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Abstract

Hierarchical Task Network (HTN) planning paradigm has been widely used during the last decade to

model and solve planning and scheduling (P&S) problems, and it has proved to be very useful in the

planning and coordination of human tasks. At the same time, Business Process Management (BPM)

tools are being increasingly used in the modeling of organizations’ business practices and processes,

but their life cycle has shown to have some shortages (as the possibility to obtain context-dependent

plan instances). In this paper we present a methodology and software framework to translate

Business Process Models into HTN P&S domains, in order to cover some of these deficiencies.

1 Introduction and motivation

Enterprises and organizations are facing today the emerging challenge of integration and auto-

mation of their business processes. The complexity of this issue increases when they have to deal

with human-centric processes, as they are usually carried out in an informal manner, and the

coordination of the different tasks and participants involved in these processes is very difficult to

achieve. In this case, new technologies, mostly oriented to support decision making, have to be

introduced to help knowledge workers like organization managers and decision makers to successfully

achieve this goal.

A new set of tools and standards has been developed in the last decade in order to define these

business process models, grouped under the name of Business Process Management (BPM),

facilitating enterprises to detail their business practices, understanding these as frequently repeated

acts, habit or custom performed to a recognized level of skill (Lock Lee, 2005). BPM standards are

able to deal with goals and tasks specification, environmental analysis, design, implementation,

enactment, monitoring and evaluation of business processes (Muehlen & Ho, 2006). Even showing

these potentials, BPM tools lacks of better support for decision making capabilities. Thus,

Artificial Intelligence (AI) techniques like Planning and Scheduling (P&S) could be integrated into

the BPM life cycle, in order to support such features.

Although process modeling standards and tools enable organizations to leverage their business

practices, these are usually very difficult to plan in advance. In BPM, the process model is used to

represent the definition, and the process instance is used to represent the corresponding processing

at a given timeline. A specific process model can have many different corresponding process

instances, and the deployment and execution of these instances strongly depends on a given

organizational context at the moment of its enactment. An example of such process model may be the

management for the collaborative development of courses within a e-learning center (a special case



of product development processes). Upon a customer request, the manager of the organization

needs an estimation of the tasks to be accomplished, the resources to be used in the course

production, as well as the time needed to deploy it (see Figure 1). Under these conditions, since the

final workflow instance to be carried out cannot be easily devised a priori, decision makers rely on

either (a) project management tools or (b) business process simulation tools to support decisions

about activity planning (in order to find dependencies between tasks and their time and resources

constraints). Option (a) requires to invest much time using it. Option (b) determines several

scenarios and simulate them, carrying out a trial-and-error process that may not reflect reality; this

happens when a high number of alternatives courses of action makes hard to foresee which tasks

should be considered, or when the constraints imposed by the context are significantly hardened.

So, it is widely recognized Workflow Management Coalition (WfMC), (2010) that the BPM life

cycle presents some weaknesses, and new techniques must be developed at the modeling/generation

step, in order to fully cover the needs of knowledge workers for dynamic, adaptable processes.

From the AI P&S point of view, the need to obtain a context-dependent process instance from a

given process model can be seen as the problem of obtaining a plan that represents a case for a

given situation, and such that its composing tasks and order relations, as well as its temporal and

resource constraints, strongly depend on the context for which the plan is intended to be executed.

This problem requires at least two strong requirements in order to be solved. First, since the

(possibly nested) conditional courses of action that may be found in a process model lead to a vast

space of alternative tasks and possible orderings, it is necessary to carry out a search process in

order to determine the sequence of actions to be included in the situated plan. Second, the search

process necessarily has to be driven by the knowledge of the process model, which in most cases

takes a hierarchical structure. Precisely, HTN planning domains are designed in terms of a
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Figure 1 A BPMN (Business Process Management Notation) model example, describing the course

development process in a specific e-learning center. There are six different departments (lanes), namely

Training, Authoring, Development, Graphic Design, System Administration and Quality Management, and

the activities are grouped as follows: (A1,A3), (A2,A9), (A4,A11), (A5,A6,A7,A8), (A12,A13), (A10).

LMS5Learning Management System, CSS5Cascade Style Sheets
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hierarchy of compositional activities, where every task may be decomposed following different

schemas or methods, into different sets of sub-activities. Furthermore, an HTN planning process is

a search and deliberative reasoning process guided by knowledge.

The main contribution of this paper is the development of an innovative Knowledge Engineering

technique with which, by means of a non-trivial transformation from a preexisting process

model, we can automatically generate an AI planning domain. This is something that normally

requires great skill and understanding by knowledge engineers. Furthermore, this technique

takes advantage of the knowledge and control structures present in the original process model, so

that the resulting domain is able to capture those control structures, by means of HTN procedural

knowledge. By interpreting the domain generated, and through a search process guided by the

knowledge extracted from the process model, an intelligent planner can find situated plans

considering different conditions of the process environment, respecting also resource and temporal

constraints. Henceforth, this contribution could be the cornerstone for the introduction of a

new planning stage into BPM tools, improving the support for decision making that they can

provide, but also avoiding the traditional difficulty of knowledge-based modeling that AI planning

technology entails.

The paper is structured as follows. Section 2 introduces some concepts and technical back-

ground about the problem. Section 3 details the Knowledge Engineering procedure developed and

its requirements. Section 4 exposes the software framework developed and some results. Section 5

presents relevant related work, and Section 6 describes some conclusions and future work.

2 Technical background

In this section, a description of the subset of Business Process Management Notation (BPMN)/

XML Process Definition Language (XPDL) process modeling elements considered for our

approach is introduced first. Then, process structuredness is defined in order to delimit some

properties that the input process model must fulfill, and Workflow Patterns are described, in order

to convey why they are used as the main background concept for our transformation. Finally, the

Hierarchical Task Network (HTN) planning paradigm is introduced.

2.1 Business Process Management Notation/XML Process Definition Language

The BPMN offer a graphical representation of the process. On the other hand, the aim of XPDL

(WfMC, 2008) is to store and exchange a process definition, providing an XML serialization of the

former. A description of the XPDL entities considered in our work is exposed:

Activities are logical, self-contained unit of work, carried out by Participants. Activities are

related to one another via Transitions, that can be either conditional (involving evaluated

expressions that drive the sequence flow path) or unconditional, and may result in the sequential or

parallel operation of activities. Gateways are used to implement decisions affecting the flow path

through the process. On a conditional transition exiting a gateway, it can be specified that the

transition will be followed only when a specific Parameter value match the expression specified

in an associated rule. Furthermore, Activities, Gateways and Transitions can be grouped

hierarchically into ActivitySets, which are embedded subprocesses within a process. Lanes denote

departments of the organization or process, and activities contained within a specific lane will be

done by Participants that belongs to that area (encoded by using extendedAttributes, a standard

way to augment the semantic of BPMN). Further details about these elements can be explored in

González-Ferrer et al. (2009).

2.2 Structuredness and workflow patterns

It is important to highlight that the input process model should not be subject to syntactic and

semantic errors that could be introduced at the modeling phase, as it is essential that process

models not only precisely capture business requirements but also ensure successful workflow
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execution. Note also that, thinking on a translation process like the one we introduce in the next

sections, such errors would be propagated and would result into nonsense planning domains that

would be either useless or incorrect. Henceforth, it is important to delimit some properties of the

input model and for that reason, the concept of well-structured process model is introduced in

this subsection.

A correct process model is one without structural flaws, such as deadlocks, dead-end paths,

incomplete terminations, etc. (Sadiq & Orlowska, 1997). A well-structured workflow is one in

which each split control element (e.g. either OR or AND gateways) is matched with a join control

element of the same type, and such split-join pairs are also properly nested (a more formal

definition can be found in Eder et al. (2006)). Structuredness was first introduced on Kiepuszewski

et al. (2000), and later discussed by Liu and Kumar (2005). Most workflow tools can only support

structured workflows, given the fact that unstructured ones are more prone to errors (Liu &

Kumar, 2005). Furthermore, some practical approaches have been developed recently in the same

direction: some tools provide automated transformations of unstructured models into structured

ones (Vanhatalo et al., 2008), while others offer a pattern catalogue to avoid the use of

unstructured fragments (Koehler & Vanhatalo, 2007; Koehler et al., 2009).

The approach presented here will be only applicable to well-structured processes. On the one

hand, this is not a strong requirement for most commercial tools (SAP R/3 workflow or IBM

Filenet impose the structuredness as a requirement for modeling (Kiepuszewski et al., 2000)), and

some even do not support the execution of unstructured models (Liu & Kumar, 2005). On the

other hand, imposing this requirement at the modeling stage can be beneficial for the end-user,

given that the aim of business process models is to be finally executed correctly. In the same

manner, if our goal is to find a correct execution plan for the process model, structuredness is

relevant as well as a reasonable yet not restrictive condition to be fulfilled by the input process

model, as explained later in Section 3.1.1.

At the same time, with the aim of delineating the fundamental requirements that arise during

business process modeling on a recurring basis, a set of (typically nested) structures, that capture

frequently used relationships between tasks in a process model have been recently defined, known

as Workflow Patterns (van der Aalst et al., 2003). Although the XPDL language can correctly

represent some of these patterns, it lacks of some power for the representation of the most complex

(van der Aalst, 2003). Therefore, only the most basic workflow patterns are going to be considered

in our approach, those that can be well represented and are expressive enough for the definition of

most processes: serial (sequence of activities that are executed one after another), parallel split-join

(activities are executed simultaneously) and parallel exclusive-OR (used to capture conditional

structures). As shown later, our mapping process will work by detecting these workflow patterns

in a process model and translating each of them into its corresponding HTN structure, showing

the capacity that the HTN planning paradigm have to capture knowledge expressed through a

process model. Next, we introduce this planning paradigm.

2.3 Hierarchical task network planning language

HTN planning domains are designed in terms of a hierarchy of compositional activities. Lowest

level activities, named actions or primitive operators, are non-decomposable activities that basi-

cally encode changes in the environment of the problem. On the other hand, high level activities,

named tasks, are compound actions that may be decomposed into lower level activities. Every task

may be decomposed following different schemas, or methods, into different sets of sub-activities.

These sub-activities may be either tasks, which could be further decomposed, or just actions. The

HTN planning domain language used in this work is a hierarchical extension of PDDL (Planning

Domain Definition Language; Long & Fox, 2003) that uses the following notation:

Types, constants, predicates, functions and durative actions are used in the same way as in the

original PDDL. The task element is introduced to express compound tasks, and its definition can

include parameters, different decomposition methods with associated preconditions (that must hold
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in order to apply the decomposition method) and tasks to represent its corresponding lowest level

task decomposition. At the problem definition, objects are used to define objects present in the

problem, init conditions are the set of literals that are initially true, and task-goals are the set of

high level tasks to achieve.

Compound tasks, decomposition methods and primitive actions represented in a planning

domain mainly encode the procedures, decisions and actions that are represented in the original

BPM model. More concretely, the knowledge representation language, as well as the planner used,

are also capable of representing and managing different workflow patterns present in any BPM

process model. A knowledge engineer might then represent control structures that define both,

the execution order (sequence, parallel, split or join), and the control flow logic of processes

(conditional and iterative ones). For this purpose, the planning language allows sub-tasks in a

method to be either sequenced, and then they appear between parentheses (T1,T2), or splitted,

appearing between brackets [T1,T2] (Figure 2). The IACTIVETM planner has been chosen, as it is

already known how to translate workflow patterns for web services composition (Fdez-Olivares

et al., 2007), it manages temporal knowledge (Castillo et al., 2006) and it has been used in several

applications (Castillo et al., 2007; Fdez-Olivares et al., 2008).

Section 3 describes the Knowledge Engineering (KE) procedure to extract the HTN domain

and problem from a process model.

3 Methodology for the Business Process Management–Hierarchical Task Network

translation

The methodology here presented consists on a Knowledge Engineering proposal for capturing

knowledge from a BPM model that will finally be represented into an HTN planning domain.

The idea behind our translation process is to identify common workflow patterns in a process

model (which can be clearly represented as a graph), so that a tree-like structure can be generated,

much similar to HTN domains, by carrying out a graph reduction process based on the workflow

patterns found, followed by a subsequent process of restructuring into a tree model. So, this KE

Figure 2 Example HTN-PDDL code for a split-join pattern in Figure 1. HTN5Hierarchical Task

Network; PDDL5Planning Domain Definition Language
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proposal consists of three different stages (an overview of all the steps needed can be explored in

Figure 3 and algorithm 1):

(a) First, a input model preprocessing (step 1), storing it into an intermediate data structure and graph

model (step 2) that can be easily managed throughout the next stages. Note that the input

process model can be designed in some different ways, and can even have different connected sub-

components that represents different subprocesses that are part of a larger one, as explained later.

(b) Next, the detection of different workflow patterns is carried out (step 3), distinguishing their

type (serial, split-join, XOR) from the knowledge acquired in the previous preprocessing stage,

building up an equivalent tree-like model (step 3.3). This is carried out by arranging those

workflow patterns hierarchically, but also keeping the semantic information (about control

flow and decisions) present in the process diagram.

(c) Finally, the corresponding code generation takes place (step 4), where the tree model is

analyzed, identifying common workflow patterns found in the graph (i.e. serial or parallel

split-joins patterns are always coded in the same way), and generating HTN-PDDL code for

the corresponding tree fragment.

Next, we proceed to give further insights on the development of these steps.

3.1 Mapping to a graph model

This stage (steps 1 and 2 in algorithm 1) takes as input a standard XPDL file (previously exported

from the BPM modeling tool used), reading it by using XPATH (W3C, 1999) parsing technology,

which allows searching only the XML entities we are interested in. Then, it produces a graph as

result, in which every node represents an activity (or gateway) and every edge represents a transition

between two activities (conditional or unconditional, as exposed previously at BPMN/XPDL

subsection). Furthermore, the nodes will have associated different attributes (nodetype, name, lane,

duration for activities, parameters for gateways, activitySetId for subprocesses, etc.).

Algorithm 1 General overview

Input: A process model I

Output: HTN-PDDL Planning Domain D and Problem P

1. [Preprocessing] Build structure Q 5 {P, R, T, A, Z, L}, consisting of different sets of objects found from

parsing I (Participants, Parameters, Transsition, Activities, ActivitySets and Lanes).

Figure 3 The different stages of the translation process. HTN5Hierarchical Task Network; PDDL5

Planning Domain Definition Language; NPM5 nested process model. DS5Data Structure
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2. [PopulateGraph (G, A, T )]. Let AAQ, TAQ, build up a weighted directed graph G5 (V, E) where vertex

set V�A, and edges set E�T.

2.1. When found a subprocess node pAV, let YpAZ be the ActivitySet of subprocess p, and let activities

A0AYp and transitions T0AYp, build the corresponding subgraph Up by calling recursively to

PopulateGraph (Up, A
0, T0), and store it into p.

3. [BlockDetection]. For all JDG, J being a m.c.c fulfilling properties I, II, III (see Section 3.1.1):

3.1. [BranchWater]. Let SA J be the start node and initial weight h (default is 1.0), weight(S)5 h, simulate a

pipe of water from start to end node, to weight the rest of nodes (being the graph well-structured,

opening gateways only have 1 predecessor and closing gateways only have 1 successor):

3.1.a) For all opening SPLIT or XOR gateways W such that (i5 14o. 1), being

i ¼ jpredðWÞj; o ¼ jsuccðWÞj, if pA pred(W), 8v/ vA succ(W), weight(v)5weight(p)/o.

3.1.b) For all closing JOIN or XOR gateways W such that (i. 14o5 1), being vA succ(W), and

pj 2 predðWÞ=1p jp i, then weightðvÞ ¼
Pj

k¼ 1 weightðpjÞ
3.2. [Workflow Patterns Detection]. Search alternatively for serial (a sequence of nodes with the same

weight) and parallel blocks (the same weight at both starting and closing gateways) in subgraph J. Then, do

a reduction of J by replacing the blocks found with special PB (parallel) and SB (serial) nodes, storing

internally the set of nodes that have been replaced {X1,y,Xm}. Repeat this operation until size(J)5 1.

Completed this process, the unique node rA J is either a PB or a SB.

3.3. [RebuildAsTreeModel]. Let rA J be the root node, expand the tree by adding edges

fðr;X1Þ; ðr;X2Þ . . . ðr;XmÞg using the set of nodes replaced {X1,y,Xm}r which has been stored previously,

and repeat this process recursively for every Xi such that Xi is a PB or SB node.

3.3.a) While doing the rebuild process, for every subprocess node p, call to BlockDetection over the

subprocess graph Up just created, in order to obtain its corresponding tree model U
0

p, and replace subprocess

node p with subtree U
0

p in the tree model J0 being built.

When step 3 is completed, a tree model J0is obtained, derived from original subgraph J.

4. [Translation] To generate the planning domain D, see details on the paper, specifically on algorithms 2, 3,

4 and 5. Obtaining the planning problem P is also specified.

3.1.1 Input process model requirements

For the sake of the framework usability and the correctness of the translation process, we need to

establish some requirements on the input process model, owing to the fact that not always the

diagrams designed have the desired properties for later processing (Koehler & Vanhatalo, 2007).

Basically, we introduce some requirements here to guarantee the correct operation of our proposal.

DEFINITION 1. Let G5 (V, E) be the graph corresponding to the input process model. Then a

connected subgraph J5 (V0, E0), J C G is a maximally connected component (m.c.c.) of G if

8u= u 2 V and u =2V 0f g there is no vertex vAV0 for which (u,v)AE. It can be defined as a con-

nected subgraph of a graph to which no vertex can be added and it still be connected, or informally

(one of) the biggest connected subgraph(s) of a graph1.

The next three properties have been considered on the input process model:

1. All the m.c.c.’s, Ji C G must include an unique start node s and an unique end node e.

According to graph theory, Ji must be two-terminal.

2. The input graph model must be well structured.

3. The input process model m.c.c.’s must be connected between elements from start to end nodes,

so that for every node, at least a path from s to e exists that contains that node (i.e. the

corresponding graph for that m.c.c. is directed and connected).

A discussion about why some requirements are needed for the input models can be useful for

the reader at this point. Section 2.2 gives insight about process models structuredness, usually

demanded when a computational analysis of a process model has to be carried out. There are two

implicit conditions derived from well structuredness: (a) it is assured that opening gateways only have

1 http://www.itl.nist.gov/div897/sqg/dads/HTML/maximallyConnectedComponent.html
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one predecessor and closing gateways only have one successor (the fragment delimited by both

gateways is known as a single-entry single-exit fragment, or SESE region) and, perhaps more

important, (b) every path that starts in an opening gateway g must pass throughout the matching

closing gateway for g in its way to the end node (e.g. the fragment constituted by A9, A10 in Figure 1).

See Appendix A for a demonstration of the fact that these conditions are, at least, sufficient to

guarantee that the block detection procedure, explained in the next subsection, is carried out correctly.

Also, it gives more insight on why the m.c.c.’s of the process model are used. For the sake of simplicity,

we continue our explanation assuming that the input model only contains one m.c.c.

3.2 Block detection: building a tree model

At the previous step, a graph model of the original process diagram has been built up. The goal of

this stage is to build a equivalent tree model from the graph obtained previously (equivalent in the

sense that all the knowledge about control flow is kept exactly the same in the new structure,

allowing us to represent it into the HTN domain we are building up). This level of the mapping

process is based on previous research done in Bae et al. (2004), where an algorithm was developed

to generate a tree representation of a workflow process, which was used to derive ECA (event-

condition-action) rules, helpful for controlling the workflow execution.

The tree representation obtained is called a nested process model (NPM; Bae et al., 2004). It describes

how to build up a process model in a top-down manner, representing a root node that is decomposed

into a set of subprocesses and tasks. It adopts and generalizes a hierarchical model, allowing to express a

parent–child relationship between subprocesses. This tree-like model is adapted to our problem, the

representation of P&S domains, taking into account the control-flow information included in gateways

and transitions, adding additional information about the process and data model as well.

Thus, the algorithm for block detection described has the next three steps (see step 3 in

algorithm 1):

1. The first step is to mark every node of the graph with a weight, based on a branch-water

procedure (see Figure 4). It simulates a pipeline network carrying water, being 1.0 the quantity

of water poured at the start node, and branching the quantity through the pipe. If the water-

level at a specific node is l, and the flow is branched into k alternatives, then l/k quantity of

water is propagated through every alternative node. The water-level measure, that is, the weight

of the nodes, is the method used to iteratively identify the most inner blocks in the graph, which

allows to build a NPM in a bottom-up approach, as exposed next.

2. The second step is to identify serial and parallel workflow patterns (named blocks here)

consecutively, using the weight to identify the most inner block. Every time a serial block (SB)

or parallel block (PB) is identified, all the nodes that constitutes that block are replaced with a

special SB node or PB node, obviously linking the new node with the preceding and successor

nodes. As long as the workflow graph fulfills the established requirements, it is easy to see

that this process ends having an unique SB or PB block node that constitutes the root node

for the NPM.

3. Finally, if the root node is expanded using the nodes it grouped originally, placing them as children,

repeating this operation recursively with every SB or PB block node, the new tree-like structure we

were looking for is obtained (this is done as a typical breadth-first search algorithm). The result of

the procedure constitutes what is called the NPM of the original BPM diagram, using a bottom-up

approach (see Figure 5(a)). Observe that nodes with minimum weight lay at the lower levels, going

up consequently as their weight increase (this is the reason to look first for the most-inner blocks).

Given that our approach follows a knowledge-driven process, we needed to adapt the original

algorithm for Block Detection (Bae et al., 2004), in order to (a) keep all the knowledge acquired in

the preprocessing stage, (b) keep the original nodes that gave rise to the new special block nodes

and (c) transfer the knowledge present in gateways into the new PB nodes (i.e. the type of gateway,

the parameters/rules that drives the flow, etc.), since those gateway nodes are not going to be
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present on the newly built NPM (but their semantic is maintained, including the relevant

information mentioned into the newly created PB nodes). The algorithm complexity is O(n2), being

n the number of edges of the workflow graph.

Note that at this point, being G the input model, we have transformed all the m.c.c.’s (see

Section 3.1.1) J1,y, JnAG as tree models J 01; ::; J 0n, so that we have one or more NPMs stored in

G0 that are easily translatable into the corresponding HTNs, as shown next.

3.3 Hierarchical Task Network–Planning Domain Definition Language code generation

In this subsection, specific details are given about the generation of the HTN planning domain and

problem files, taking as basis both the tree-like structure (the NPM, Figure 5(a)) and intermediate data

structures, already developed in the previous phases. Opposite to the bottom-up approach followed to

Figure 4 Part of the block detection algorithm applied to graph of Figure 1. The branch-water mark

procedure as well as the workflow pattern detection are visible in the picture

(a) (b)
(i)

(ii) (iii)

Figure 5 NPM and the workflow patterns identified on it. (a) An NPM generated from the previous BPMN

process model. Note that leaf nodes correspond to activities and non-leaf nodes correspond to serial and

parallel blocks. (b) Different patterns identified in the NPM representation that are mapped as HTN

compound tasks. (i) a serial block, (ii) a split-join block, (iii) a XOR block NPM5 nested process model;

BPMN5Business Process Management Notation; HTN5Hierarchical Task Network
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create the NPM, the generation of HTN-PDDL code is going to follow a top-down approach. As we

already have a tree-like model, all we need to do is a breadth-first search over the NPM, considering

the information relevant to every node (described along this section), and considering also some

patterns related with some kind of nodes (see Figure 5(b)). Next, it is shown how to express the

different elements of an HTN-PDDL domain and problem definitions. We also expose the underlying

conceptual mapping from XPDL source elements, reflecting both the process and data models.

Domain name and requirements. These HTN-PDDL blocks are encoded as const strings (the

requirements section is considered always the same).

Types. The basic types considered are those useful in any planning domain: activity, participant

and lane. Of course, parameter data types must be also generated (see the corresponding item below).

Constants. XPDL activities and lanes are mapped as HTN-PDDL constants, which are going

to be used at the domain and problem files. This is automatically extracted from set Q (see

algorithm 1), and they will be coded in lowercase characters (i.e. activities will be coded as ax,

being x the activity id).

Predicates. At least, two default predicates must be included, useful in almost any process

model mapping: (1) (belongs_to_lane ?p—participant ?l—lane). This predicate is used to express

which lanes the participant belongs to. It will be used to encode both initial conditions of the

problem (one predicate instance for every capacity a specific participant has) and preconditions

for the durative actions (a precondition for every activity carried out in a specific lane). (2)

(completed ?a—activity). This predicate will encode initial conditions of the problem as well as

preconditions and effects for durative actions.

There are also some predicates that should be added dynamically, those that are related to

parameters/rules matching pairs (described later at parameters item).

Durative actions. Every activity of the process diagram corresponds to a leaf node in the NPM

and it is mapped as a primitive durative action on the planning domain, as a fragment following the

pattern example next to algorithm 2.

Realise that order constraints among activities, in non-hierarchical planning paradigms, are

coded through the use of preconditions in durative actions, being necessary an extra cause-effect

analysis. However, in HTN planning paradigm, order constraints are directly mapped into the

corresponding syntactic structures developed to that end. So, our approach does not need to abuse of

precondition definition, simplifying the process, as exposed next in the definition of compound tasks.

Compound tasks. The HTN-PDDL compound tasks are mapped from those intermediate nodes

(non-leaf nodes) of the NPM. These nodes always correspond to workflow pattern blocks (see

Figure 5(b)) that are actually specifications of different tasks with control flow mechanisms that

are coded as order constraints (sequential/parallel) or as alternatives (if-then).

1. Serial blocks. One activity must be executed after other, following a sequence in time. This

can be expressed in HTN-PDDL as a sequence of primitive actions and/or tasks surrounded by

parentheses. Example next to algorithm 3 represents the fragment of Figures 5(b)(i) and 6(a).

Note that, on the one hand, durative actions Ax must be generated with the corresponding

parameter ?wi, which express a resource that has to be allocated at planning-time (the participant i

is assigned the activity x). On the other hand, compound tasks that are also part of the decomposition
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can be generated with or without parameter, representing the formal parameter that drives the

flow in the original XPDL diagram (i.e. ‘optimize’).

2. Parallel split-join blocks. They represent a branch of the process flow into two or more flows

(split) that are carried out simultaneously (without specifying which of them should be executed

first), and that finally converge into the same flow again (join). These parallel split-join blocks are

represented in HTN-PDDL enclosed by square brackets, as the following case next to algorithm 4,

that represents the fragment of Figures 5(b)(ii) and 6(a),. Note that A12, the right brother node of

PB3 in Figure 5(b)(ii), is the activity executed after the join gateway. This schema repeats for every

split-join block detected.

A3

A2 A4 A11

BlockSB1

split-join block including serial block BlockSB1

A6

A5

optimize

= true

= false

exclusive-OR block(a) (b)

Figure 6 Parallel workflow patterns
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3. Exclusive-OR blocks. In these blocks a gateway node that has a parameter and a corresponding

logical expression determines which alternative path to follow. A method is generated for every

possible alternative to follow, using the expression as method precondition. The example next to

algorithm 5 represents the fragment of Figures 5(b)(iii) and 6(b).

Parameters. Parameters are usually associated to Exclusive-OR PBs, and they can be initially

expressed as follows, as long as they have been modeled as boolean parameters:

a. Add an HTN-PDDL type ‘parameter’.

b. Add a HTN-PDDL constant for every parameter (i.e. the parameter named optimize).

c. Add a predicate (i.e. named value) to check boolean values (true, false). It is clear that the

parameters and expressions should also be mapped in such a way that different data types

besides boolean can be added to the framework, but this is one of the issues considered for

future work.

d. Pass the corresponding parameter to the Exclusive-OR block wherever it is used, as done in

previous example with parameter optimize. This is very easy, as the parameters have been

already stored in the intermediate data structure.

e. In the problem file, define the parameter as an initial condition of the problem. Note that

parameter values should be passed to the AI planner somehow before interpreting the domain

and problem files generated (i.e. it can be given by the user outside the framework).

Besides this mapping, we also tried referring to an external organizational data model stored in

Unified Modelling Language (UML), using some of the capabilities of the BPM modeler, as the

XPDL standard supposedly supports it, but this feature was somehow experimental in the modeler

and we could not complete it. Using UML for storing the data model would be ideal, as there are

already authors (Vaquero et al., 2007) who worked out a methodology to express this model

in PDDL.

Objects. Every participant is going to be defined at the problem file as an object (of ‘participant’

data type). Init conditions. Besides parameter values mentioned above, we must include the

abilities that every participant (previously defined as object) possesses, in other words, what lane

the participant belongs to (using the predicate belongs_to_lane). Goals. The goal of the problem

definition file will be the root node of the NPM, which is always a compound task, that can be

iteratively decomposed in order to generate all the process plan. In case that several m.c.c. (see

Section 3.1.1) are found, the task goal can be considered as the parallel execution of the corresponding

NPM for each m.c.c. found.

We have described in previous sections the whole KE process followed to map a BPM model to

its corresponding P&S domain and problem definitions.

4 The JABBAH software framework

Taking into account the methodology defined for translating BPM models into HTN planning

domains, an extensible framework called JABBAH has been developed, able to carry out
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this translation. It has been developed in Java, and it is based on jgrapht library2, very useful

for creating graph data structures, with fully customized nodes and edges implementation.

Details about source code, screenshots and even a screencast for JABBAH operation can be found

in its website3.

4.1 Experiments

Some experiments have been carried out by using JABBAH, with a twofold aim in mind. First,

to show that the well-structured process models chosen have a corresponding HTN representation

able to capture the knowledge present in the process (even within embedded subprocesses)

and second, that it can be used to carry out a planning process in order to obtain a context-

dependent plan that considers the task ordering and the organization resources, under different

environment conditions. Specifically, the experiments have been designed in order to show the

P&S capabilities that our approach introduces into the BPM life cycle and, furthermore, to show

that this planning stage is carried out efficiently and correctly, guided by the knowledge present in

a changing environment, and respecting all the constraints that were introduced in the original

process model.

Concretely, the next ones are some expected outcomes of these experiments: (1) check that a

corresponding HTN representation exists for process models that include a combination of

(possibly nested) workflow patterns; (2) find a plan instance that keeps the temporal semantic

associated to those workflow patterns; (3) check that the interpretation of the same HTN domain

can find different plan instances for different combinations of input parameters (i.e. decision

gateways values); and (4) show that both planning (find the activities that form part of the plan)

and scheduling (determine a task ordering that respect time constraints, assigning also resources to

activities) are needed in order to find a situated plan.

We have used JABBAH over two real processes, in the field of e-learning and e-health. The

first model (Figure 1) represents how to develop and deploy a specific course within the

e-learning center at the University of Granada. Having an incoming course request, as well as

some available workers with different capabilities each, a plan instance can be obtained pro-

viding the managers information about the workers allocation and the make-span of the whole

course development, helping to do decision making upon the course request. The second one

(available in the ‘domain repository’ section of the website) represents a general care process

starting from a patient entry into a hospital and finishing when the health insurance billing for

this patient takes place.

Table 1 may be used to clarify how the hierarchical structure of HTNs is being used and why it

is helpful in order to achieve the aim we pursue. Although the plans obtained are merely a

sequence of actions, it is important to realize that they are obtained from a domain that has been

automatically generated, which includes the procedural knowledge already existing in the initial

process model. For example, the e-learning domain contains 13 activities (it has no subprocesses),

and two serial, one alternative and two PBs were obtained. These blocks include procedural

knowledge (e.g. for PBs, a set of actions A1 must be executed concurrently with respect to another

set of actions A2) that is really complex to describe by using non-HTN planning. However, by

using the HTN paradigm, a natural and direct parallelism exists between SBs and decomposition

methods. At the same time, an alternative block of n tasks can be represented with n alternative

HTN methods. Note that this implicitly represents a knowledge-based search heuristic, that is,

knowledge-based rules used to guide the search, something that cannot be done with classical

PDDL-based planners. Some concrete results are commented next.

In the first process, using a specific workers assignment at the e-learning center, as well as

estimated activities duration, we have checked the viability of the output plans, and also that task

2 http://jgrapht.sourceforge.net/
3 JABBAH homepage, http://sites.google.com/site/bpm2hth/home
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Table 1 BPMN elements and the corresponding HTN elements generated for both models

Process Lanes Activities Subprocesses

starting

XOR

closing

XOR

starting

AND

closing

AND

Serial

block

Alternative

block

Parallel

block

Durative

actions

Init

conditions Objects Parameters

e-learning 8 13 0 1 1 2 2 2 1 2 13 7 6 1

e-health 10 16 1 4 4 1 1 5 4 1 16 15 10 4

BPMN5Business Process Management Notation; HTN5Hierarchical Task Network.

Table 2 Different plan instances and allocation for e-health process according to different input values

Emergency Special Urgent Intensive

Register-

patient

Open-

Emergency

General-

Exam

General-

Care

Special-

Exam

Perform-

Observation

Intensive-

Care

Prepare-

Anesthetic

FillOT-

Sheet

Patient

Reception

Perform

Surgery

VitalSign

Monitor

Surgery

Report

Checkout

Patient

Bill

Services

Process

Bill Actions Expansions

Gen.

nodes

Make-

span

0 0 0 0 p3 p5 p7 p2 p1 6 5 11 35

0 0 0 1 p3 p5 p7 p2 p1 6 5 11 35

0 0 1 0 p3 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 58

0 0 1 1 p3 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 58

0 1 0 0 p3 p5 p6 p7 p3 p2 p1 7 7 14 41

0 1 0 1 p3 p5 p6 p8 p3 p2 p1 7 7 14 36

0 1 1 0 p3 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 58

0 1 1 1 p3 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 58

1 0 0 0 p4 p5 p7 p3 p2 p1 6 5 11 29

1 0 0 1 p4 p5 p7 p3 p2 p1 6 5 11 29

1 0 1 0 p4 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 52

1 0 1 1 p4 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 52

1 1 0 0 p4 p5 p6 p7 p3 p2 p1 6 5 11 35

1 1 0 1 p4 p5 P6 p8 p3 p2 p1 7 7 14 30

1 1 1 0 p4 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 52

1 1 1 1 p4 p10 p10 p10 p9 p10 p10 p3 p2 p1 10 6 16 52
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ordering is respected, that is, an assignment as the following: Emilio (training), Storre (authoring),

Miguel (html), Jose (graphic), Arturo (admin) and FMoreno (quality), result on the plan shown as

a Gantt diagram in Figure 7.

Concerning the e-health process, we checked how our tool was able to generate different

process plan instances using the control knowledge extracted from the process model and

respecting some different nested workflow patterns found on it. It is also shown the recursion

capabilities of our proposal, by interpreting and translating correctly the embedded sub-

processes included. Since this process provides several decision gateways, we better observe how

process planning is carried out, given different input parameters that can vary in real situations

(e.g. Is it an emergency? Does it need an urgent operation?). Table 2 show the different

instances found for these decision points (values 0/1 represent false/true values for the input

parameters), showing workers allocation (p1–p10), and the instance total make-span. Moreover,

decisions taken by the planner in the search process (planner expansions) and the number of

generated nodes are displayed. Note that each of the plan instances were obtained in less than

1 second.

Henceforth, our experiments make clear that a search process is necessary among the pos-

sibly different alternative course of actions expressed in a process model, also taking advantage

of the knowledge expressed on it (note that the process model itself already discard some

alternatives by using control structures). Thus, we opted to use HTN planning, which precisely

describes methods to obtain valid plans, incorporating procedural knowledge to avoid exploring

nonsense or wrong alternatives. It is important to highlight that non-hierarchical planning is

not expressive enough to represent these control structures, and it is based on an exhaustive

search process not guided by knowledge, so its use would be costly, searching over alternatives

that are not considered initially in the process model. What’s more, we have shown that it is

not necessary for a process model to include hierarchical structures in order to obtain an HTN

representation. However, HTN domains are able to represent the control structures present

in BPM models by means of hierarchical structures, something that cannot be done with a

classical planner.

Therefore, we have checked the proposed goals with non-trivial scenarios. Nonetheless, future

work will be done in order to cover a bigger subset of process models (e.g. cooperative process

models), and also to represent complex temporal constraints that could be expressed on them

(see Section 6).

5 Related work

The interest of using AI within workflow technology is not new. The report by Myers and Berry

(1998) already described how techniques from the AI community could be leveraged to provide

Figure 7 Output plan as a Gantt diagram
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several of the advanced process management capabilities envisioned by the workflow community.

In addition, much research in the BPM area has lately been directed to achieve transformations

from business process models into IT-related implementations. Stein et al. (2008) show a deep review

of those centering in control flow-centered approaches. Most of them are thought as translations

to BPEL (Business Process Execution Language). It is interesting to highlight the work done by

Koehler et al. (2008), trying to leverage a transformation for execution of business process models,

setting out ten different aspects that must be investigated in order to achieve this transformation,

using also a tree representation of the process model (Vanhatalo et al., 2009) to achieve their goal.

Even though there are already some approaches (Bouillet et al., 2007; Simpson et al., 2007;

Vaquero et al., 2007) devoted to the field of Knowledge Engineering for P&S, they are rather

directed to be helpful for planning experts (dealing with the modeling of world objects and

actions). Our approach is more aligned with Barták et al. (2008), since it deals with the automatic

generation of planning domains from expert knowledge introduced previously by using standard

tools and languages that are close to IT architects and organization stakeholders. It also shares

similarities with Muñoz-Avila et al. (2002), which describes how project planning representations

are similar to plan representations employed by HTN planners.

6 Conclusions and future work

This paper has made some innovative contributions in order to overcome the traditional draw-

backs of acquiring knowledge for later P&S modeling, specifically for the HTN paradigm. Mainly,

a sound KE procedure has been developed in order to express well-structured process models as

HTN P&S domains, building up an intermediate data structure that organizes the source process

diagram as a NPM, simplifying the subsequent transformation into HTN-PDDL code. Further-

more, the JABBAH software framework provides a neat tool for analysts that need to perform

activity planning and resource allocation analysis on business workflows, embedding a non-trivial

transformation of BPMN-expressed workflows in terms of HTNs. By providing a fully automated

support of the analysis, allowing engineers to exploit the vastly diffused BPMN standard for

workflow specification, and neatly presenting the results, it may appeal a very wide and relevant

audience. It could be useful at project-based, customer service-based processes, or in general,

human-centric processes. What is more, it can be helpful for Adaptive Case Management as well,

in the sense that these plans could also be leveraged in highly dynamic scenarios, where exogenous

events can modify the environment conditions and some kind of adaptive capacity can be

demanded, while respecting the original process model.

Concerning future work, in order to cover a bigger subset of process models, the translation of

Associations and Message flows will be implemented, allowing to use JABBAH for the analysis of

cooperative process models. Also, an extension called Time-BPMN has been created recently

(Gagné & Trudel, 2009) in order to allow the specification of temporal constructs not available in

the original BPMN. Since HTN-PDDL is able to correctly represent these temporal constructs

(Castillo et al., 2006), we want to extend our framework in order to cover their translation.

Further improvements can be done, like (1) include support for BPMN 2.0 specification,

(2) introduce a new block detection algorithm, like the RPST (Vanhatalo et al., 2009), in order to

improve the efficiency (O(n)), and check also its behavior for P&S domain generation.

Acknowledgments

This work was partially supported by projects P08-TIC-3572 and TIN2008-06701-C03-02.

Appendix A

This appendix is mainly directed to demonstrate that the conditions established for the correct

translation are, at least, sufficient.
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Demonstration of sufficient conditions. Next, we pass to demonstrate that the conditions

imposed for the input model are at least sufficient for the correct operation of our proposal.

Let G be the input process model, let F be a connected subgraph of G (F C G).

DEFINITION 1. We define F as a fragment of G, if F is delimited by an opening gateway o (start

node) and a closing gateway c (end node), and there is at least one activity node in every branch

found inside the fragment. A fragment can include an arbitrary number of fragments.

DEFINITION 2. A well-structured fragment can be defined as a fragment that (a) has only one

predecessor for opening gateways and only one successor for closing gateways, and such that

(b) every path starting in an opening gateway g, must pass, by imperative, throughout the

matching closing gateway for g on its way to the end node of the workflow graph.

Let on be the number of opening gateways (either AND or XOR) of a well-structured fragment

F, and let cn be the number of corresponding closing gateways. It is always true that on 5 cn, given

that F is well structured.

DEFINITION 3. A minimal well-structured fragment is a well structured one that fulfills that on5 cn51.

THEOREM 1. A well-structured fragment is always reduced to an unique node by the algorithm

presented.

Let p be the number of paths an opening gateway gi divide the flow into (or the number of

successors nodes for gi). Let wi be the weight that comes into the opening gateway gi and wc the

weight that comes out of the closing gateway go. Then, according to the block detection algorithm,

the weight assigned to every successor node j will be wsuccjðgiÞ ¼ wi=p.
.

Given the conditions derived from well structuredness, the path for all the branches starting

at the opening gateway, giAF, must arrive to the matching closing gateway, goAF, so it is

easy to devise that, as the weights of predecessors of go are added to find wgo , the weight of the

opening gateway gi is preserved at the exit of the closing gateway go, wgo ¼ wgi . If this is not true, it

would mean that either (a) exists a path starting on gi that does not pass throughout go in its way to

the end node of G, which clearly contradicts the definition of well-structured fragment, or (b) F is an

unconnected fragment, which is contradictory to our property III (directed and connected graph).

Now, we can devise that, once we can assure that we can weight well-structured fragments as

explained, and the weight is preserved equal at the start and end of single-entry single-exit regions,

it is easy to see that we can reduce this fragment into an unique node, as explained next.

Given that the fragment F is well structured, every branch can contain:

a) a sequence of n activities (n> 1);

b) a fragment that is also well-structured;

c) an arbitrary (and possibly nested) combination of sequences and well-structured fragments.
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It is easy to see that, as soon as F is a well-structured fragment, it will contain, at least, a minimal

well-structured fragment Fa (or it is minimal itself, i.e. F�Fa). Thus, starting from the most inner

minimal well-structured fragment, where the lower weights are found (after some divisions of the

starting weight into some nested branches), we can reduce this fragment into a special node, and

recursively do this operation, taking into account that a similar reduction over a sequence of

activities will be done first when the weight found for these sequence activities is lower or equal

than it is for the most-inner SESE region (i.e. a PB). To make it more clear, if there exists a

sequence within a minimal well-structured fragment, the sequence will be always reduced first, as

their activities weight is equal to the one for other branches of this fragment (given that is minimal

and no more inner gateways can be found).

It is also easy to see that the new special nodes created by the reduction step will then form part

of either a previous existing sequence or a previous existing well-structured fragment, or in the last

step, it is the unique node we are looking for. So, the Theorem 1is clearly demonstrated.

THEOREM 2. If the input workflow graph is not two-terminal, we cannot assure that it is well structured.

1) This is clearly shown if there is one start node and n end nodes e1,y, en (n> 2). In this case, at

least an opening gateway gi will exist that divides the flow into the two (or more) branches to

finish into the different n end nodes, and such that it does not have a corresponding closing

gateway go. This clearly contradicts the definition of well-structured process model. Note that,

if some different end nodes want to be created in a BPM model, it is usually solved by creating

different two-terminal workflow graphs, connected by using associations or message flows

(in order to synchronize their cooperative operation). This is why we use the m.c.c.’s of the

input process models, in order to manage also these cases (subject of future work).

2) In the case that n start nodes s1,y, sn (n>2) and one end node e exists, it is also clear that an extra

closing gateway (not matching with an opening gateway) will be needed in order to join the flow to

the end node, and this clearly contradicts the definition of well-structured process model. (What’s

more, the algorithm should simulate at least n pipes of water, and this doesn’t make sense. Note that

such a graph could be easily transformed into another with one start node s and an opening gateway

that split the flow into the branches corresponding to those paths starting originally from s1,y, sn.)

Hence, it is clear that if the workflow graph is two-terminal and well structured (and of course,

connected and directed) then the input process model can only contain arbitrary (and possibly

nested) combinations of sequences and well-structured fragments. Demonstrations of Theorem

1and Theorem 2show that properties I, II and III are sufficient conditions for the correct

operation of the translation proposed.

The use of m.c.c.’s. The reason to use the m.c.c.’s of the input model is mainly the fact that a specific

use case of BPM is the development of cooperative processes, where independent processes can be

synchronized (i.e. by using association and message flow BPMN elements) in order to complete the

whole process. Although the analysis of cooperative processes is subject for future work, the algorithm

is already prepared to cover the translation of these m.c.c.’s into multiple HTNs.
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Planning on end users. In Workshop on Moving P&S Systems into the Real World (Keynote talk).

Providence, Rhode Island, USA.

Eder, J., Gruber, W. & Pichler, H. 2006. Transforming workflow graphs. In Interoperability of Enterprise

Software and Applications, Konstantas, D., Bourrières, J.-P., Léonard, M., Boudjlida, N. (eds.). Springer,
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