to fulfil the requirement mentioned in the previous
chapter. Once the action has been reduced, it would be straight-forward to reduce a higher
even number of dimensions, this is N times. Finally, the constants of the (D −N)-dimensional
Lagrangian are compared with the ones fixed using the gauge theory.

A final comment is necessary. Since the radius of the compact dimension is similar to the
Planck length, when working at scales much greater than it, all the fields lose their dependency
on the compact coordinate ωn. Because of this, the partial derivative of any field with respect
to this coordinate is identically zero,

∂ωn = 0. (4.1)

This limit is often referred to as the low-energy limit.

Regarding the notation of this chapter, from now on, D-dimensional objects will be written
with a hat

x̂µ̂, ĝµ̂ν̂ , R̂
σ̂

µ̂ν̂ρ̂ , . . .

whereas (D −N)-dimensional objects without it

xµ, gµν , R
σ

µνρ , . . .

with µ̂ = 0, 1, . . . , D and µ = 0, 1, . . . , D−N . As mentioned above, the compact dimensions are
noted as ωn = x̂D−n

n with n = 1, . . . , N . Every periodic dimension may have a different radius
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Dimensional Reduction in Lovelock Gravity 4. Kaluza-Klein Dimensional Reduction

to each other, forming a N-torus, this is

M1,D−1 = M1,D−N−1 × S1 × · · · × S1� �� �
N times

.

4.1 One-Dimensional Compactification

The aim is to compactify the Lovelock action that results from Lagrangian (3.63), this is

ŜD =

�
dDx̂

�
|ĝD|

D/2�

d=0

λ̂dR̂d. (4.2)

The D-dimensional metric ĝµ̂ν̂ from which the square root determinant
�

|ĝD| appears in the
previous expression can be decomposed in a (D− 1)-dimensional metric ĝµν , a vector ĝµω and a
scalar ĝωω. The usual ansatz for it is given by

ĝµ̂ν̂ =

�
e2αφ+2Ω0gµν − γ2e2βφAµAν −γe2βφ

−γe2βφ −e2βφ

�
(4.3)

with α,β, γ and Ω0 arbitrary constants that are usually determined conveniently1. Regarding the
fields, the scalar field φ is called the dilaton and the electromagnetic potential Aµ. In the original
work of Kaluza and Klein, the electromagnetic potential would yield the electromagnetic field
when compactifying. However, as previously mentioned, the interest is to compare two purely
gravitational theories, therefore Aµ is set to zero. Under this assumption, metric (4.3) is diagonal
with the line element being

dŝ2 = e2αφ+2Ω0gµνdx
µdxν − e2βφdω2. (4.4)

In order to simplify the calculations, the Vielbein of the metric are to be computed using
expression (B.4), yielding

êaµ = eαφ+Ω0eaµ, (4.5a)

êaω = êzµ = 0, (4.5b)

êzω = eβφ, (4.5c)

where the same notation for the compact coordinate applies this time for the flat index x̂â =
(xa, z). If the components of the inverse Vielbein are computed, they are found to be

êµa = e−αφ−Ω0eµa, (4.6a)

êµz = êωa = 0, (4.6b)

êωz = e−βφ, (4.6c)

where eaµ are the Vielbein of metric gµν and eµa are, respectively, the Vielbein of the inverse
metric gµν . Now, with the Vielbein perfectly computed, it is really easy to express the volume
element from (4.2) in terms of the (D − 1)- dimensional metric as

�
|ĝ| =

���êâµ̂
��� = eβφ

���eαφ+Ω0eaµ

��� = eβφe(D−1)(αφ+Ω0)
��eaµ

�� = e[(D−1)α+β]φ+(D−1)Ω0
�

|g|. (4.7)

1Notice that, in this section, the compact dimension is noted as ω instead of ω1 for simplicity.
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Appendix A

Conventions

A.1 The Levi-Civita Symbol

The D-dimensional Levi-Civita symbol is a completely antisymmetric object, defined as

εµ1...µD =





1 if (µ1 . . . µD) is an even permutation of (0 1 . . . D − 1) ,

−1 if (µ1 . . . µD) is an odd permutation of (0 1 . . . D − 1) ,

0 otherwise,

(A.1)

which is equivalent to
εµ1...µD = δ1[µ1

· · · δDµD]. (A.2)

The Levi-Civita symbol is a fundamental symbol: it has these values in all coordinate systems.
In order for this to be true, the Levi-Civita symbol has to transform as a pseudo-tensor density
of weight w = +1 under general coordinate transformations

εα1...αD = sgn

�
∂y

∂x

� ����
∂y

∂x

����
D�

i=1

∂xµi

∂yαi
εµ1...µD . (A.3)

Using these transformation rules the invariant volume element is given by

�
|g|dDx =

�
|g|εµ1...µD

D�

i=1

dxµi . (A.4)

An alternating symbol with upper indices can also be defined as

εν1...νD =

�
D�

i=1

gµiνi

�
εµ1...µD , (A.5)

such that
ε01...D−1 = (−1)D−1 |g|−1 . (A.6)

The contraction of two Levi-Civita symbols is given by

εµ1...µdν1...νD−d
εµ1...µdρ1...ρD−d = (−1)D−1 |g|−1 d! (D − d)!δρ1[ν1 · · · δρD−d

νD−d]
, (A.7)

from which yields two interesting cases, namely

εµ1...µDε
µ1...µD = (−1)D−1D! |g|−1 , (A.8a)

εµ1...µDε
ν1...νD = (−1)D−1D! |g|−1 δν1[µ1

· · · δνDµD]. (A.8b)

27


