
F
o
r P

eer R
eview

Journal of the American Society for Information Science and Technology

A Proposal of a Quick MST-based Algorithm to Obtain Pathfinder
Networks(∞, n − 1)

Arnaud Quirin and Oscar Cordón
European Centre for Soft Computing, Edf. Científico Tecnológico, Mieres, Spain

Phone: +34 985456545, FAX: +34 985456699
{arnaud.quirin,oscar.cordon}@softcomputing.es

Vicente P. Guerrero-Bote
Dept. of Information & Communication, University of

Extremadura, Badajoz, Spain
Phone: +34 924 289300 (ext. 6430), FAX: +34 924286401

guerrero@unex.es

Benjamin Vargas-Quesada and Felix
Moya-Anegón

SCImago Group, Communication and Information Science
Faculty, University of Granada, Granada, Spain

Phone: +34 918852404
{benjamin,felix}@ugr.es

Network scaling algorithms such as the Pathfinder algo-
rithm are used to prune a lot of kind of networks, includ-
ing social networks. However, this algorithm suffers from
run time problems for large networks and on-line process-
ing due to its O(n4) time complexity. In this paper, we
introduce a new alternative, the MST-Pathfinder algorithm,
which will allow us to prune the original network to get
its PFNET(∞,n − 1) in just O(n2 · log n) time. The under-
lying idea comes from the fact that the union (superposi-
tion) of all the Minimum Spanning Trees extracted from a
given network is equivalent to the PFNET resulting from the
Pathfinder algorithm parameterized by a specific set of val-
ues (r = ∞ and q = n − 1), those usually considered in many
different applications. Although this property is well known
in the literature, it seems that no algorithm based on it has
been proposed up to now to decrease the high computational
cost of the original Pathfinder algorithm. We also present a
mathematical proof of the correctness of this new alternative
and test its good efficiency in two different case studies: one
dedicated to the post-processing of large random graphs, and
the other one to a real-world case in which medium networks
obtained by a co-citation analysis of the scientific domains in
different countries are pruned.

Introduction

Network models are used in many areas of cognitive and
computer science. Among them, social network models de-
pict the complex tissue of relationships between individuals.
The most important key of social network analysis is that it
does not focus on individual or other local properties, but
on relationship between individuals, groups or other kind of
social actors and, at various scales, from personal to interna-
tional. For that, the field of social network analysis provides
various metrics about individuals (or groups, societies, orga-
nizations, web sites, etc. denoted by the term node in the fol-
lowing) and relationships (denoted by the term link in the fol-
lowing) in order to process, map and visualize these entities.
These metrics, such as the betweenness and the closeness for

instance, are exploited in many scientific domains such as so-
ciology, sociolinguistics, social psychology, communication
studies, economics and information science (Breiger, 2004;
Martino & Spoto, 2006).
Social networks have some interesting and unusual topo-

logical properties which are often valuable to be printed
graphically. However, the raw networks cannot be often visu-
alized easily, especially when the size of the networks grows
proportionally with the number of data to be dealt with, and
thus specific algorithms for simplifying such large graphs
have been developed. Network scaling algorithms, whose
goal is to take proximity data and to obtain structures reveal-
ing the underlying organization of those data, use similari-
ties, correlations or distances to prune a graph based on the
proximity between a pair of nodes. One of the most known,
the Pathfinder algorithm (Dearholt & Schvaneveldt, 1990),
is used frequently due to its various mathematical properties,
including the conservation of the triangle inequalities among
a path of any number of links, the capability of modeling
asymmetrical relationships, the representation of the most
salient relationships present in the data, and the fact that
hierarchical constraints in most cluster analysis techniques
do not apply to Pathfinder Networks (PFNETs) (Dearholt &
Schvaneveldt, 1990).
Pathfinder uses two parameters: r, which defines the

Minkowski metric used to measure distances in a path, and q,
which is a limit on the number of links allowed to violate the
triangle inequality. The PFNET structure becomes sparser
(has fewer links) as either r or q increases (Dearholt &
Schvaneveldt, 1990), whereas its interpretability increases.
This explains why PFNETs(∞,n − 1) where both parame-
ters were set to q = n − 1 and r = ∞ are used in a large
variety of applications, including author co-citation analysis
(Buzydlowski, 2002), latent knowledge visualization (Chen
et al., 2001), scientific domain visualization (Chen, 1998a,
1998b, 2004; Moya-Anegón et al., 2007; Vargas-Quesada
& Moya-Anegón, 2007), communication networks (Shope
et al., 2004), animated visualization models of toxins (Chen
& Morris, 2003) and mental models (Kudikyala & Vaughn,

1

Page 1 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

2 ARNAUD QUIRIN AND OSCAR CORDÓN

2005).
Although this method is very powerful and has been suc-

cessfully applied to many different tasks, it has a main draw-
back: its large run time consumption, which makes difficult
to apply it for the processing of large networks when time is
a practical concern, as a consequence of its high order poly-
nomial time complexity (O(n4)). This slowness disallows the
on-line pruning of networks, and cannot provide a real time
response when a strong interaction with a user is needed.
A couple of previous proposals has been done to solve this

problem. Guerrero-Bote et al. (2006) proposed the Binary
Pathfinder algorithm, which reduced both the time and the
space complexity of the original Pathfinder to O(n3 · log n)
and 4 squared matrices, respectively (Pathfinder requires the
use of 2 · (n − 1) squared matrices). In Quirin et al. (2007),
we considered the similarity of the latter with shortest path
algorithms to design an even quicker variant by fixing the
value of parameter q to n − 1, reducing its run time to O(n3)
and its space complexity to 2 squared matrices. In spite of
its speed, this Fast Pathfinder variant is still too slow for the
real time pruning of large networks, as the run time was only
accelerated by a factor of n.
In this paper, we introduce a new alternative, MST-

Pathfinder, which drastically decreases the run time by a fac-
tor of n2 ·log−1(n) (i.e., fromO(n4) toO(n2 ·log n)), and which
also saves an amount of memory corresponding to 2 · n − 5
squared matrices, compared to the original Pathfinder. MST-
Pathfinder space complexity is just a little bit larger than Fast
Pathfinder and smaller than Binary Pathfinder. To obtain this
result, we had to fix r and q, the two main parameters of
Pathfinder, to some specific values, respectively∞ and n− 1.
So, even if this algorithm cannot be used in the general case,
this specific parameter setting is the most extended one for
PFNET applications.
Two case studies are considered to test the efficiency of

the new proposal. In the first one, we study large and fully
connected random matrices and compare the run time of all
the algorithms applied on them. In a second case study, we
have selected the generation of visual science maps (or sci-
entograms) for the representation of vast scientific domains,
based on co-citation information. The efficiency of our new
algorithm is critical for this real case in which the saving in
time and memory is important for on-line visualization.
The structure of the current contribution is as follows. In

the second section, we review the existing improvements of
Pathfinder, designed for reducing its time and space com-
plexity. In the third section we present our new proposal,
MST-Pathfinder. Lastly, in the fourth section, we experimen-
tally check the validity of our new MST-Pathfinder proposal
in comparison with the previous Pathfinder variants with re-
spect to run time in the two case studies. Finally, some con-
cluding remarks are pointed out in the last section.

Previous Approaches to Speed
Up the Pathfinder Run Time

In this section we first review the basis of the original
Pathfinder algorithm. Then, we describe the current state-

of-the-art of the previous existing proposals to design new,
quicker versions of it following the aim of speeding up its
processing.

Pathfinder

Pathfinder was introduced by Dearholt and Schvaneveldt
(1990) as a technique to choose the shortest links in a net-
work in the field of social networks analysis. The result of
the Pathfinder procedure is a pruned network called PFNET
that only keeps those links which do not violate the triangle
inequality stating that the direct distance between two nodes
must be less than or equal to the distance between them pass-
ing through any group of intermediate nodes. As said by its
creators, PFNETs provide unique representations of the un-
derlying structure for domains in which objective measures
of distance are available (Schvaneveldt, 1990).
The Pathfinder algorithm is based on two main parame-

ters:
1. r ∈ [1,∞], which defines the adaptive metric, the

Minkowski r-metric, considered to measure the distance be-
tween two network nodes not directly connected:

D =

∑

i

dri

1
r

(1)

When r takes value 1, the Minkowski metric results in the
sum of the link weights; when it takes value 2, it becomes
the usual Euclidean metric; and when r tends to ∞, the path
weight is the same as the maximum weight associated with
any link along the path.
2. q ∈ [2, n − 1] (with n being the number of nodes in the

network), which limits the number of links in the paths for
which the triangle inequality is ensured in the final PFNET.
Hence, every path connecting two nodes that violate the tri-
angle inequality, having an associated Minkowski distance
greater than any other path between the same two nodes com-
posed of up to q links, will be removed.
To build a PFNET, two different kinds of auxiliary matri-

ces are used:
• W i

jk
, which stores the minimum cost to go from node j

to node k by following exactly i links. This matrix is com-
puted recursively using matrixW i−1

jk
, withW1 being the orig-

inal weight matrix.
• Di

jk
, which stores the minimum cost to go from node

j to node k by following any path in the network composed
of i or less links. This matrix is computed recursively using
matricesW1

jk
, . . . ,W i

jk
.

The original Pathfinder algorithm pseudo-code is shown
in Fig. 1. Notice that the algorithm has a time complexity or-
derO(q ·n3) as q steps have to be done to build the qmatrices
W i and Di. Each of the latter matrices stores n2 weights, so
a loop of this order is needed to compute them in each step.
Finally, an additional loop of n steps is needed to compute
each component of W i+1, as seen in line 1 of the algorithm.
As the maximum possible value for q is n− 1, Pathfinder has
a time complexity of O(n4) in that case. On the other hand,
the resulting space is thus of complexity 2 ·q ·n2 (2 ·n3−2 ·n2

Page 2 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

A PROPOSAL OF A QUICK MST-BASED ALGORITHM TO OBTAIN PATHFINDER NETWORKS(∞, N − 1) 3

1. Compute W i+1 = W � W i, as follows: wi+1
jk
=

MIN((w jm)r + (wi
mk
)r)1/r, for 1 ≤ m ≤ n.

2. Compute Di, as follows: di
jk
= MIN(w1

jk
, . . . ,wi

jk
),

for j , k.
3. Iterate untilWq and Dq are computed.
4. CompareW1 and Dq : all the links having the same

values in these two matrices will belong to the final PFNET.
Figure 1. The Pathfinder algorithm.

when q = n − 1), since there is a need to build q matricesW i

and q other matrices Di, as seen above.

Binary Pathfinder

Guerrero-Bote et al. (2006) recently proposed the Binary
Pathfinder algorithm, an improved variant of the original
Pathfinder aiming at reducing its time and space complexity.
Binary Pathfinder takes the two following aspects as a base
to put this improvement into effect:
1. The only matrix in the series of Di that is actually

needed for the algorithm to operate is the last one, Dq, to be
compared with the initial weight matrix W1. The remainder
are not necessary.
2. The matricesDi can be directly generated from two pre-

vious ones in the same way as done for the consecutive W i

matrices: Di+ j = Di � D j.
Hence, the authors demonstrated that the distance matrix

Di+ j storing the minimum distances between each couple of
nodes can be calculated from Di and D j as follows:

d
i+ j

kl
= MIN

{

dikl, d
j

kl
, ((dikm)

r + (d j

ml
)r)1/r
}

(2)

where d1
kl
= wkl, obtaining the same result as with the original

Pathfinder algorithm described in the previous subsection.
Thanks to the latter, a new Pathfinder algorithm was de-

signed which does not need to compute every Di matrix,
i = 1, . . . , q, but can make larger steps. Taking the procedure
to transform an integer number to binary as a base (that is the
inspiration for the algorithm’s name), Guerrero-Bote et al.’s
Binary Pathfinder reduces the task to calculating just log(q)
matrices, those corresponding to indexes being powers of 2:
D1,D2,D4,D8,

1. i = 1; nq = 0; Generate D1 = W; Dq ← ∞.
2. IF (q mod 2 = 1) THEN Compute Dq = Dq � D1.
3. nq = 1.
4. WHILE (2 · i ≤ q)
5. Compute D2·i = Di � Di.
6. IF ((q − nq) mod (4 · i) > 0) THEN
7. Compute Dq = Dq � D2·i.
8. nq = nq + 2 · i.
9. i = 2 · i.
10. CompareW1 and Dq : all the links having the same

values in these two matrices will belong to the final PFNET.
Figure 2. The Binary Pathfinder algorithm.

The Binary Pathfinder algorithm pseudo-code is shown in
Fig. 2. Notice that Binary Pathfinder keeps the same algorith-
mic approach than the original Pathfinder version, the clas-
sical dynamic programming approach (Dreyfus, 1965), and
the improvement introduced is due to the fact that it smartly
reduces the number of steps in the outer loop needed to com-
pute the same distance matrix Dn−1 while still satisfying the
Bellman’s principle of optimality (Bellman &Kalaba, 1965).
The principal loop reduces the number of steps of the orig-

inal Pathfinder from q to log q. Therefore, the time complex-
ity of the new Binary Pathfinder variant becomesO(n3 ·log q)
instead of O(n3 · q), which in the maximum case becomes
O(n3 · log n) instead of O(n4), a very significant time differ-
ence for medium and large networks. On the other hand, the
space complexity is even more significantly reduced, as only
two squared matrices to compute Di in each step, another
matrix to store the final distance values Dq, and one last ma-
trix W to store the original weights are required, instead of
2 · q matricesW i and Di, as in the original algorithm. More-
over, as Pathfinder, this algorithm can be applied on directed
networks and can consider any possible value for q and r.

Fast Pathfinder

When analyzing the operation mode of the original
Pathfinder algorithm with q = n− 1 from a computer science
point of view, one can recognize that what it does is nothing
but computing a distance matrix Dn−1 storing the lengths of
all the shortest paths (regarding the Minkowski r-metric) be-
tween any pair of network nodes comprised by up to n − 1
links, and then comparing the latter values to the original
weights in matrix W1 to determine which links will finally
belong to the PFNET. In this case, the triangle inequality is
verified for the best path between any couple of nodes in the
network, thus the problem becomes a shortest path one.
In (Quirin et al., 2007), we took the latter idea as a base

to compute the distance matrix in a more direct way, thus
reducing the number of steps required and speeding up the
algorithm. To do so, we applied again the dynamic program-
ming approach in order to ensure the obtaining of the optimal
solution for the graph shortest path problem.
As seen in Binary Pathfinder, the only two matrices that

are finally needed to obtain the PFNET as a result of prun-
ing the original network are Dn−1 and W1. Since Dn−1 is
a shortest path distance matrix, we borrowed an alternative
and quicker way to compute it from a classical algorithm in
graph theory (Cormen et al., 2001): Floyd-Warshall’s algo-
rithm (Floyd, 1962; Warshall, 1962), also based on the dy-
namic programming approach, which is able to compute all
the shortest paths of length up to n− 1 links (according to an
Euclidean metric) in a cubic time complexity.
Hence, the Floyd-Warshall’s algorithm was adapted to

the computation of the Dn−1 matrix for a PFNET using
the Minkowski r-metric and became the base of the Fast
Pathfinder proposal. Since working in this way we are able to
build this matrix in cubic time and avoid the need to compute
the temporary matrices W i and Di, the substitution is much
more effective. The Fast Pathfinder pseudo-code is shown in

Page 3 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

4 ARNAUD QUIRIN AND OSCAR CORDÓN

Fig. 3.

1. D← W; PFNET ← ∅.
2. FOR k from 1 to n DO
3. FOR i from 1 to n DO
4. FOR j from 1 to n DO
5. di j = MIN

{

di j, ((dik)r + (dk j)r)1/r
}

.
6. FOR i from 1 to n DO
7. FOR j from 1 to n DO
8. IF (di j = wi j) THEN PFNET ← PFNET∪

(i, j).
Figure 3. The Fast Pathfinder algorithm.

Since the shortest path computation procedure has an
O(n3) time complexity and the W-D comparison takes time
O(n2), the algorithm will have a time complexity of O(n3) +
O(n2) = max

{

O(n3),O(n2)
}

= O(n3). Besides, notice that
the algorithm only requires to store two square matrices to
operate (W and D).

MST-Pathfinder

The goal of this section is to introduce theMST-Pathfinder
algorithm using a well known relation between Minimum
Spanning Trees (MST) and PFNETs parameterized with r =
∞ and q = n − 1. We first review the Kruskal’s MST algo-
rithm, that has served as a base for the definition of the new
algorithm, which is presented thereafter. Then we present
the mathematical proof of the correctness of MST-Pathfinder
and we detail its time and its space complexity.

Underlying Idea: Relation Between Minimum
Spanning Trees and Pathfinder Networks (r = ∞,
q = n − 1)

It is well known that there is a relationship between the re-
sults obtained with a MST1 algorithm and the Pathfinder al-
gorithm. Dearholt and Schvaneveldt (1990) explicitly stated
that, for a given symmetric cost matrix W, r and q, the
union of all the MSTs extracted from a PFNET(r, q) is
PFNET(∞, n − 1). As we have seen in the previous two sec-
tions, for each couple of nodes (i, j), PFNET(∞, n − 1) is
the set of links with the minimum cost among all the paths
between the nodes i and j. On the other hand, Chen and
Morris (Chen &Morris, 2003) explored the relationships be-
tween both from a network visualization point of view, after
introducing that a PFNET is the union set of all the possible
MSTs derived from a network. The authors compared the
Kamada-Kawai visualization of an MST network with the
one obtained from a PFNET, using the parameters q = n − 1
and r = ∞. They concluded by saying that the visual-spatial
features of the PFNET are better than those of the MST ap-
plied on co-citation networks (for instance, MST gives more
clustered networks), but the MST algorithm is more efficient.
So, the very challenging development we are tackling in

this contribution is to provide the user with a new algo-
rithm giving the same result than Pathfinder (i.e., the same
PFNET(∞, n−1)), but with the same efficiency than the usual

MST algorithms. In fact, our roadmap is to propose new
implementations of PFNET-based algorithms, by imposing
some constraints on the parameter values compared to the
original Pathfinder, in such a way that the new variants can
be faster for the generation of PFNETs(∞, n− 1) on-line. As
we have seen in the previous section, Binary Pathfinder is
able to speed up the original Pathfinder algorithm, while Fast
Pathfinder algorithm speeds up Binary Pathfinder. The latter
one does so by imposing a single constraint, i.e. considering
n − 1 as the only possible value for the parameter q. We can
notice that all the latter algorithms apply the dynamic pro-
gramming approach, well known in algorithm theory (Drey-
fus, 1965).
Now, we have explored how imposing one additional con-

straint we can success to generate PFNETs using a greedy
approach. Greedy algorithms are known to be faster than
their dynamic programming counterparts when they are able
to reach the globally optimal solution (Cormen et al., 2001).
Therefore, our natural idea was to explore the potential of
MST algorithms for this task, firstly because a connection
with Pathfinder has already been proved, and secondly be-
cause they use the greedy approach so they should be faster
than the current state-of-the-art Pathfinder variants.
To do so, we need to look for a stronger relation between

the PFNET(∞, n−1) of a networkG, and the different MSTs
of G. Although it is not stated explicitly in (Dearholt &
Schvaneveldt, 1990), the union of all the MSTs extracted
from a given networkG is also its PFNET(∞, n − 1).
This result is very important because, even if it con-

cerns only a specific setting of the Pathfinder algorithm
(q = n − 1 and r = ∞), this setting is the most used for
many applications. In fact, when applied to a given network,
Pathfinder(∞, n − 1) prunes the network in such a way that
two nodes only remain connected if the weight of their link
is equal or better than the minimal link weight (the maximal
similarity) on all the other paths. The consequences on the
global network are that (1) the nodes are connected only if
they are the most closest, in terms of the distance measure,
and (2) the shortest path between two nodes in a PFNET is
intuitively the best one to describe the relationship of these
two nodes.
Hence, as the generation of PFNET(∞, n − 1) is the sim-

ple union of all the MSTs of a given network, we can design
a new algorithm, alternative to Pathfinder, to generate these
PFNETs by using any existing MST algorithm. In fact, there
are at least two of such algorithms which are well-known
in graph theory and computer science literature, respectively
called Kruskal’s (Kruskal, 1956) and Prim’s (Prim, 1957).
Because of its simplicity, the adaptation of Kruskal’s algo-
rithm was finally used during the design of our new pruning
technique. It was called MST-Pathfinder, in reference to the

1 Let G = (V, E) be a non-directed weighted and connected net-
work where V is the set of the nodes and E is the set of the links
valued by their costs. A Minimum Spanning Tree of G is a sub-
network T = (V, E′) of G, E′ ⊂ E, including all the nodes of G,
where T is a tree and where the sum of the costs of each link is
minimal.

Page 4 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

A PROPOSAL OF A QUICK MST-BASED ALGORITHM TO OBTAIN PATHFINDER NETWORKS(∞, N − 1) 5

new approach to quickly prune networks based on MSTs,
even if it does not follow the usual Pathfinder algorithm op-
eration mode as the different variants introduced in the pre-
vious section.

Kruskal’s MST Algorithm

Kruskal’s algorithm (Kruskal, 1956) is a greedy algorithm
that gives an MST for a connected weighted network. In it,
all the links are sorted in ascending order. The links are then
added one by one to the final tree only if they are not already
in the same cluster (i.e., the tree remains a tree and does not
become a network). In this case, at each iteration, two nodes
belonging to the current tree are only connected by the links
having the minimal cost, so the total cost of the tree is also
minimal.
The algorithm uses several sub-functions. The function

CREATE-CLUSTER(v) applied to a node v creates a single
cluster of size 1, just including v as member. The function
CLUSTER(v) returns the cluster associated to node v. As
the only purpose of this function is the comparison of two
clusters to know if they are the same or not, this is usually
done by returning an element (or an index) able to identify
in an unique way the cluster containing v. The function
MERGE-CLUSTER(u, v) performs the union of the cluster
containing node u and that containing node v.

Kruskal’s algorithm pseudo-code is shown in Fig. 4.

1. Define a tree, T = ∅.
2. Define V[G], the set of the nodes of the networkG.
3. FOR each node v ∈ V[G]
4. CREATE-CLUSTER(v).
5. Create F, a set of all the links of G sorted by their

weights.
6. FOR each link e(u, v) ∈ F
7. IF CLUSTER(u) , CLUSTER(v), THEN
8. T = T ∪ {e(u, v)}.
9. MERGE-CLUSTER(u, v).
10. Return T .

Figure 4. Kruskal’s algorithm.

As stated before, this algorithm is quite simple. When a
disjoint-set data structure is used to perform the operations
on the clusters, its time complexity is O(|E| · log(n)), where
|E| is the number of links and n the number of nodes of G
(Cormen et al., 2001). As |E| is bounded by n2, the time
complexity is equivalent toO(n2 ·log(n)). As we need to store
two link sets (T and F), the memory complexity is 2 · n2.

Structure of MST-Pathfinder

In view of the latter, to generate the PFNET(∞, n− 1), we
have to compute all the possible MSTs of a network and re-
turn the union of the corresponding link sets. As said, the two
corresponding well known algorithms to compute an MST
are Kruskal’s and Prim’s. We could justify the choice of
Kruskal’s algorithm instead of Prim’s one by noticing that
the latter grows an initial tree by looking all the neighbors of

a given node and by selecting the one that minimizes the cur-
rent cost of the tree. This neighbor-based behavior seems to
be more efficient when the networks are represented as a real
graph (by means of pointers, or some other data structures).
Another more technical and important reason for this choice
will be explained later.
Our proposal concerns a way to compute the union of all

the possible MSTs of a given network with the same time
complexity required to compute just one of these MSTs.
Firstly, we should notice that the differences between the var-
ious MSTs of a given network are only related to the links
having the same values, but not being present in the same
cluster during a given step of the algorithm. During this
step, the algorithm has to choose between different links, and
all these choices correspond to the same amount of different
possible MSTs. In particular, if all the weights of the origi-
nal network links are different, the MST is unique (Kravitz,
2007). This is related to the non-deterministic behavior of the
original Kruskal’s algorithm, that let this algorithm produce
arbitrarily only one of all the possible MSTs. In the follow-
ing, we will refer to the links that are not shared by all the
possible MSTs generated from a given network as special-
links.
So, to achieve our final goal of merging directly the dif-

ferent MSTs during the run of the algorithm, we have to de-
tect these special-links. The first property of these links is
that they have the same weights. This fact can be efficiently
checked once the link set is sorted (during the initialization of
the algorithm). If the original algorithm is looked carefully,
we can notice that once one of these links is added to the tree
T , the two clusters corresponding to this link are immediately
merged. In this case, it is impossible to detect if the two links
are or not special-links in a further step.
The only solution is to store them in a temporary set H

instead of adding them directly to the current tree, and pro-
cess this set only when we are sure that this will not affect
the detection of other special-links. The processing of the
set (i.e., the union of all the links of the temporary set with
the current tree) can be done once a new link with a different
weight has been found. These remarks let us define directly
the MST-Pathfinder algorithm, shown in Fig. 5.
The main goal of this algorithm is to merge directly

all the links corresponding to the different possible MSTs
of a network G, so the final result is equivalent to the
PFNET(∞, n−1) of that network. Notice that, on the contrary
to the Pathfinder variants described in the previous section,
there is not a need of any weight comparison to select the fi-
nal links belonging to the PFNET but those are just the same
ones in the MST. Thus, additional run time is saved working
in this way.
It is also worth noticing that this improvement can only

be done with Kruskal’s algorithm, and not with Prim’s one.
Indeed, in Kruskal’s, the links-sort acts in a global way, al-
lowing us to detect (and join) the different links that would
be present in the different MST trees. In Prim’s algorithm,
the growing of the tree is done in an incremental (so a local)
way, by adding a non-explored link to the current tree. Un-
der that condition, the detection of two links with the same

Page 5 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

6 ARNAUD QUIRIN AND OSCAR CORDÓN

1. Define a tree, T = ∅
2. Define V[G], the set of the nodes of the networkG.
3. DefineW, the matrix of the costs for each link ofG.
4. FOR each node v ∈ V[G]
5. CREATE-CLUSTER(v).
6. Create F, a set of all the links of G sorted by their

weights.
7. FOR each link e(u, v) remaining in F
8. H = ∅.
9. FOR each link e(u′, v′) remaining in F where

w(u, v) = w(u′, v′)
10. F = F − {e(u′, v′)}.
11. IF CLUSTER(u′) , CLUSTER(v′), THEN
12. T = T ∪ {e(u′, v′)}.
13. H = H ∪ {e(u′, v′)}.
14. FOR each link e(u′, v′) ∈ H
15. MERGE-CLUSTER(u′, v′).
16. Return T .

Figure 5. The MST-Pathfinder algorithm.

values that should be merged could not be achieved directly,
at least using an efficient computation (a sorting operation
would be required to do so because they could be located far
away from each other).

Proof of the correctness of MST-Pathfinder

Let G be a connected, weighted graph and let T be the
subgraph of G produced by the MST-pathfinder algorithm
(i.e., the union of all the MSTs of the graph G), and PF be
the subgraph PFNET(∞,n − 1).
If T=PF then T is the PFNET(∞,n − 1). Otherwise there

should be links in T that are not in PF or the contrary.
Let e(u, v) be a link with weight w that is in T , but is not in

PF. This means that there is a path M in PF connecting the
vertex u and v with a lower cost than w. But this could not
be possible because all the links composing M should have
been first considered by the MST-pathfinder algorithm dur-
ing its run. So, when e(u, v) was considered, the vertexes u
and vwould have been in the same cluster. As a consequence,
e(u, v) should not be in T .
On the other hand, let e(u, v) be an edge with weight w

that is in PF, but is not in T . Because of the definition of
PFNET, this means that all the other paths in T connecting
u and v contain at least one link e(i, j) with a weight larger
than w. In that case, the MST-pathfinder algorithm could not
have avoided the inclusion of e(u, v) in T , because it would
have been analyzed before or at the same time than that link
e(i, j), and u and v would have not been at this time in the
same cluster. As a consequence, e(i, j) should also be in T .
By contradiction, we have T=PF.

Time and space complexity of MST-Pathfinder

The algorithm needs O(|E| · log(|E|)) operations to sort
the list of the links by their weights, where |E| is the num-
ber of links. To know which cluster belongs each node
to, we can use a disjoint-set data structure with union by

rank and path compression. According to Cormen et al.
(2001), the cost of the related operations depends on two pa-
rameters: M, the total number of CREATE-CLUSTER(v),
CLUSTER(v) and MERGE-CLUSTER(u, v) calls and N, the
number of CREATE-CLUSTER(v) calls. In this case, the
best total cost of the calls is proved to be in O(M log(N)). In
MST-Pathfinder, CREATE-CLUSTER(v) is called n times.
Now, although there are two nested FOR loops, at most |E|
CLUSTER(v) and |E| MERGE-CLUSTER(u, v) operations
are performed in the worst case, because the size of F de-
creases by 1 at each step, and both loops are based on F. In
our case, M = 3|E|+n and N = n so the cost of the algorithm
is expressed by:

O(|E| · log(|E|)) + O((3|E| + n) · log(n))

= max
{

O(|E| · log(|E|)),O(|E| · log(n)),O(n · log(n))
}

= O(|E| · log(|E|))

When having a dense network, |E| is close to n2 and
log(n2) is O(log(n)), so the theoretical time complexity of
the full algorithm can be simplified to O(n2 · log(n)), hav-
ing the same time complexity that Kruskal’s algorithm. In
conclusion, this algorithm is much faster than the original
Pathfinder (O(n4), when applied with q = n − 1), in spite
of the recent improvements we have described in the previ-
ous section: the Binary Pathfinder has a time complexity of
O(n3 · log(n)) and Fast Pathfinder has a time complexity of
O(n3).
It is important to mention that the time complexity

developed previously has only a theoretical importance.
In practice, due to the high number of calls to the
CLUSTER(v) functions, compared to the number of calls
to MERGE-CLUSTER(u, v), it is more efficient to consider
another, much simpler data structure than the disjoint-set to
implement these functions. In our case, each node v is af-
fected by a single index c(v) encoding the corresponding
cluster in an unique way, so each call to CLUSTER(v) is
done in O(1). Then, MERGE-CLUSTER(u, v) involves af-
fecting the value c(u) to each node having the value c(v), and
this can be done in O(n). So the practical time complex-
ity of the algorithm is O(n) + O(|E| log(|E|)) + O(|E| · n) =
max
{

O(n),O(|E| log(|E|)),O(|E| · n)
}

= O(|E| · n) = O(n3).
Compared to O(n2 · log(n)), this complexity is worst in the-
ory. However, the run time is faster in practice, as we will
see in the next section. For this purpose, we name the al-
gorithm using the disjoint-set data structure with union by
rank and path compression, the theoreticalMST-Pathfinder;
and the index-based disjoint-set variant, the practical MST-
Pathfinder.
Concerning the space complexity, we need to store three

lists of links with their weights, that are F, T and H. The
record of the cluster index can be done with a single addi-
tional attribute for each node, so the total space complexity
of the algorithm is 3 · n2 + n. The only drawback is that this
algorithm cannot be applied on directed networks, because
the sorting process deals with undirected links.

Page 6 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

A PROPOSAL OF A QUICK MST-BASED ALGORITHM TO OBTAIN PATHFINDER NETWORKS(∞, N − 1) 7

Experiments

The goal of this section is to present an experimental study
in which the benefit in time of the MST-Pathfinder algorithm
in comparison to the other Pathfinder variants is shown on
two case studies: a laboratory problem where networks of
medium and large sizes are randomly generated, and a real-
world problem of information visualization with medium
size networks obtained by a co-citation analysis of twenty
scientific domains.

Case study 1: Random Networks

In this experiment, our aim is twofold. Firstly, we com-
pare the execution time of the five algorithms (the original
Pathfinder, the Binary Pathfinder, the Fast Pathfinder, the the-
oretical MST-Pathfinder and the practical MST-Pathfinder)
on random matrices, from size 100 to 10’000. Secondly, to
prove that the practical MST-Pathfinder is faster than the the-
oretical MST-Pathfinder. Recall that the two variants use two
different internal algorithms to manage the disjoint-set data
structure. The former uses the most known algorithm in the
literature for this structure, the union by rank and path com-
pression (Cormen et al., 2001), while the latter uses a trivial
algorithm based on the update of a simple index.
In order to measure the run time of all the algorithms we

used 20 different matrices for each of the six networks sizes
considered (100, 200, 300, 400, 1000, 10’000), randomly
filled with real numbers from 1 to 1000 and we averaged the
results in order to make a more fair comparison (notice that,
although the algorithms are deterministic, the measurement
of the run time values can have small fluctuations in some
cases, so this is a most robust procedure). The goal was to
compare the run time of all the algorithms using laboratory
cases, and using very large matrices. Only symmetric matri-
ces were considered in this experiment, they represent fully
connected networks and the parameters were set to q = n− 1
and r = ∞, when applicable. The algorithms have been writ-
ten in C, and compiled on Linux with the GNU GCC compiler
with the -O3 option, on an Intel dual-core Pentium 3.2 GHz
with 2 GB of memory.

Table 1
Comparison of the run time (expressed in seconds) of all the
algorithms for the random matrices case study.

#Nodes #Links
Original

PF
Binary

PF
Fast
PF

MST-PF
(theoretical)

MST-PF
(practical)

1 100 9.90E+03 1.55 0.183 0.00925 0.00210 0.00208
2 200 3.98E+04 23.59 1.76 0.0702 0.0101 0.0101
3 300 8.97E+04 181 8.98 0.238 0.0266 0.0264
4 400 1.60E+05 604 24.56 0.585 0.0537 0.0533
5 1000 9.99E+05 >3600 >3600 10.01 0.629 0.629
6 10000 1.00E+08 >3600 >3600 >3600 128.31 127.62

The obtained results are shown in table 1. The first
conclusion is that this experiment shows the important run
time improvement achieved by the MST-Pathfinder algo-
rithm for medium2 and large networks. Networks contain-
ing 100’000’000 links are pruned in around two minutes in-
stead of a time much more larger than one hour spent by the
remaining algorithms3. This allows us to process medium

networks on-line and large networks in a reasonable time.
Another point is that the improvement of MST-Pathfinder, in
comparison to Fast-Pathfinder, is clearly demonstrated here:
from a complexity of O(n3) to a complexity of O(n2 · log(n)),
the run time changes from more than one hour (around 3
hours according to some tests we performed without consid-
ering the one hour run time threshold) to only two minutes.
The second conclusion is that the practical MST-

Pathfinder algorithm is slightly faster than the theoretical
variant, as explained in the previous section: the improve-
ment is around 0.54% for a network of 10’000 nodes.

Case study 2: A Method to Generate Scientograms
for Vast Scientific Domains

The graphical representation of information for its later
visualization is a very common activity in the most of sci-
entific disciplines. However, its combination with computer
science is a rather new task.
The achievement of a vast scientogram is a recurrent idea

in the modern age. In 1998, Chen (1998a, 1998b) was the
first researcher to bring forth the use of PFNETs in citation
analysis. This is due to the fact that scientograms are the
most appropriate means to represent the spatial distribution
of research areas, while also affording information on their
interactions (Small & Garfield, 1985). Taking the latter as a
base, Moya-Anegón et al. (2004) proposed a method for the
visualization and analysis of vast scientific domains using the
ISI4-JCR category co-citation information. They represented
it as a social network, simplified that network bymeans of the
Pathfinder algorithm considering q = n − 1 and r = ∞, and
graphically depicted its layout using the Kamada-Kawai’s al-
gorithm (Kamada & Kawai, 1989), thus getting a structural
model of the scientific research in a vast domain. Note that
r = ∞ and q = n − 1 are the common parameter values when
Pathfinder is used for large domains scientogram generation.
These values are very advantageous for large network prun-
ing (Chen, 2004).
The different method stages are briefly described as fol-

lows.

Category co-citation measure.
Co-citation is a widely used and generally accepted tech-

nique for obtaining relational information about documents
belonging to a domain. Because we strive to represent and
analyze the structure of vast domains, whether they be the-
matic, geographic or institutional, we fall back on to ISI-JCR
co-citation categories (Moya-Anegón et al., 2004) as a tool
for this purpose.
Hence, once the rough information of the ISI-JCR co-

citation for the categories present in the domain to be ana-
lyzed is obtained, a co-citation measure CM is computed for
each pair of categories i and j as follows:

2We use the term medium to describe networks having 100 to
1000 nodes (Börner et al., 2007).

3A run time of one hour was our imposed threshold in order to
stop the algorithms in a reasonable time.

4 Currently registered as Thomson Scientific.

Page 7 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

8 ARNAUD QUIRIN AND OSCAR CORDÓN

CM(i j) = Cc(i j) +
Cc(i j)
√

c(i) · c(j)
(3)

where Cc is the co-citation frequency and c is the citation
frequency.
Notice that the aim of this scientogram generation method

is that the final scientogram obtained is a tree. Hence, in
order to avoid the existence of cycles in the pruned network,
the considered measure of association adds the normalized
co-citation (divided by the square root of the product of
the frequencies of the co-cited documents’ citations (Salton
& Bergmark, 1979)) to the rough category co-citation fre-
quency. In this way, the network weights become real num-
bers, allowing us to create small differences between similar
values for the co-citation frequency, thus avoiding the occur-
rence of cycles and achieving the optimal prune of each link
considering the citing conditions of each category.

Network pruning by Pathfinder.
Then, the Pathfinder algorithm is applied to the co-citation

matrix to prune the network. We should take into account the
fact that the networks resulting from citation, co-citation, or
term co-occurrence analysis are usually very dense. Due to
this fact, and especially in the case of vast scientific domains
with a high number of entities (categories in our case) in the
network, Pathfinder is usually parameterized to r = ∞ and
q = n − 1, in order to obtain an schematic representation
of the most outstanding existing information by means of a
network showing just the most salient links.

Network layout by Kamada-Kawai.
Kamada and Kawai (1989)’s algorithm is then used to au-

tomatically produce representations of the pruned network
resulting from the Pathfinder run on a plane, starting from a
circular position of the nodes. It generates social networks
with aesthetic criteria such as the maximum use of available
space, the minimum number of crossed links, the forced sep-
aration of nodes, building balanced maps, etc.
In general, the weights of the links belongs to R and are

all different, so the final result is a tree as the one shown in
figure 6.

Figure 6. An example of a scientogram corresponding to the Eu-
rope scientific domain in 2002.

Comparison of the run time.
The goal of this section is to conduct the experimental pro-

cedure described above in order to measure the run time of
all the Pathfinder variants considered in this paper, and to
show the run time improvement obtained on 20 real-world
networks. The networks were obtained from the ISI-JCR
category co-citation information available at the SCImago re-
search group’s Atlas of Science 5. Their sizes range from 212
to 263 nodes, and from 8485 to 23430 links. Notice that,
the link weights in these medium networks correspond to
similarities instead of distance measurements6. The original
Pathfinder, the Binary one, the Fast Pathfinder and the MST-
Pathfinder algorithms have been compared to prune the latter
networks to design the scientograms. Pathfinder parameters
have been set to q = n − 1 and r = ∞ (when considered), the
typical values in vast domain scientogram design. The same
hardware that the one described in the previous section has
been used: an Intel dual-core Pentium 3.2 GHz with 2 GB of
memory.
Fifty independent runs have been performed for each al-

gorithm and each network, and the global run time has been
averaged for each, in order to obtain more precise statistics.
The obtained results are shown in table 2.

Table 2
Comparison of the run times (expressed in seconds) of all the
algorithms for the scientograms case study.

Domain (year) #Nodes #Links
Original

PF
Binary

PF
Fast
PF

MST-PF
(theoretical)

MST-PF
(practical)

1 China (2002) 212 8541 28.31 1.87 0.180 0.00398 0.00400
2 Japan (2002) 213 9028 28.70 1.69 0.179 0.00422 0.00423
3 France (2002) 216 10087 31.79 2.14 0.187 0.00473 0.00470
4 Peru (2002) 218 8485 30.97 2.20 0.200 0.00396 0.00397
5 Germany (2002) 218 11745 35.53 2.20 0.214 0.00555 0.00552
6 UK (2002) 218 13567 37.74 2.21 0.196 0.00651 0.00646
7 Europe (2002) 218 17242 40.10 2.19 0.193 0.00852 0.00845
8 USA (2002) 218 18132 40.59 2.21 0.196 0.00909 0.00904
9 World (2002) 218 20154 40.19 2.20 0.195 0.01031 0.01020
10 Cuba (2004) 219 10644 34.15 2.15 0.200 0.00500 0.00499
11 Spain (1994) 219 13478 37.65 2.21 0.194 0.00644 0.00639
12 Cuba (2006) 221 11286 35.71 2.08 0.204 0.00532 0.00529
13 Spain (1998) 223 16226 47.61 2.94 0.211 0.00789 0.00786
14 Venezuela (2005) 239 15415 53.86 3.12 0.265 0.00750 0.00747
15 Spain (2002) 240 19183 57.59 3.43 0.258 0.00976 0.00973
16 Spain (2004) 240 23430 60.21 3.42 0.257 0.01216 0.01208
17 Chile (2004) 242 17914 59.09 3.04 0.269 0.00901 0.00897
18 Mexico (2005) 250 21264 75.24 4.11 0.300 0.01104 0.01089
19 Portugal (2005) 254 22179 84.45 4.99 0.321 0.01153 0.01143
20 Argentina (2005) 263 19562 82.84 4.10 0.346 0.00998 0.00994

As shown, the MST-Pathfinder variant is some orders of
magnitude faster than the Fast Pathfinder variant, that it-
self outperforms the Binary and the original Pathfinder al-
gorithms. More precisely, the MST-Pathfinder is 6200 times
faster in average than the original Pathfinder, 360 times faster
than the Binary algorithm and 30 times faster than the Fast
Pathfinder. In this sense, the comparison with the original
algorithm, having a complexity of O(n4), the Binary variant,
O(n3 · log n), and the Fast one, O(n3), clearly demonstrates
how the O(n2 · log n) variant speeds up the pruning of the

5 http://www.atlasofscience.net/
6According to the Moya’s method (Moya-Anegón et al., 2004),

the normalized co-citation coefficients are used and correspond to
similarities. More details can be found in that paper. Actually, using
similarities or distances has no influence at all in our proposal. In
case of using similarities, we would only need to sort the set of the
links of G in a reverse way in the MST-Pathfinder algorithm (see
Fig. 5).

Page 8 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

A PROPOSAL OF A QUICK MST-BASED ALGORITHM TO OBTAIN PATHFINDER NETWORKS(∞, N − 1) 9

networks.
Concerning the second point, the comparison between the

theoretical and the practical variants of the MST-Pathfinder,
we can see that the variant having the largest theoretical time
complexity (O(n3) instead ofO(n2·log(n))) obtains the fastest
results. In fact, the run time is slightly better and the im-
provement is more or less the same on these medium net-
works – 0.5% faster in average – than for the case of larger
networks (see the section of the first case study).

Description of some implementation issues.
In this example, we have used the Europe data of 2002.

The data are directly extracted from a database of co-citation
measures. Some specific criteria are set up in order to select
a subset of the whole database restricted to the countries, the
journals and/or the authors. The resulting file encodes a fully
connected network, with labeled nodes and weighted links,
ready to be pruned. Thus, the first step is to use the MST-
Pathfinder algorithm to prune this network. The computing
time for this step is roughly 9 ms (see table 2). From 218
nodes (ISI-JCR categories) and 17242 links, the network is
pruned until having only 217 links, becoming a tree. So, with
this map, a highly simplified network has been obtained in a
fast way.
The next step is to print the map in a convenient way.

Many graphical libraries can be used for this purpose, but the
best we have found so far is the GraphViz library. GraphViz
is an open source network drawing software, freely provided
by AT&T Labs, and available at: http://www.graphviz.org/.
It integrates the Kamada-Kawai algorithm in the form of the
neato utility. This utility exports in diverse graphical formats
a description of a network done with a proprietary language,
the DOT language (Gansner & North, 2000). Thus the sec-
ond step was to convert the previous network in the format
accepted by this library. The computing time for this step is
0.6 ms.
The last step is to generate the graphical output from the

DOT description using neato. Actually, as these maps are de-
signed for on-line consultation, the Scalable Vector Graphics
(SVG) format was chosen. The time to generate the SVG
image is 1300 ms. The following command was used to gen-
erate this map, once the library is installed:

dot -Kneato -Tsvg -o Europe.svg Europe.dot

With this procedure, we are able to generate the full Eu-
rope scientific domain scientogram without exceeding 1.5
seconds. This enables the generation of these maps in an on-
line way providing a faster interaction for the user. This also
enables the generation of a high number of maps in a short
time to compare them among a time line or geographically,
which is one of our aims in the short future.
The final result is shown in figure 7 and a detailed view is

shown in figure 8.

Conclusion

In this paper, we have introduced a new variant of the
Pathfinder algorithm for the specific parameter setting used

Figure 7. An example of the output corresponding to the Europe
data, computed by the Kamada-Kawai algorithm.

 GASTROENTEROLOGY & HEPATOLOGY

 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

 MEDICINE, GENERAL & INTERNAL

 ENTOMOLOGY

 CHEMISTRY, MULTIDISCIPLINARY

 ACOUSTICS

 CARDIAC & CARDIOVASCULAR SYSTEMS

 AGRICULTURE

 AGRICULTURE, SOIL SCIENCE

 NUTRITION & DIETETICS

 ANATOMY & MORPHOLOGY

 BIOCHEMISTRY & MOLECULAR BIOLOGY

 PLANT SCIENCES

 ZOOLOGY

 BIOLOGY

 BIOTECHNOLOGY & APPLIED MICROBIOLOGY

 SURGERY

 CRYSTALLOGRAPHY

 BIOCHEMICAL RESEARCH METHODS

 CELL BIOLOGY

 DERMATOLOGY & VENEREAL DISEASES

 NEUROSCIENCES

 CLINICAL NEUROLOGY

 PATHOLOGY

 OBSTETRICS & GYNECOLOGY

 ONCOLOGY

 PEDIATRICS

 PHARMACOLOGY & PHARMACY

 PHYSIOLOGY

 PARASITOLOGY

 VIROLOGY

 MICROBIOLOGY
 BIOPHYSICS

 CHEMISTRY, ANALYTICAL

 MEDICAL LABORATORY TECHNOLOGY

 GENETICS & HEREDITY

 IMMUNOLOGY

 BEHAVIORAL SCIENCES

 TOXICOLOGY

 GERIATRICS & GERONTOLOGY

 FORESTRY

 INFECTIOUS DISEASES

 RHEUMATOLOGY

 UROLOGY & NEPHROLOGY

 ALLERGY

 BIOLOGY, MISCELLANEOUS

 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH

 MEDICINE, LEGAL

 REHABILITATION

 SPORT SCIENCES

 DEVELOPMENTAL BIOLOGY

 ENGINEERING, BIOMEDICAL

 CHEMISTRY, MEDICINAL

 MATERIALS SCIENCE, PAPER & WOOD

 MATHEMATICS, MISCELLANEOUS

 MATERIALS SCIENCE, BIOMATERIALS

 HORTICULTURE

 TRANSPLANTATION

 ELECTROCHEMISTRY

 MYCOLOGY

 PSYCHOLOGY, BIOLOGICAL

 MICROSCOPY

 HEALTH CARE SCIENCES & SERVICES

Figure 8. A detailed view of the center of the Europe scientogram.

in many applications (q must be fixed to n − 1 and r to ∞),
enabling us to drastically decrease the run time of the original
algorithm. Our proposal is based on the fact that the union
of the MSTs is equal to PFNET(∞, n − 1), what allows us
to reduce the time complexity from O(n4) to O(n2 · log n).
Notice that MST-Pathfinder saves also a noticeable amount
of memory in comparison to the original and the Binary vari-
ant of Pathfinder. See table 3 to have a global view of the
properties of the Pathfinder variants.
The experimental comparison on the laboratory problem

conducted on large networks has demonstrated the fast run
time when networks are fully connected. The other experi-
mental comparison of the run time for twenty medium net-
works from real-world domains has proved the ability of the
new proposal to prune medium networks in real time.

Acknowledgments

This work was funded by the Plan Nacional de Inves-
tigación Científica, Desarrollo e Innovación Tecnológica
2004-2007 and the Fondo Europeo de Desarrollo Regional

Page 9 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

F
o
r P

eer R
eview

10 ARNAUD QUIRIN AND OSCAR CORDÓN

Table 3
Summary of the properties of the Pathfinder variants.

Name of the
algorithm

Application domain
Time complexity
(for q = n − 1)

Space
complexity

Approach in
algorithm theory

Original PF
Any valid values for q and r,

(un-)directed graphs O(q · n3) = O(n4) 2 · q · n2 = 2 · n3 − 2 · n2 Dynamic programming

Binary PF
Any valid values for q and r,

(un-)directed graphs
O(log q · n3)
= O(n3 · log n)

4 · n2 Dynamic programming

Fast PF
Any valid values for r,

q = n − 1, (un-)directed graphs O(n3) 2 · n2 Dynamic programming

MST-PF
(theoretical)

r = ∞, q = n − 1,
undirected graphs O(n2 · log(n)) 3 · n2 + n Greedy approach

MST-PF
(practical)

r = ∞, q = n − 1,
undirected graphs O(n3) 3 · n2 + n Greedy approach

(FEDER) as part of research projects SEJ-2004-08358-C02-
01 and SEJ2004-08358-C02-02. We would like to thank
the anonymous reviewers for their interesting comments and
suggestions, which has allowed us to improve the quality of
the contribution.

References

Bellman, R., & Kalaba, R. (1965). Dynamic programming and

modern control theory. New York: Academic Press.
Breiger, R. L. (2004). Handbook of data analysis. In (p. 505-526).
London: Sage Publications.

Buzydlowski, J. (2002). A comparison of self-organizing maps

and pathfinder networks for the mapping of co-cited authors.
Unpublished doctoral dissertation, Drexel University.

Börner, K., Sanyal, S., & Vespignani, A. (2007). Network science.
Annual Review of Information Science and Technology (ARIST),
41, 537–606.

Chen, C. (1998a). Bridging the gap: the use of pathfinder networks
in visual navigation. Journal of Visual Languages and Comput-
ing, 9, 267-286.

Chen, C. (1998b). Generalised similarity analysis and pathfinder
network scaling. Interacting with computers, 10, 107-128.

Chen, C. (2004). Information visualization: Beyond the horizon.
Berlin, Germany: Springer.

Chen, C., Kuljis, J., & Paul, R. (2001). Visualizing latent domain
knowledge. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C, 31(4), 518-529.

Chen, C., & Morris, S. (2003). Visualizing evolving networks:
Minimum spanning trees versus pathfinder networks. In Proc.
IEEE symposium on information visualization (infovis) (p. 67-
74).

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001).
Introduction to algorithms, second edition. The MIT Press.

Dearholt, D., & Schvaneveldt, R. (1990). Properties of pathfinder
networks. In R. Schvaneveldt (Ed.), Pathfinder associative net-
works: Studies in knowledge organization (p. 1-30). Ablex Pub-
lishing Corporation.

Dreyfus, S. (1965). Dynamic programming and the calculus of

variations. New York: Academic Press.
Floyd, R. (1962). Algorithm 97: Shortest path. Communications of

the ACM, 5(6), 345.
Gansner, E. R., & North, S. C. (2000). An open graph visualization
system and its applications to software engineering. Software —
Practice and Experience, 30(11), 1203–1233.

Guerrero-Bote, V., Zapico-Alonso, F., Espinosa-Calvo, M., Gómez-
Crisóstomo, R., & Moya-Anegón, F. (2006). Binary pathfinder:
An improvement to the pathfinder algorithm. Information Pro-
cessing and Management, 42, 1484-1490.

Kamada, T., & Kawai, S. (1989). An algorithm for drawing general
undirected graphs. Information Processing Letters, 31(1), 7-15.

Kravitz, D. (2007). Two comments on minimum spanning trees.
The Bulletin of the ICA, 49, 7-10.

Kruskal, J. (1956). On the shortest spanning subtree and the trav-
eling salesman problem. Proc. of the American Mathematical

Society, 7(1), 48-50.
Kudikyala, U., & Vaughn, R. (2005). Software requirement under-
standing using pathfinder networks: discovering and evaluating
mental models. Journal of Systems and Software, 74(1), 101-
108.

Martino, F., & Spoto, A. (2006). Social network analysis: A brief
theoretical review and further perspectives in the study of infor-
mation technology. Psychology Journal, 4(1), 53-86.

Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z.,
Corera-Álvarez, E., González-Molina, A., Muñoz-Fernández,
F., et al. (2007). Visualizing the marrow of science. Journal of
the American Society for Information Science and Technology,
58(14), 2167-2179.

Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V.,
Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Muñoz-
Fernández, F. (2004). A new technique for building maps of
large scientific domains based on the cocitation of classes and
categories. Scientometrics, 61(1), 129-145.

Prim, R. (1957). Shortest connection networks and some general-
izations. Bell System Technical Journal, 36(6), 1389-1401.

Quirin, A., Cordón, O., Santamaría, J., Vargas-Quesada, B., &
Moya-Anegón, F. (2007). A new variant of the pathfinder al-
gorithm to generate large visual science maps in cubic time. In-
formation Processing and Management. (In press)

Salton, G., & Bergmark, D. (1979). A citation study of computer
science literature. IEEE Transactions on Professional Commu-

nication, 22, 146-158.
Schvaneveldt, R. (Ed.). (1990). Pathfinder associative networks:

Studies in knowledge organization. Ablex Publishing Corpora-
tion.

Shope, S., DeJoode, J., Cooke, N., & Pedersen, H. (2004). Using
pathfinder to generate communication networks in a cognitive
task analysis. In Proc. of the human factors and ergonomics

society, 48th annual meeting (p. 678-682).
Small, H., & Garfield, E. (1985). The geography of science: disci-
plinary and national mappings. Journal of Information Science,
11(4), 147-159.

Vargas-Quesada, B., & Moya-Anegón, F. (2007). Visualizing the
structure of science. New York: Springer.

Warshall, S. (1962). A theorem on boolean matrices. Journal of the
ACM, 9(1), 11-12.

Page 10 of 10

John Wiley & Sons, Inc.

JASIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

