PROPERLY EMBEDDED SURFACES WITH CONSTANT MEAN CURVATURE

ANTONIO ROS & HAROLD ROSENBERG

Mathematics Subject Classification: 53A10, 53C42.

1. Introduction

In this paper we derive some global properties of properly embedded surfaces in \mathbb{R}^3 of non-zero constant mean curvature H. We call such a surface an H-surface. Our main result is a maximum principle at infinity for these H-surfaces.

Theorem 1. Let M_1 and M_2 be connected disjoint H-surfaces in \mathbb{R}^3. Then M_2 is not on the mean convex side of M_1.

The surface M_1 separates \mathbb{R}^3 into two connected components since M_1 is properly embedded. The mean convex side of M_1 is the component W_1 of $\mathbb{R}^3 - M_1$, towards which points the mean curvature vector of M_1.

In the minimal case, the Halfspace Theorem implies that two disjoint proper immersed minimal surfaces must be parallel planes, see [3].

Assume $H \neq 0$ and $M_2 \subset W_1$. If there exist points $x \in M_1$ and $y \in M_2$ whose distance is $\text{dist}(M_1, M_2)$, then the theorem above can be proved directly as follows. There are no focal points of M_1 along the interior of the line segment from x to y, since the segment minimizes distance between M_1 and M_2, and after a small translation of M_2 we can assume that there are not focal points of M_1 in the segment xy. So the equidistant surfaces to M_1 are non-singular along this segment, starting with a small neighborhood of x on M_1. Their mean curvature is strictly increasing when one goes from x to y. But the surface at y touches M_2 at its mean convex side, a contradiction.

If the above points x and y do not exist, we can take divergent sequences $x_n \in M_1$, $y_n \in M_2$ such that $|x_n - y_n| \to \text{dist}(M_1, M_2)$ and $x_n - y_n$ converge to a vector v. So the surface $M_2 + v$ lies in the mean convex side of M_1, $M_2 + v \subset W_1$, and touches M_1 at infinity, that is, $\text{dist}(M_1, M_2 + v) = 0$. Theorem 1 says that this can not happen, which explains why we call it the maximum principle at infinity.

We will also study H-surfaces M in a slab of \mathbb{R}^3, between two horizontal planes say. An unsolved problem is whether such a surface admits a horizontal plane of symmetry. It is natural to attack this problem by the technique of Alexandrov.

The first author is partially supported by MEC-FEDER MTM2007-61775 and J. Andalucía P09-FQM-5088 grants.
reflection [1], starting with horizontal planes coming down from the top of the slab. This method requires that the part of surface above the moving plane be a graph over a horizontal planar domain and that its reflected image with respect to this plane lies in the mean convex side \(W \) of \(M \). If there is a first plane where the symmetry of \(M \) above the plane touches the part of \(M \) below, then the usual maximum principle says \(M \) is symmetric about this plane. In the case \(M \) is compact, we deduce in this way that the surface has a lot of mirror symmetries and so it must be a round sphere, [1]. However in our setting this does not appear to work for several reasons. First, one might not be able to get started. In fact, if we suppose \(M \) has unbounded curvature near the plane \(x_3 = a \), \(a \) being the supremum of \(x_3 \) restricted to \(M \), then moving this plane down till \(x_3 = a - \varepsilon \), for small \(\varepsilon > 0 \), the part of \(M \) above this new plane may not be a vertical graph. If one assumes \(M \) has bounded curvature then this phenomena does not occur, so at least one can begin to do symmetry of the part of \(M \) above the plane. Even then, one quickly encounters another difficulty: it may be the case (and Pascal Collin has constructed \(H \)-surfaces with boundary doing this [2]) that at the last allowed position of the moving plane, the part of \(M \) below this plane and the symmetry of the part above touch for the first time at infinity. Then we can not proceed.

This leads us to study the class \(S \) of (non-necessarily connected) properly embedded \(H \)-surfaces in \(\mathbb{R}^3 \) satisfying the following conditions: \(M \) lies in a horizontal slab, is symmetric about the plane \(P = \{ x_3 = 0 \} \) and \(M_+ = M \cap \{ x_3 > 0 \} \) is a graph over a open set in \(P \). This is the class of surfaces we would obtain if Alexandrov reflection technique could be applied to proper \(H \)-surfaces in a slab. There are many such examples. The Delaunay surfaces are in \(S \) and their width varies from \(2/H \) (attained for the limit case of a stack of spheres) to \(1/H \) (for the cylinder). Kapouleas [9] has constructed examples of finite topology in \(S \) which look like a sphere with \(n \) horizontal Delaunay ends, the directions of the ends symmetrically placed, like the \(n \) roots of unity. For further results on surfaces in \(S \) with finite topology see Grosse-Brauckmann, Kusner and Sullivan [8]. Lawson [11] constructed doubly periodic \(H \)-surfaces in \(S \) and Ritoré [17] and Grosse-Brauckmann [7] have given more doubly periodic examples of this type. In particular, Ritoré constructs examples whose width tends to zero (for \(H \) fixed): these surfaces look like two close parallel planes connected by a doubly periodic family of catenoidal necks, the distance between two neighbor necks being small. Notice that each surface in \(S \) has width at most \(2/H \) by Theorem 6.

We will give a structure result for \(H \)-surfaces in the class \(S \) contained between two parallel planes at distance smaller than \(1/H \): Assuming that \(M \) has bounded curvature, we prove that the shape of the surface is close to the doubly periodic \(H \)-surfaces constructed by Lawson [11].

In this section we give a priori estimates for H-surfaces in different contexts. These results will be used in the proof of our main results in the sections §3 and §4 below. We give a bound, by modifying arguments of Fisher-Colbrie [4], for the radius of a geodesic ball contained in the interior of a stable H-surface and we extend Serrin’s height estimate for compact H-graphs, [18], to H-graphs over arbitrary domains.

Let M be an H-surface in \mathbb{R}^3. We will consider on M the unit normal vector field n which makes $H > 0$. Equivalently, n will be the normalized mean curvature vector.

An H-surface M is said to be stable (in the strong sense) if for any function u with compact support in M we have that
\[
\int_M |\nabla u|^2 - |A|^2 u^2 \geq 0,
\]
where ∇u and A denote the gradient of u and the shape operator of M respectively. Stability is equivalent to the existence of a positive solution of the equation $\Delta v + |A|^2 v = 0$ on M, see [5]. In particular any graph is stable, because the third coordinate of the unit normal vector n_3 satisfies the equation above (for H-surfaces there is another natural notion of stability, weaker than the one considered in this paper, which is related with the isoperimetric problem: we ask that the integral inequality holds for any u with $\int_M u = 0$).

A fundamental fact about stable H-surfaces is that we have an estimate (depending only on H) of the largest geodesic ball contained in the interior of the surface. The proof of the next result follows from the ideas of Fischer-Colbrie [4] and it is implicit in López and Ros [12].

Theorem 2. Let M be a stable H-surface. Then the (intrinsic) distance of any point of M to ∂M is smaller than or equal to π/H.

Proof. The operator $L = \Delta + |A|^2 = \Delta + (4H^2 - 2K)$, K being the Gauss curvature of M, has index zero and, so, there is a positive function u on M with $Lu = 0$, (see Proposition 1 of Fisher-Colbrie [4]).

Consider the new metric $d\tilde{s}^2 = u^2 ds^2$ and let $p \in M$ and $R > 0$ be such that the open $d\tilde{s}^2$-geodesic ball $\mathcal{B} = \mathcal{B}(R, p) \subset M$ centered at p is relatively compact in M. It is enough to prove that $R \leq \pi/H$.

Let γ be a minimizing geodesic for the metric $d\tilde{s}^2$, joining p to $\partial \mathcal{B}$. As the $d\tilde{s}^2$-distance between p and any point of $\partial \mathcal{B}$ is R, then if we denote by a the $d\tilde{s}^2$-length of γ we have $a \geq R$. Parameterize γ by arclength s in the ds^2 metric, $0 \leq s \leq a$.

Since γ is minimizing for $d\tilde{s}^2$, the second variation of length yields:

\[
0 \leq \int_0^{\tilde{R}} \left((d\phi)^2 - \tilde{K} \phi^2 \right) d\tilde{s},
\]

for all ϕ with $\phi(0) = \phi(\tilde{R}) = 0$, \tilde{R} being the $d\tilde{s}^2$-length of γ and \tilde{K} the Gauss curvature of the metric $d\tilde{s}^2$.
We have that
\[
\frac{d\phi}{ds} = \frac{d\rho}{ds} \frac{ds}{d\bar{s}} = \frac{1}{u} \frac{d\phi}{d\bar{s}}
\]
and
\[
\tilde{K} = \frac{1}{u^2} (K - \Delta \log u).
\]
Moreover, as \(u\) is a Jacobi function on \(B\), we can write
\[
0 = Lu = \Delta u - Ku + \left(2H^2 + \frac{|A|^2}{2}\right)u \geq \Delta u - Ku + 2H^2 u.
\]
Therefore, if \(c = 2H^2\) and \(u'(s) = d(u \circ \gamma)/ds\), we obtain
\[
(2) \quad \Delta \log u = \frac{u\Delta u - |\nabla u|^2}{u^2} \leq K - c - \frac{(u')^2}{u^2}
\]
where we have used that \(|u'| \leq |\nabla u|\).

Then (1) and (2) yield:
\[
(3) \quad \int_0^a \left(c \frac{1}{u} \frac{(u')^2}{u^3} \right) \phi^2 \, ds \leq \int_0^a \frac{K - \Delta \log u}{u} \phi^2 \, ds \leq \int_0^a \frac{1}{u} (\phi')^2 \, ds.
\]
Write \(\phi = u\psi\), where \(\psi(0) = \psi(a) = 0\), so that
\[
\phi' = u'\psi + u\psi' \quad \text{and} \quad \frac{1}{u} (\phi')^2 = \frac{1}{u} (u')^2 \psi^2 + u(\psi')^2 + 2u'\psi\psi'.
\]
Then (3) yields:
\[
\int_0^a \left(c u\psi^2 + \frac{(u')^2}{u} \psi^2 \right) \, ds \leq \int_0^a \left(\frac{(u')^2}{u} \psi^2 + u\psi' + 2u'\psi\psi' \right) \, ds
\]
An integration by parts using \(d(u\psi\psi') = (u'\psi\psi' + u(\psi')^2 + u\psi\psi'')\,ds\) transforms this last inequality to:
\[
(4) \quad \int_0^a (c\psi^2 + (\psi')^2 + 2\psi''\psi) u \, ds \leq 0.
\]
Finally, we take
\[
\psi(s) = \sin \left(\frac{\pi s}{a} \right), \quad 0 \leq s \leq a,
\]
and so (4) becomes:
\[
\int_0^a \left(\frac{\pi^2}{a^2} \cos^2 \left(\frac{\pi s}{a} \right) + \left(c - \frac{2\pi^2}{a^2} \right) \sin^2 \left(\frac{\pi s}{a} \right) \right) u(\gamma(s)) \, ds \leq 0.
\]
Thus \(c < \frac{2\pi^2}{a^2}\) and therefore \(R < a < \frac{\pi}{H}\), which proves the theorem.

Now we consider \(H\)-surfaces \(M\) which are vertical graphs (in short, \(H\)-graphs). The unit normal vector of a graph is never horizontal and so, on each connected component of \(M\), it points either down or up. Recall also that \(H\)-graphs are stable.
Lemma 3. Let M be an H-surface given as the graph of a smooth positive function u defined over a domain $\Omega \subset \{x_3 = 0\}$. If M is properly embedded in the halfspace $x_3 > 0$ then,

a) M is contained in the slab $\{0 < x_3 < 2\pi/H\}$,

b) u extends continuously to zero on the boundary of Ω, and

c) the normal vector of M points down.

Proof. As any H-graph is stable, it follows from Theorem 2 that $x_3 < 2\pi/H$ on M: Otherwise we can find a geodesic ball of radius π/H contained in the interior of M. This proves a). In particular, we conclude that u extends continuously, with zero boundary values, to the topological boundary of Ω. So it remains to prove c). Take a vertical line l which intersects a connected component M' of M and a sphere S of mean curvature H centered at a high point of l so that the sphere is disjoint from M and $l \cap S$ is above $l \cap M$. Move S down till we have a first contact with M'. If the mean curvature vector of M' points up, then the maximum principle would imply that the graph M contains a sphere, which is impossible. □

From the Lemma above we conclude that for an H-graph $M \subset \{x_3 > 0\}$, M is properly embedded in the upper halfspace if and only if u extends continuously to zero on the boundary of Ω.

We will consider limits of H-graphs. The following propositions justify the existence of such limits. First we prove that an H-graph M in the upper halfspace with zero boundary values satisfies an interior curvature estimate in $\{x_3 > 0\}$. This is a known fact but we include a proof for the sake of completeness.

Proposition 4. There is a positive constant C, depending only on $H > 0$, such that any H-surface M properly embedded in $\{x_3 > 0\}$ given as the graph of a function $u \in C^\infty(\Omega)$, with $\Omega \subset \{x_3 = 0\}$, satisfies

$$|A| \leq \frac{C}{x_3},$$

$|A|$ being the length of the second fundamental form of M.

Proof. This can be shown as follows: In case the estimate fails, we can consider a sequence p_k, $k = 1, 2, \ldots$, of points in the surfaces M_k, satisfying the hypothesis of the assertion such that $|A_k(p_k)|x_3(p_k) > k$, where A_k is the second fundamental form of M_k. Let $B(p, r) = \{x \in \mathbb{R}^3/|x - p| < r\}$ and $r_k = x_3(p_k)/2$. It follows that for $q \in M_k \cap B(p_k, r_k)$, the expression $(r_k - |q - p_k|)|A_k(q)|$ attains its maximum at a point q_k (as it vanishes when q approaches to the boundary). Moreover if $r_k' = r_k - |q_k - p_k|$, then we have $S_k = M_k \cap B(q_k, r_k') \subset M_k \cap B(p_k, r_k)$ and $R_k = r_k'|A_k(q_k)| > k/2$. These points q_k are called points of almost maximal curvature and the translated rescaled surfaces $\Sigma_k = |A_k(q_k)|(S_k - q_k)$ converge, up to a subsequence, to a nonflat complete surface Σ_∞ in the Euclidean 3-space with mean curvature 0. To see that we observe that the surfaces Σ_k pass through the
origin and $\partial \Sigma_k$ is contained in the boundary of the ball $B(0, R_k)$ whose radius R_k converges to ∞. Moreover in the ball $B(0, R_k/2)$ the length the second fundamental form of Σ_k is bounded by 4, and equals 1 at the origin. The mean curvature of Σ_k is equal to $H/|A_k(q_k)|$.

This permits one to construct a subsequence of Σ_k that converges to a complete minimal surfaces Σ_∞ passing through the origin and with curvature 1 at the origin. As the Gauss map of Σ_∞ lies in the closed lower hemisphere, it follows that the minimal surface Σ_∞ is stable and therefore it must be flat, see [5]. This contradiction proves the assertion. □

Proposition 5. Let $\{M_n\}$ be a sequence of H-surfaces, $H > 0$, such that M_n is the graph of a positive function u_n over an open subset $\Omega_n \subset \{x_3 = 0\}$ that extends continuously to zero on the boundary of Ω_n. Assume that there are points $p_n \in M_n$ with $p_n \to p$ and $x_3(p) > 0$. Then there exists a subsequence of $\{M_n\}$ which converges on compact subsets of $x_3 > 0$ to the graph of a positive function $u : \Omega \to \mathbb{R}$, over an open subset Ω, which extends continuously to the closure of Ω with zero boundary values.

Proof. The curvature estimate in the Proposition above implies that, up to a subsequence, the surfaces M_n converge to an H-surface M properly immersed in $x_3 > 0$. If n_3 denotes the third coordinate of the unit normal vector of M, we have that $\Delta n_3 + |A|^2 n_3 = 0$. As M is a limit of graphs we get from item c) in Lemma 3 that $n_3 \leq 0$ and the maximum principle implies that either $n_3 < 0$ in M or $n_3 = 0$ on a connected component of M.

In the second case, that component must be a vertical circular cylinder intersected with the upper halfspace. By lemma 3, the height of the surfaces M_n is uniformly bounded, so this case is impossible.

Therefore $n_3 < 0$ and we claim that M is the graph of a positive function u over an open subset $\Omega \subset \{x_3 = 0\}$. To prove this claim note that each point $p \in M$ has a neighborhood U_p which is the graph of a smooth function over an open disc in the plane $x_3 = 0$. If there were two different points $p, q \in M$ lying in the same vertical line, we deduce that the same would be true for the graph M_n for n large enough. This contradiction proves that M meets each vertical line at most once and so M is a graph of a function u. From Lemma 3 it follows that u extends continuously to the closure of Ω with zero boundary values. That proves the proposition. □

If is well-known that compact H-graphs with zero boundary values satisfy a height estimate, see Serrin [18]. In the result below we extend this fact to arbitrary H-graphs with that boundary condition.

Theorem 6. Let M be an H-surface, $H > 0$, given by the graph of a positive function u on a planar domain $\Omega \subset \{x_3 = 0\}$, where u extends continuously to the closure of Ω with zero boundary values. Then M is contained in the slab $0 < x_3 \leq 1/H$.

\[\text{\textcopyright Antonio Ros & Harold Rosenberg} \]
Proof. First observe that Theorem 2 implies that \(x_3 \) is bounded on \(M \). To prove the upper bound \(x_3 \leq 1/H \) consider on \(M \) the function

\[
\phi_M = \phi = H \, x_3 + n_3,
\]

where \(x_3 \) and \(n_3 \) denote the third coordinate of the position and unit normal vectors on \(M \) (note that \(n_3 < 0 \) on \(M \)). Then \(\Delta \phi = -2(H^2 - K)n_3 \geq 0 \).

If we assume that \(\overline{\Omega} \) is smooth and compact, then the statement is a classical result of Serrin, [18]: to prove it, observe that \(\phi \) is subharmonic and it attains its maximum at the boundary. On \(\partial \Omega \), \(\phi = n_3 \leq 0 \) and therefore \(\phi \leq 0 \) in \(\Omega \). Thus \(H \, x_3 + n_3 \leq 0 \) which implies

\[
x_3 \leq \frac{-n_3}{H} \leq \frac{1}{H}.
\]

Now suppose \(\overline{\Omega} \) is noncompact. If \(\phi \leq 0 \) on \(M \) then we are done, so we can suppose that \(\sup \phi = c > 0 \). Let \(p_n \in M \) be a sequence with \(\phi(p_n) \to c \), \(x_3(p_n) \to x_\infty \), and \(n_3(p_n) \to n_\infty \). Notice that \(x_\infty > 0 \), since if \(x_\infty \leq 0 \), \(c = H \, x_\infty + n_\infty \leq 0 \).

Let \(M_n \) be the horizontal translate of \(M \) which places \(p_n \) on the \(x_3 \)-axis, intersected with the open half space \(\{x_3 > 0\} \). From Proposition 5 we have that a subsequence (that we also denote by \(M_n \)) converges to an \(H \)-graph which is properly embedded in \(\{x_3 > 0\} \). Let \(p_\infty = \lim p_n \) and \(M_\infty \) the connected component of the limit of \(M_n \) which contains the point \(p_\infty \). As \(x_3(p_\infty) = x_\infty > 0 \), we see that \(p_\infty \) is an interior point of \(M_\infty \). As the function \(\phi_\infty = \phi_{M_\infty} \) achieves its maximum at \(p_\infty \) we conclude from the maximum principle that \(\phi_\infty \) is constant on \(M_\infty \), which means that \(M_\infty \) is a spherical cap. In particular \(\phi_\infty \leq 0 \) which contradicts that \(\phi_\infty(p_\infty) = c > 0 \).

The lower bound \(0 < x_3 \) is proved in a similar way using the equation \(\Delta x_3 = 2Hn_3 < 0 \). If \(x_3 \) is negative somewhere on \(M \), then a suitable sequence of horizontal translated images of \(M \) will converge in \(\{x_3 < 0\} \) to an \(H \)-graph \(M'_\infty \) properly embedded in the lower halfspace \(\{x_3 < 0\} \), whose unit normal vector points down and such that \(x_3 \) attains its minimum at the interior, which contradicts the maximum principle. Thus \(x_3 \geq 0 \) on \(M \) and the maximum principle again gives that \(x_3 > 0 \), as we claimed. \(\square \)

3. The Maximum Principle at Infinity

In this section we will prove our main result: Let \(M_1 \) and \(M_2 \) be two connected properly embedded \(H \)-surfaces in \(\mathbb{R}^3 \) \((H > 0)\) such that \(M_2 \) lies in the mean convex side of \(M_1 \). Then we want to show that \(M_2 = M_1 \).

By the comments in the introduction, we can assume that \(M_1 \) is noncompact. We orient \(M_1 \) and \(M_2 \) by unit vector fields \(N_1 \) and \(N_2 \) whose direction is that of the mean curvature. The mean convex side \(W_1 \) of \(M_1 \) is the component of \(\mathbb{R}^3 - M_1 \) such that \(N_1 \) along \(M_1 \) points into \(W_1 \). So \(M_2 \) is contained in the closure of \(W_1 \).

Assuming that \(M_2 \neq M_1 \) we will obtain a contradiction. Clearly \(M_2 \cap M_1 = \emptyset \) by the usual maximum principle. Denote by \(W \) the component of \(W_1 - M_1 \) satisfying \(\partial W = M_1 \cup M_2 \). Thus the boundary of \(W \) is not connected and the mean curvature
vector of M_1 points to W (hence N_1 as well). If W were mean convex, then the halfspace theorem [3] would imply that M_1 and M_2 are parallel planes. Therefore the mean curvature vector of M_2 (hence N_2 as well) points away from W.

Let S be a relatively compact domain in M_1 with smooth boundary Γ. Assume also that S is unstable. We will show that there is a surface $\Sigma \subset W$ bounded by Γ with constant mean curvature H that is stable. Then by taking the domain S in M_1 to be larger and larger, we will obtain a contradiction, using the fact that the distance between a point of a stable H-surface and its boundary is bounded.

Let S be a relatively compact domain in M_1 with smooth boundary Γ. Assume also that S is unstable. We will show that there is a surface $\Sigma \subset W$ bounded by Γ with constant mean curvature H that is stable. Then by taking the domain S in M_1 to be larger and larger, we will obtain a contradiction, using the fact that the distance between a point of a stable H-surface and its boundary is bounded.

Let \mathcal{F} be the family of regions $Q \subset W$ enclosed by S and surfaces $\Sigma \subset W$ with $\partial \Sigma = \Gamma$ and define the functional

$$F(Q) = A(\Sigma) + 2H V(Q),$$

where $A(\Sigma)$ is the area of Σ and $V(Q)$ is the volume of Q. Our goal is to show that there is $Q \in \mathcal{F}$ minimizing the functional F and such that the interior of Σ is contained in the interior of W. This will imply that Σ is a smooth surface with $\partial \Sigma = \Gamma$ and constant mean curvature H. Moreover the mean curvature vector of Σ points outside Q and Σ is stable in the sense of §2.

We will need certain auxiliary surfaces and regions and some preliminary remarks. Consider the least area surface S_{min} in W_1 spanning the curve Γ and homologous to S. S_{min} is a compact smooth minimal surface and by the maximum principle we have $M_1 \cap S_{\text{min}} = \Gamma$. Denote by Q_{min} the region in W_1 enclosed by $S \cup S_{\text{min}}$.

Let $S_0 = M_2 \cap B(\rho)$ be a relatively compact open set in M_2, where ρ is a large positive radius and $B(\rho) = \{x \in \mathbb{R}^3 / |x| < \rho\}$. There is an $\varepsilon > 0$ such that the sets $S_t = \{x - tN_2 | x \in S_0\}$, $0 \leq t \leq \varepsilon$, are smooth surfaces parallel to M_2 foliating a neighborhood Q_{par} of S_0 in W. We put $S_{\text{par}} = S_t$. Denote by Y the unit vector field, normal to the foliation S_t, and oriented by N_2 and let H_t be the mean curvature of S_t. A calculation shows $H_t > H$ for $0 < t$. At any point of S_t we have $\text{div}Y = -2H_t$, where div is the divergence operator in \mathbb{R}^3. Therefore

$$\text{(5)} \quad \text{div}Y > -2H, \quad \text{for} \quad t > 0.$$

Finally, we consider φ the first eigenfunction of the Jacobi operator of S. So φ vanishes at Γ, is positive at the interior of S and satisfies $\Delta \varphi + |A|^2 \varphi + \lambda_1 \varphi = 0$, where λ_1 is a negative constant (as S is unstable). After a perturbation of S we can assume that 0 is not an eigenvalue of $\Delta + |A|^2$. Hence there is a smooth function v on S, vanishing at Γ and such that $\Delta v + |A|^2 v = 1$ in S. The boundary maximum principle implies that the derivative of φ with respect to the outwards pointing normal vector is negative along Γ. Therefore we conclude that, for $a > 0$ small enough, $u = \varphi + av$ is positive at the interior of S.

For small $\varepsilon > 0$ and $0 < t \leq \varepsilon$, u defines a normal deformation of S,

$$S'_t = \{x + tuN_1 | x \in S\} \subset W.$$
The surfaces S'_t, $0 < t < \varepsilon$, foliate an open set $Q_{uns} \subset W$. Putting $S_{uns} = S'_\varepsilon$, we have $\partial Q_{uns} = S \cup S_{uns}$, see Figure 3.

If X is the unit normal vector field of the foliation S'_t oriented by N_1 and H'_t is the mean curvature of S'_t, we have $\text{div} X = -2H'_t$ as above. Moreover

$$
\frac{d}{dt}|_{t=0} 2H'_t = \Delta u + |A|^2 u = -\lambda_1 \varphi + a > 0,
$$

which implies, choosing ε small enough, that $H'_t > H$. Therefore

(6) \hspace{1cm} \text{div} X < -2H, \text{ for } 0 < t < \varepsilon.

Figure 1. If Σ meets the exterior of the least area surface S_{min}, then $F(Q \cap Q_{min}) < F(Q)$.

Lemma 7. Let $Q \in F$ be enclosed by S and Σ. Assume that Σ is smooth at the interior of W.

i) If $Q \not\subset Q_{min}$, then $F(Q \cap Q_{min}) < F(Q)$.

ii) If $Q \cap Q_{par} \neq \emptyset$, then $F(Q - Q_{par}) < F(Q)$.

iii) If $Q_{uns} \not\subset Q$, then $F(Q \cup Q_{uns}) < F(Q)$.

Proof. The assertion in i) follows because $Q' = Q \cap Q_{min} \in F$ and satisfies $V(Q') < V(Q)$ and $A(\Sigma') \leq A(\Sigma)$, where $\Sigma' = \partial Q' - S$, see Figure 1.

Figure 2. If Q cuts the tubular neighborhood Q_{par} of M_2 (in gray), then $F(Q - Q_{par}) < F(Q)$.
The claim in ii) is a consequence of the inequality \(\text{div } Y > -2H \) on \(Q_{\text{par}} \), see Figure 2. From the divergence theorem we obtain

\[-2HV(Q \cap Q_{\text{par}}) < \int_{Q\cap Q_{\text{par}}} \text{div } Y = \int_{\partial (Q\cap Q_{\text{par}})} \langle Y, \nu \rangle = \int_{Q\cap S_{\text{par}}} \langle Y, \nu \rangle + \int_{\Sigma \cap Q_{\text{par}}} \langle Y, \nu \rangle, \]

where \(\nu \) is the outer pointing unit normal to the boundary of \(Q \cap Q_{\text{par}} \). Using that \(\nu = -Y \) along \(Q \cap S_{\text{par}} \) and \(\langle Y, \nu \rangle \leq 1 \) at the points of \(\Sigma \cap Q_{\text{par}} \), we deduce, after rearrangement, that

\[-2HV(Q \cap Q_{\text{par}}) + A(Q \cap S_{\text{par}}) < A(\Sigma \cap Q_{\text{par}}), \]

and, therefore

\[F(Q - Q_{\text{par}}) = 2H (V(Q) - V(Q \cap Q_{\text{par}})) + A(\Sigma - Q_{\text{par}}) + A(Q \cap S_{\text{par}}) < 2HV(Q) + A(\Sigma \cap Q_{\text{par}}) + A(\Sigma - Q_{\text{par}}) = F(Q), \]

as we claimed.

![Figure 3](image.png)

Figure 3. If \(Q \) does not contain the shadowy region \(Q_{\text{uns}} \), then \(F(Q \cup Q_{\text{uns}}) < F(Q) \).

To prove iii) we argue as in the proof of ii), but here we use that \(\text{div } X < -2H \) on \(Q_{\text{uns}} \), see Figure 3.

\[-2HV(Q_{\text{uns}} - Q) > \int_{Q_{\text{uns}} - Q} \text{div } X = \int_{\partial (Q_{\text{uns}} - Q)} \langle X, \nu \rangle = \int_{S_{\text{uns}} - Q} \langle X, \nu \rangle + \int_{\Sigma \cap Q_{\text{uns}}} \langle X, \nu \rangle. \]

As \(\nu = X \) on \(S_{\text{uns}} - Q \) and \(\langle X, \nu \rangle \geq -1 \) at the other points of the boundary, we have

\[2HV(Q_{\text{uns}} - Q) + A(S_{\text{uns}} - Q) < A(\Sigma \cap Q_{\text{uns}}). \]

Hence

\[F(Q \cup Q_{\text{uns}}) = 2H (V(Q) + V(Q_{\text{uns}} - Q)) + A(S_{\text{uns}} - Q) + A(\Sigma - Q_{\text{uns}}) < 2HV(Q) + A(\Sigma \cap Q_{\text{uns}}) + A(\Sigma - Q_{\text{uns}}) = F(Q), \]

as desired. \(\square \)
Proof of Theorem 1. Assume 0 lies in M_1 and let $S(r)$ be the connected component of $M_1 \cap B(r)$, where $r > 0$, and $B(r)$ is the euclidean ball of radius r centered at 0. Since M_1 is properly embedded, the boundary of $S(r)$ is contained in $\partial B(r)$. Let γ be a path in W joining 0 to a point y in M_2. Choose r large enough so that γ is contained in $B(r)$ and $\text{dist}(\gamma, \partial B(r)) > 2\pi/H$.

From Theorem 2, and our choice of r, we know that $S = S(r)$ is unstable.

Let K be the compact connected domain contained in Q_{min}, bounded by S and $M_2 \cap Q_{\text{min}}$, see Figure 4.

![Figure 4](image)

Let a be the infimum of F on F. If (Q_n, Σ_n) is a minimizing sequence for F (i.e. $\lim_{n \to \infty} F(Q_n, \Sigma_n) = a$) then by Lemma 7, we can cut and paste the Q_n to form a new minimizing sequence $(\tilde{Q}_n, \tilde{\Sigma}_n)$ so that $\tilde{Q}_n \subset K$ and $\text{int} \tilde{\Sigma}_n \subset \text{int} K$.

By compactness [15, 5.5], there is a minimum Q of F in K bounded by a rectifiable current Σ with the support of Σ contained in W, $\partial \Sigma = \partial S$, and Σ disjoint from M_2. Regularity [14, Corollary 3.7] implies the part of Σ in the interior of K is a smooth surface of mean curvature H. This stable surface Σ intersects γ (since the union of Σ and S bounds Q). However, for z in the intersection of γ and Σ, we have $\text{dist}(z, \partial \Sigma) > 2\pi/H$. This contradicts Theorem 2 and completes the proof of Theorem 1.

\square

We now consider properly embedded H-surfaces M with $\partial M = \emptyset$ and $H > 0$, which fit between two parallel planes P_0 and P_1. The width of M is the infimum of the distance between such planes. The only compact connected M is the sphere of width $2/H$, so the surfaces we consider are non compact. We know very little about these surfaces, even assuming bounded curvature. Assuming M is connected, some questions we can not answer are:

If M has bounded width, is it at most $2/H$?
If M is between the planes P_0 and P_1, is there a parallel plane P between P_0 and P_1 with M symmetric by P?

We will study a special class of surfaces of bounded width. Let S be those (non-necessarily connected) properly embedded H-surfaces M, $H > 0$, which are symmetric with respect to the plane $P = \{x_3 = 0\}$ and such that $M_+ = M \cap \{x_3 > 0\}$ is a graph over an open subset Ω in P. Theorem 6 implies that each surface in S has width at most $2/H$. Among the surfaces in S, the sphere, the Delaunay surfaces, and Kapouleas [9] finite topology examples have width at least $1/H$. Lawson doubly periodic H-surfaces [11] and the related ones constructed by Ritoré [17] and Grosse-Brauckmann [7] may have arbitrarily small width. For some of these doubly periodic surfaces the domain Ω consists of the plane P where we have removed infinitely many pairwise disjoint compact convex disks. In this section we will prove that any surface in S with width smaller than $1/H$ (= the width of a cylinder of mean curvature H) looks like these doubly periodic surfaces.

Theorem 8. Suppose M in S has width less than $1/H$ and M_+ is a graph over the open subset $\Omega \subset P$. Then the components of $P - \Omega$ are strictly convex. In particular M is connected. If moreover M has bounded curvature, then $P - \Omega$ is a countable disjoint union of strictly convex compact disks.

Proof. First we observe that if M were contained in two non parallel slabs, then the slabs intersect and M is cylindrically bounded. A theorem of Kusner, Korevaar and Solomon [10] would imply that the components of M are spheres or Delaunay surfaces, which contradicts our width assumption. Therefore, M is contained in the slab perpendicular to P.

The proof uses an operator L that has its origins in a paper by Payne and Philippin [16] defined on any surface $M \in S$. The operator is of the form

$$Lf = \Delta f + \langle \nabla f, X \rangle,$$

where X is a tangent vector field to M, singular where M is horizontal, and ∇f denote the gradient of a function f on M.

As we have oriented M so that $H > 0$, the maximum principle implies that $n_3 < 0$ in M_+. Consider

$$\psi = 2Hx_3 + n_3 \quad \text{on } M_+,$$

Clearly $\psi = 0$ on $\Gamma = \partial M_+ = P \cap M$ since M is vertical along Γ. A simple calculation shows $\Delta \psi = 2Kn_3$, where K is the Gauss curvature of M. Now if we look for a vector field X such that $L\psi = 0$, then it suffices to find X satisfying $\langle X, \nabla \psi \rangle = -2Kn_3$.

Denote by a the tangent part of $e_3 = (0,0,1)$. Then $\nabla x_3 = a$, $\nabla n_3 = -Aa$, where A is the shape operator of M, and

$$\nabla \psi = 2H\nabla x_3 + \nabla n_3 = (2HI - A)a,$$
I being the identity tensor. Using the basic matrix equality $A^2 - 2HA + KI = 0,$ one has

$$A\nabla \psi = (2HA - A^2)a = Ka.$$

Consequently, if one defines

$$X = -\frac{2n_3}{|a|^2}Aa, \quad \text{where} \quad a \neq 0,$$

we conclude

$$\langle X, \nabla \psi \rangle = -\frac{2n_3}{|a|^2} \langle Aa, \nabla \psi \rangle = -\frac{2n_3}{|a|^2} \langle a, A\nabla \psi \rangle = -\frac{2n_3}{|a|^2} \langle a, Ka \rangle = -2Kn_3$$

and ψ is a solution of $L\psi = 0$ where $a \neq 0.$ If ν denotes the outer conormal to M_+ along $\Gamma,$ then by direct computation one has

$$\frac{\partial \psi}{\partial \nu} = k_{\Gamma},$$

where k_{Γ} is the curvature of Γ in P with respect to the plane unit normal pointing towards $P - \Omega.$ In particular if $\frac{\partial \psi}{\partial \nu} > 0,$ then Γ is strictly convex towards $P - \Omega.$

The maximum principle applied to $L\psi = 0$ yields directly the following properties:

(i) If ψ assumes an extremum at $q \in M_+, \text{ then } q \text{ is on } \Gamma \text{ or the unit normal vector of } M \text{ at } q \text{ is vertical (i.e., } q \text{ is a singular point of } X).$

(ii) If ψ has a local maximum at $q \in \Gamma,$ then either $k_{\Gamma}(q) > 0$ or the component of M passing through q is a cylinder.

As M is vertical along Γ we have that $\psi = 0$ on $\Gamma.$ We claim that $\psi \leq 0$ on $M_+.$ Suppose first that ψ attains its maximum at $q.$ If $q \notin \Gamma,$ then by (i) we get that the normal vector at q is vertical. So $n_3(q) = -1,$ and $\psi(q) = 2Hx_3(q) - 1.$ Since the width of M is at most $1/H,$ we have $x_3(q) < 1/(2H),$ and $\psi(q) < 0,$ which is impossible. So, $q \in \Gamma$ and then ψ is nonpositive.

If ψ does not attain its maximum, let $q_n \in M_+, \text{ } \psi(q_n) \to \sup \psi.$ If $x_3(q_n) \to 0,$ then $\psi(q_n) = 2Hx_3(q_n) + n_3(q_n) \leq 2Hx_3(q_n) \to 0,$ so $\sup \psi \leq 0$ and $\psi \leq 0$ on $M_+.$

So we can assume $x(q_n)$ converges to a number $c > 0.$ Translate M horizontally so that q_n is over the origin, and let M_∞ be a limit H-surface of the translated surfaces in the open halfspace $x_3 > 0.$ This surface is non empty because the point q_∞ obtained as limit of the translated images of q_n lies on $M_\infty.$ Moreover the function ψ_∞ constructed as in (7) on M_∞ attains its maximum at q_∞ and $\psi_\infty(q_\infty) > 0.$ As M_∞ is contained in the slab $0 < x_3 < 1/(2H),$ reasoning as in the first case we obtain a contradiction. Hence $\psi \leq 0$ on $M_+.$

Now we can apply property (ii) to conclude that either M has a cylindrical component or $k_{\Gamma}(q) > 0$ for all $q \in \Gamma.$ Since we are assuming the width is strictly less than $1/H,$ we have $k_{\Gamma} > 0$ at each point of $\Gamma.$ So the connected components of $P - \Omega$ are strictly convex.
Next we prove that, if M has bounded curvature, then the planar curvature k_T is bounded away of zero. Suppose this were not the case; Then there is a sequence $q_n \in \Gamma$, with $k_T(q_n) \to 0$. Translate M horizontally so that q_n transforms to a fixed point σ. The curvature bounds allows us to take a limit surface M_∞ in the whole \mathbb{R}^3 (not only in the half space $\{x_3 > 0\}$) of the translated surfaces. This surface M_∞ is not necessarily embedded (it could have tangential selfintersections at the level $x_3 = 0$) but retains any other properties of surfaces in \mathcal{S}. In particular, assertion (ii) applies to M_∞. Moreover its width is smaller than $1/H$ and the function ψ_∞ constructed as in (7) on $(M_\infty)_+$ is nonpositive (because it is a limit on nonpositive functions) and vanishes at σ. As the curvature of the curve $M_\infty \cap P$ at σ is zero, we conclude from (ii) that one of the components of M_∞ must be a cylinder. This contradiction proves that $k_T < 1/\rho$ for some positive constant ρ. This implies that any connected component of Γ is a closed Jordan curve contained in a disk of radius ρ. Therefore, if the number of components of $P - \Omega$ where finite, then Ω would contain arbitrarily large round disks, which is clearly impossible (use for instance Theorem 2). This completes the proof of the theorem. □

References

PROPERLY EMBEDDED SURFACES WITH CONSTANT MEAN CURVATURE

ANTONIO ROS
aros@ugr.es
Departamento de Geometría y Topología
Facultad de Ciencias, Universidad de Granada
18071 Granada, Spain

HAROLD ROSENBERG
rosen@impa.br
Instituto de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina 110
22460-320 Rio de Janeiro RJ, Brazil