B. Janssen, A. Jiménez-Cano, J. A. Orejuela

Dpto. Física Teórica y del Cosmos (U. de Granada) / CAFPE
Facultad de Ciencias, Avda Fuentenueva s/n. Universidad de Granada, 18071 Granada, Spain

alejandrojc@ugr.es — Phys. Lett. B 795 (2019) 42 - 48. [arXiv:1903.00280]

It is a known result that the $2 k$-dimensional Lovelock Lagrangian of order k is a total derivative in the Levi-Civita (metric) and in the metric-compatible (Riemann-Cartan) cases. We are indeed interested in figuring out the case with non-metricity, i.e. with a completely general connection. In this work, we focus on the first and second order of the Lovelock expansion in the metric-affne formalism, proving conclusions for the critical Lovelock Lagrangian with arbitrary k.

Formalism, notation and basic objects
Three fundamental (independent) objects in metric-affine formalism

- Coframe. Basis of the cotangent space in each point

$$
\begin{equation*}
\boldsymbol{\vartheta}^{a}=e_{\mu}{ }^{a} \mathrm{~d} x^{\mu} \quad\left(\mathrm{dual} \text { to } \quad \boldsymbol{e}_{a}=e^{\mu}{ }_{a} \boldsymbol{\partial}_{\mu}\right) \tag{1}
\end{equation*}
$$

- Metric. Components of the metric in the arbitrary basis:

$$
\begin{equation*}
g_{a b}=e^{\mu}{ }_{a} e^{\nu}{ }_{b} g_{\mu \nu} \tag{2}
\end{equation*}
$$

Associated objects
-Hodge duality between k-forms and ($D-k$)-forms $\rightsquigarrow \star$

- Canonical volume form:

$$
\begin{equation*}
\star 1:=\sqrt{|g|} \mathrm{d} x^{1} \wedge \ldots \wedge \mathrm{~d} x^{D} \equiv \frac{1}{D!} \mathcal{E}_{a_{1} \ldots a_{D}} \boldsymbol{\vartheta}^{a_{1} \ldots a_{D}}, \quad|g| \equiv\left|\operatorname{det}\left(g_{\mu \nu}\right)\right| \tag{3}
\end{equation*}
$$

- Connection 1-form

$$
\begin{equation*}
\boldsymbol{\omega}_{a}{ }^{b}=\omega_{\mu a}{ }^{b} \mathrm{~d} x^{\mu}, \quad \text { where } \quad \omega_{\mu a}{ }^{b}:=e^{\nu}{ }_{a} e_{\lambda}^{b} \Gamma_{\mu \nu}{ }^{\lambda}+e_{\sigma}{ }^{b} \partial_{\mu} e^{\sigma}{ }_{a} . \tag{4}
\end{equation*}
$$

Associated objects

- Exterior covariant derivative (of algebra-valued forms)

$$
\begin{equation*}
\mathbf{D} \boldsymbol{\alpha}_{a \ldots}{ }^{b} \ldots=\mathrm{d} \boldsymbol{\alpha}_{a \ldots}{ }^{b \ldots}+\boldsymbol{\omega}_{c}{ }^{b} \wedge \boldsymbol{\alpha}_{a \ldots} \tag{5}
\end{equation*}
$$

- Curvature, torsion and non-metricity forms:

$$
\begin{array}{rlrl}
\boldsymbol{R}_{a}{ }^{b}:=\mathrm{d} \boldsymbol{\omega}_{a}{ }^{b}+\boldsymbol{\omega}_{c}{ }^{b} \wedge \boldsymbol{\omega}_{a}{ }^{c} & & =\left(\frac{1}{2} R_{\mu \nu}{ }^{\lambda} x^{\mu} \wedge \mathrm{d} x^{\nu}\right) e^{\rho}{ }_{a} e_{\lambda}{ }^{b} \tag{6}\\
\boldsymbol{T}^{a}:=\mathbf{D} \boldsymbol{\vartheta}^{a} & & =\left(\frac{1}{2} T_{\mu \nu}{ }^{\lambda} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}\right) e_{\lambda}{ }^{a}, \\
\boldsymbol{Q}_{a b} & :=-\mathbf{D} g_{a b} & & =\left(Q_{\mu \nu \rho} \mathrm{d} x^{\mu}\right) e^{\nu}{ }_{a} e^{\rho}{ }_{b} .
\end{array}
$$

where

$$
\begin{align*}
R_{\mu \nu \lambda}{ }^{\rho} & : & =\partial_{\mu} \Gamma_{\nu \lambda}{ }^{\rho}-\partial_{\nu} \Gamma_{\mu \lambda}{ }^{\rho}+\Gamma_{\mu \sigma}{ }^{\rho} \Gamma_{\nu \lambda}{ }^{\sigma}-\Gamma_{\nu \sigma}{ }^{\rho} \Gamma_{\mu \lambda}{ }^{\sigma}, \\
T_{\mu \nu}{ }^{\rho} & :=\Gamma_{\mu \nu}{ }^{\rho}-\Gamma_{\nu \mu}{ }^{\rho} & Q_{\mu \nu \rho}:=-\nabla_{\mu} g_{\nu \rho} . \tag{9}
\end{align*}
$$

More notation:
${ }^{*}$ Levi-Civita: $\dot{\boldsymbol{\omega}}_{a}{ }^{b}, \stackrel{\circ}{\boldsymbol{R}}_{a}{ }^{b}$

* Contractions of the curvature:

$$
\begin{equation*}
R^{(1)}{ }_{\mu \nu}:=R_{\mu \lambda \nu}{ }^{\lambda}, \quad R:=g^{\mu \nu} R^{(1)}{ }_{\mu \nu}, \quad R^{(2)}{ }_{\mu}^{\nu}:=g^{\lambda \sigma} R_{\mu \lambda \sigma}{ }^{\nu} \tag{10}
\end{equation*}
$$

Metric-affine Lovelock gravity

- Def. D-dimensional (metric-affine) Lovelock term of order k :

$$
\begin{align*}
\boldsymbol{L}_{k}^{(D)} & =\boldsymbol{R}^{a_{1} a_{2}} \wedge \ldots \wedge \boldsymbol{R}^{a_{2 k-1} a_{2 k}} \wedge \star\left(\boldsymbol{\vartheta}_{a_{1}} \wedge \ldots \wedge \boldsymbol{\vartheta}_{a_{2 k}}\right) \tag{11}\\
& =\frac{(2 k)!}{2^{k}} \operatorname{sgn}(\mathrm{~g}) \delta_{a_{1} \ldots}^{\left[b_{1}\right.} \ldots \delta_{a_{2 k}}^{\left.b_{2 k}\right]} R_{b_{1} b_{2}}{ }^{a_{1} a_{2}} \ldots R_{b_{2 k-1} b_{2 k}}{ }^{a_{2 k-1} a_{2 k}} \sqrt{|g|} \mathrm{d}^{D} x \tag{12}
\end{align*}
$$

- General properties
- Levi-Civita is a solution of the Palatini formalism EoM.
- Projective symmetry ($\boldsymbol{A}=A_{\mu} \mathrm{d} x^{\mu}$ arbitrary):

$$
\begin{equation*}
\boldsymbol{\omega}_{a}^{b} \rightarrow \boldsymbol{\omega}_{a}^{b}+\boldsymbol{A} \delta_{a}^{b} \quad \Leftrightarrow \quad \Gamma_{\mu \nu}^{\rho} \rightarrow \Gamma_{\mu \nu}^{\rho}+A_{\mu} \delta_{\nu}^{\rho} . \tag{13}
\end{equation*}
$$

- In $D=2 k$ (critical dim.), the Riemann-Cartan and the metric cases are topological.

Metric-affine Einstein Lagrangian

- Einstein Lagrangian (arbitrary dimension)

$$
\begin{equation*}
\boldsymbol{L}_{1}^{(D)}=\boldsymbol{R}_{a}{ }^{b} \wedge \star\left(\boldsymbol{\vartheta}^{a} \wedge \boldsymbol{\vartheta}_{b}\right)=\operatorname{sgn}(g) e^{\nu}{ }_{b} e^{\mu}{ }_{c} g^{c a} R_{\mu \nu a}{ }^{b}(\boldsymbol{\omega}) \sqrt{|g|} \mathrm{d}^{D} x \tag{14}
\end{equation*}
$$

- In $D>2$, the solution of the EoM of the connection is:

$$
\begin{equation*}
\boldsymbol{\omega}_{a}^{b}=\dot{\boldsymbol{\omega}}_{a}^{b}+\boldsymbol{A} \boldsymbol{\delta}_{a}^{b} \quad \Leftrightarrow \quad \Gamma_{\mu \nu}^{\rho}=\stackrel{\circ}{\Gamma}_{\mu \nu}^{\rho}+A_{\mu} \delta_{\nu}^{\rho} \tag{15}
\end{equation*}
$$

Unphysical projective mode \rightarrow can be eliminated using a symmetry of the theory.

- Critical dimension $D=2$.
- Lagrangian (we extract the Riemann-Cartan part which is exact)

$$
\begin{equation*}
\boldsymbol{L}_{1}^{(2)}=\mathrm{d}(\ldots)-\frac{1}{4} \mathcal{E}^{a}{ }_{b} \check{\boldsymbol{Q}}_{a}{ }^{c} \wedge \check{\boldsymbol{Q}}_{c}{ }^{b} \quad \text { where } \quad \check{\boldsymbol{Q}}_{a b}=\boldsymbol{Q}_{a b}-\frac{1}{2} g_{a b} \boldsymbol{Q}_{c}{ }^{c} \tag{16}
\end{equation*}
$$

- Equations of motion

$$
\begin{equation*}
0=\mathbf{D} \mathcal{E}^{a}{ }_{b}=-\check{\boldsymbol{Q}}^{c a} \mathcal{E}_{b c} \tag{17}
\end{equation*}
$$

Therefore the general solution is one that verifies:

$$
\begin{equation*}
\check{\boldsymbol{Q}}_{a b}=0 . \tag{18}
\end{equation*}
$$

- And this is not an identity $\rightsquigarrow 4$ conditions over the 8 d.o.f. of the connection: Tensor d.o.f. in D dim. d.o.f. in 2 dim. Condition imposed by EoM

$T_{\mu \nu}{ }^{\rho}$	$\frac{1}{2} D^{2}(D-1)$	2 (pure trace)	[None]
$Q_{\mu \lambda}{ }^{\lambda}$	D	2	[None] *
$\check{Q}_{\mu \nu \rho}$	$\frac{1}{2} D(D+2)(D-1)$	4	They are zero

[^0]* The trace of the non-metricity is undetermined in any D due to proj. symmetry

Metric-affine Gauss-Bonnet Lagrangian

- Gauss-Bonnet Lagrangian (arbitrary dimension)

$$
\begin{align*}
\boldsymbol{L}_{2}^{(D)}= & \boldsymbol{R}_{a}{ }^{b} \wedge \boldsymbol{R}_{c}{ }^{d} \wedge \star\left(\boldsymbol{\vartheta}^{a} \wedge \boldsymbol{\vartheta}_{b} \wedge \boldsymbol{\vartheta}^{c} \wedge \boldsymbol{\vartheta}_{d}\right) \tag{19}\\
= & \operatorname{sgn}(g)\left[R^{2}-R^{(1)}{ }_{\mu \nu} R^{(1) \nu \mu}+2 R^{(1)}{ }_{\mu \nu} R^{(2) \nu \mu}\right. \\
& \left.\quad-R^{(2)}{ }_{\mu \nu} R^{(2) \nu \mu}+R_{\mu \nu \rho \lambda} R^{\rho \lambda \mu \nu}\right] \sqrt{|g|} \mathrm{d}^{D} x,
\end{align*}
$$

- In arbitrary D, the general solution is not known (up to the unphysical projective mode). - Critical dimension $D=4$.
- Lagrangian (we extract the Riemann-Cartan part which is exact)

$$
\begin{equation*}
\boldsymbol{L}_{2}^{(4)}=\mathrm{d}(\ldots)-\frac{1}{4} \mathcal{E}_{a b c d}\left[2 \overline{\boldsymbol{R}}^{a b} \wedge \check{\boldsymbol{Q}}_{e}^{c} \wedge \check{\boldsymbol{Q}}^{d e}-\frac{1}{4} \check{\boldsymbol{Q}}_{e}{ }^{a} \wedge \check{\boldsymbol{Q}}^{b e} \wedge \check{\boldsymbol{Q}}_{f}^{c} \wedge \check{\boldsymbol{Q}}^{d f}\right] \tag{21}
\end{equation*}
$$

- Particular solution. The Ansatz

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\rho}=\stackrel{\circ}{\Gamma}_{\mu \nu}^{\rho}+A_{\mu} \delta_{\nu}^{\rho}+B_{\nu} \delta_{\mu}^{\rho}-C^{\rho} g_{\mu \nu} \tag{22}
\end{equation*}
$$

is a solution for the critical case $D=4$ as long as $B_{\mu}=C_{\mu}$
The transformation that connects it to Levi-Civita,

$$
\Phi: \quad \Gamma_{\mu \nu}^{\rho} \longmapsto \Gamma_{\mu \nu}^{\rho}+B_{\nu} \delta_{\mu}^{\rho}-B^{\rho} g_{\mu \nu}, \quad \Leftrightarrow \quad \Phi:\left\{\begin{array}{l}
T_{\mu \nu}{ }^{\rho} \longmapsto T_{\mu \nu}^{\rho}-2 B_{[\mu} \delta_{\nu]}^{\rho} \tag{23}\\
Q_{\mu \nu \rho} \longmapsto Q_{\mu \nu \rho}
\end{array}\right.
$$

is not a symmetry of the theory (due to the non-vanishing $Q_{\mu \nu \sigma}$):

$$
\delta_{\Phi} \mathcal{L}_{2}^{(4)}=-4 B^{\mu} B^{\nu} g^{\rho \lambda}\left[2 \nabla_{(\mu} Q_{\rho) \nu \lambda}+T_{\mu \rho}{ }^{\sigma} Q_{\sigma \nu \lambda}\right]
$$

$-2 Q^{\mu \nu \rho}\left[B_{\mu}\left(R^{(1)}{ }_{\nu \rho}+R^{(2)}{ }_{\nu \rho}\right)+B^{\lambda}\left(R_{\lambda \nu \mu \rho}+R_{\lambda \nu \rho \mu}\right)+\ldots\right]$
$-2 Q^{\mu \sigma}{ }_{\sigma}\left[B^{\nu}\left(R^{(1)}{ }_{\nu \mu}-R^{(2)}{ }_{\nu \mu}-g_{\nu \mu} R\right)-2 B_{\mu} B_{\nu} B^{\nu}+\ldots\right]$

$$
\begin{equation*}
+2 Q_{\sigma}{ }^{\sigma \mu}\left[B^{\nu}\left(R^{(1)}{ }_{\nu \mu}+R^{(2)}{ }_{\nu \mu}\right)+2 B_{\mu} \nabla_{\nu} B^{\nu}+2 B^{\nu} \nabla_{\nu} B_{\mu}+2 B_{\mu} B^{\nu} T_{\nu \lambda}{ }^{\lambda}\right] \tag{24}
\end{equation*}
$$

- In addition, configurations that do not verify the equations of motion can be given. For these reasons, the theory cannot be a total derivative.

General metric-affine Lovelock Lagrangian in $D=2 k$ (critical)

- Lovelock theory in critical dimension:

$$
\begin{equation*}
\boldsymbol{L}_{D / 2}^{(D)}=\mathcal{E}^{a_{1}}{ }_{a_{2} \ldots}{ }^{a_{D-1}}{ }_{a_{D}} \boldsymbol{R}_{a_{1}}{ }^{a_{2}} \wedge \ldots \wedge \boldsymbol{R}_{a_{D-1}}{ }^{a_{D}} \tag{25}
\end{equation*}
$$

- Equation of motion for the connection

$$
\begin{align*}
& 0=\left[\check{\boldsymbol{Q}}^{c}{ }_{a_{1}} \mathcal{E}_{c a_{2} \ldots a_{D-2} a b}+\ldots+\check{\boldsymbol{Q}}^{c}{ }_{a_{D-3}} \mathcal{E}_{a_{1} \ldots a_{D-4} c a_{D-2} a b}\right. \\
&\left.+\check{\boldsymbol{Q}}^{c}{ }_{a} \mathcal{E}_{a_{1} \ldots a_{D-2} c b}\right] \wedge \boldsymbol{R}^{a_{1} a_{2}} \wedge \ldots \wedge \boldsymbol{R}^{a_{D-3} a_{D-2}}
\end{align*}
$$

- Families of solutions
- for all k : connection with $Q_{\mu \nu \rho}=V_{\mu} g_{\nu \rho}$ (i.e. $\boldsymbol{Q}_{a b}=0$).
- for $k>1$: teleparallel (i.e. $\boldsymbol{R}_{c}{ }^{d}=0$), any connection such that $\check{\boldsymbol{Q}}_{a b} \wedge \boldsymbol{R}_{c}{ }^{d}=0$.
- for $k>2$: any connection such that $\boldsymbol{R}_{a b}=\boldsymbol{\alpha}_{a b} \wedge \boldsymbol{k}$ for certain 1-forms $\boldsymbol{\alpha}_{a b}$ and \boldsymbol{k}.

Conclusions and forthcoming research

- Conclusions

- Metric-affine Einstein gravity in critical dimension is not topological (the Lagrangian form is not exact), since the dynamics is not identically satisfied.
- In metric-affine Gauss-Bonnet gravity, we have non-trivial solutions that are not connected with Levi-Civita through a symmetry. Indeed, it is possible to find configurations of the fields that violate the equations of motion. Therefore, the theory is not topological either.
-(Conjecture) In arbitrary critical dimension the presence of non-metricity spoils the topological character of the Lovelock action.
- Future work
- Analysis of the equation of the metric/coframe.
- Is there an easy (systematic) way to solve the EoM of the connection for any k ?
- Which is the role of the non-metricity in breaking the triviality in critical dimension?

Acknowledgements

Thanks to José Beltrán Jiménez, Tomi Koivisto, Gonzalo Olmo, Miguel Sánchez and Jorge Zanelli for useful discussions. Funding: Spanish Ministry of Economy and Competitiveness (FIS2016-78198-P), Junta de Andalucía (FQM101) and the Unidad de Excelencia UCE-PP2016-02 (UGR); A.J.C. is supported by the PhD contract FPU15/02864 (MEC); and J.A.O. by a PhD contract of the Plan Propio (UGR). We used xAct to check our calculations.

References

[1] B. Janssen, A. Jiménez-Cano, J. A. Orejuela, Phys. Lett. B 795 (2019) 42 - 48. [2] D. Lovelock, J. Math. Phys. 12 (1971), 498-501
[3] M. Borunda, B. Janssen, M. Bastero-Gil, JCAP 0811 (2008), 008.
[4] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne’eman, Phys. Rep. 258 (1995) 1 - 171.
[5] A. Jiménez-Cano, PhD. Thesis (in progress).
[6] D. Iosifidis, and T. Koivisto, arXiv: 1810.12276
[7] J. Beltrán Jiménez, L. Heisenberg, T. Koivisto, JCAP 2016 (2016), no 04, 046
[8] J. Zanelli, Class. Quant. Grav. 29 (2012), 133001.

[^0]: Table 1: d.o.f. of Γ and their conditions for metric-affine Einstein gravity

