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A Maximum Principle with
Applications to the Forced
Sine-Gordon Equation

Aureliano M. Robles-Pérez

1 Introduction

In this note I report some work done in collaboration with R. Ortega. The
details and a list of references can be seen in [3].

Our objective is to study the forced sine-Gordon equation. In particular
we want to study properties of solutions of the problem

{
utt(t, x)− uxx(t, x) + cut(t, x) + a sin u(t, x) = f(t, x),
u doubly periodic (same period in t and x). (1.1)

As we can see, the sine-Gordon equation is a P.D.E. that is very similar to
the O.D.E. called the forced pendulum equation

{
ü(t) + cu̇(t) + a sin u(t) = f(t),
u periodic. (1.2)

As we all know, there are many results for the forced pendulum equation.
For example in [2] Mawhin obtained results for this equation using the
method of upper and lower solutions.

So we try to generalize those results to equation (1.1). In order to do
this, it is known that it is necessary to have a maximum principle for the
associated linear equation. This is our first objective: we are going to see
when a maximum principle holds and some properties of it.

At the end of the note we are going to go back to the sine-Gordon
equation to see how the method of upper and lower solutions applies to it.

2 Some examples

The linear equation associated to the sine-Gordon equation is the telegraph
equation. It is given by the operator

Lλu = utt − uxx + cut − λu,



348 A.M. Robles-Pérez

acting on doubly periodic functions (with the same period in t and x).
Loosely speaking, we understand that the operator Lλ has a maximum

principle if it satisfies the condition

Lλu = f, f ≥ 0 ⇒ u ≥ 0.

Also we can consider this principle as a positivity principle for the inverse
operator of Lλ.

It is interesting to begin with some easy examples in order to have an
idea about what to expect. First, what happens when we have no friction,
that is, when c = 0?

2.1 No maximum principle for c = 0

We consider the equation

Lλu = utt − uxx − λu = f.

If λ = 0, then we integrate over a fundamental region Ω and we have that∫
Ω

f = 0 is a necessary condition for existence of doubly periodic solutions.
But this is impossible if f ≥ 0. So there is no solution if f is positive.

If λ 6= 0 we can build a counter-example. Let λ < 0 be a fixed constant
(if λ > 0 then the reasoning is similar). We take u(t, x) = 1−cos t cos x (an
eigenfunction of the wave operator). Neither this function nor its image by
the operator Lλ changes sign. The minimum of u is equal to zero. So we
try to perturb it with another function w and a small parameter ε such
that the new function u∗ = u + εw changes sign but its image Lλu∗ does
not. In order to do this we can make an easy computation.

Well, we have no maximum principle when c = 0. Now what happens
when we have friction, that is, if c 6= 0?

2.2 Towards the maximum principle for c > 0

For c > 0 we are going to consider that u depends only on one variable, x
or t. If u = u(x) we have the second order operator

`λu = − d2u

dx2
− λu.

There is a classical maximum principle. Such a principle is

Maximum Principle for `λu ⇔ −λ > 0.

If u = u(t) we have the second order operator

Lλu =
d2u

dt2
+ c

du

dt
− λu.

Now we cannot apply classical tools. Some authors speak of an anti-maxi-
mum principle (see for instance [1]). In this case
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Maximum Principle for Lλu ⇔ 0 < −λ ≤ c2

4 + 1
4 .

Moreover if −λ > c2

4 + 1
4 , then we can find f positive such that u changes

sign.
With these results in mind, one could think that for the telegraph equa-

tion one should have

Maximum Principle for Lλ ⇔ 0 < −λ ≤ c2

4 + 1
4 ,

but this is not true. In fact, we are going to prove that there exists λ∗ such
that we have a maximum principle if and only if λ∗ ≤ λ < 0. Moreover
c2

4 < −λ∗ ≤ c2

4 + 1
4 and, in general, −λ∗ 6= c2

4 + 1
4 .

3 Concept of solution and regularity

Now we have an approximate idea about what we can get. Therefore we can
start with our study. But first we make an identification of spaces which
will be very useful.

We work with doubly periodic functions. So, if we know a function over
a fundamental domain ([0, 2π]× [0, 2π] for example) then we know it over
the whole plane by periodicity.

We define the torus T2 = (R/2πZ)× (R/2πZ). We project R2 onto T2:

Π : R2 −→ T2,
(x, y) 7−→ (x̄, ȳ),

x̄ = x + 2πZ,
ȳ = y + 2πZ.

In this way if we consider spaces on the torus, then we speak about functions
on the torus or doubly periodic functions on the plane.

R2 u doubly periodic−→ R
Π ↓ ↗ u

T2

For example we have Lp(T2), C(T2) (continuous functions), D(T2) =
C∞(T2) (test functions), D′(T2) (distributions), etc.

We are ready to give rigorous ideas. First the concept of a solution.
Consider the telegraph equation with f ∈ L1(T2),
{

Lλu(t, x) = utt(t, x)− uxx(t, x) + cut(t, x)− λu(t, x) = f(t, x),
u doubly periodic (same period in t and x). (3.1)

We say that u ∈ L1(T2) is a solution of (3.1) if and only if it verifies
∫

T2
u(L∗φ− λφ) =

∫

T2
fφ, ∀φ ∈ D(T2),
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where Lu = utt − uxx + cut and L∗ is the formal adjoint of L. Notice that
we consider a weak concept of a solution.

We can get as a first result the regularity of the solution.

Theorem 3.1. If λ is not a real eigenvalue of L, then (3.1) has a unique
solution. Moreover

1. if f ∈ L1(T2) then u is continuous;

2. if f ∈ Lp(T2) then u is α-Hölder continuous with α = 1− 1
p .

We want to comment on this last result. When we work with parabolic
equations we gain regularity, but for hyperbolic ones this is false in gen-
eral. However the doubly periodic solutions of the telegraph equation gain
regularity. In some sense we can consider that our problem is similar to
parabolic problems.

Before going any further, a brief remark about the spectrum of L. When
there is friction, L is not selfadjoint and it has a complex spectrum. But
we are interested only in real eigenvalues. So we are going to speak about
the real spectrum of L as the set of real eigenvalues.

In order to calculate it, with Fourier analysis we obtain

λnm = m2 − n2 + icn (m ∈ N, n ∈ Z). (3.2)

Observe that if c = 0 then L is selfadjoint. So we have only real eigenvalues.
We can explain this fact if we do “c → 0” in (3.2): the eigenvalues collapse
over the real axis. If λ = 0 we have an infinite-dimensional eigenspace and
if λ 6= 0 we have finite-dimensional eigenspaces.

4 Maximum principle

We use two definitions:

1. Lλ satisfies the maximum principle if

• λ 6∈ σR(L),

• f ∈ L1(T2), f ≥ 0 a.e. R2 ⇒ u(t, x) ≥ 0 ∀(t, x) ∈ R2.

2. Lλ satisfies the strong maximum principle if

• λ 6∈ σR(L),

• f ∈ L1(T2), f ≥ 0 a.e. R2,
∫
T2 f > 0 ⇒ u(t, x) > 0 ∀(t, x) ∈ R2.

Notice that u is continuous in both cases. So it is defined on the whole
plane.

We have the following result.
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Theorem 4.1. There exists a function

ν : (0,∞) → (0,∞), c 7→ ν(c)

such that Lλ satisfies the maximum principle if and only if

−λ ∈ (0, ν(c)].

Moreover the maximum principle is always strong and the function ν sat-
isfies

c2

4 < ν(c) ≤ c2

4 + 1
4 ,

ν(c) → 0 as c ↘ 0,

ν(c)− c2

4 → j2
0

8π2 as c ↗ +∞,

where j0 is the first positive zero of the Bessel function J0.

(Observe that j0 verifies that j2
0

8π2 < 1
4 ).

5 Proofs

Now we give a sketch of the proof. It is divided into three steps. In the first
and second steps we give the tools. In the third step we see the conclusions.

5.1 Step 1: Green’s function

Suppose that u is the solution of our problem. Then we have the integral
expression

u(t, x) = (G ∗ f)(t, x) =
∫

T2
G(t− τ, x− ξ)f(τ, ξ) dτ dξ.

That is, u is the convolution of G, the Green’s function, and f . Then it is
clear that we have characterizations for the maximum principle and for the
strong maximum principle, which are given in terms of the positivity of G.

Proposition 5.1. 1. The maximum principle holds if and only if G ≥ 0.
2. The strong maximum principle holds if and only if G > 0 almost every-
where.

So we must determine the sign of G. In order to do this, we calculate an
explicit expression of G. If we apply Fourier analysis, then

G(t, x) =
1

4π2

∞∑
m,n=−∞

1
m2 − n2 − λ + icn

ei(nt+mx).
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This expression is very useful for regularity results but it is not so useful
to determine the sign of G. We must take another way. Let us try with
fundamental solutions.

Consider d = −λ− c2

4 ≥ 0. Then the function U , given by

U(t, x) =





1
2e−

c
2 tJ0

(√
d(t2 − x2)

)
, |x| < t,

0 , otherwise

is the fundamental solution of Lλu = δ0 in D′(R2) (δ0 ∈ M(R2) such that
< φ, δ0 >= φ(0, 0), ∀φ ∈ D(R2)).

We are looking for periodic solutions. So we make copies of U , we trans-
late them and we add them. In this way we find the Green’s function for
our problem, arriving at the expression

G(t, x) =
∑

(n,m)∈Z2

U(t + 2πn, x + 2πm) in T2. (5.1)

This double sum converges and so G is well defined. Moreover, G is con-
tinuous except in the characteristic lines (the family of lines C = {x± t =
2πN, N ∈ Z}).

With the expression (5.1) of G, we can study the sign in a much better
way than with the previous Fourier series. There is one special case in which
we can improve the situation.

Indeed, if d = 0 then J0(0) = 1 and U and G have easy expressions. In
particular,

G(t, x) =





1
2

1+e−cπ

(1−e−cπ)2 e−
c
2 t, if (t, x) ∈ D10,

e−cπ

(1−e−cπ)2 e−
c
2 t, if (t, x) ∈ D01.

(We let Dij denote the connected component of D = R2−C with center at
the point (iπ, jπ), where i + j is an odd number).

With this explicit expression we easily deduce the following properties.

Proposition 5.2. 1. Jumps in discontinuities are known (and independent
of d).
2. G is analytic in D10 and D01.
3. G is not identically zero in D10 and D01.
4. Z = {(t, x) ∈ R2 / G(t, x) = 0} has measure zero. So whenever there is
a maximum principle it is strong.

All these properties can also be proved for d > 0.
We must point out that we can get G in another way. If we consider

λ = − c2

4 and make the change u = e−ct/2v, then we arrive at the wave
equation and we know its explicit solution (D’Alembert formula). Then we
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make the inverse change and we have an explicit integral expression of the
solution of the telegraph equation. Straightforward computations lead us
to G.

5.2 Step 2: Linear positive operators

In this step we are going to review some facts about linear positive oper-
ators. Let us consider a Banach space X and a closed cone C in X. Then
X is an ordered Banach space with the ordering

x, y ∈ X, x ≥ y ⇔ x− y ∈ C.

Given an operator A over X, we say that

• A is positive if A(C) ⊆ C,

• A is strongly positive if A(C− {0}) ⊆ C̊ (C̊ 6= ∅).

If A is compact and strongly positive, then we can apply Krein-Rutman’s
theory and we obtain the following result.

Theorem 5.3. There exists a unique positive λ0 which is the spectral ra-
dius of A and such that its eigenfunction u is strictly positive.

As a corollary we have a sufficient condition in order to find positive
solutions of certain linear equations.

Corollary 5.4. Consider the system

λϕ = Aϕ + f, f ≥ 0,

with A in the same conditions as before. If λ > λ0 = %(A), then there exists
a unique solution ϕ that is positive.

In order to apply all these results we use the notation X = C(T2), C =
{u ∈ X : u ≥ 0 in R2} and Aλ = L−1

λ (where λ is not a real eigenvalue of
L and λ is such that the strong maximum principle holds for Lλ).

5.3 Step 3: Conclusions

1. (a) For λ = −c2

4 , Lλ has a maximum principle (remember the case
d = 0).

(b) By the theory of linear positive operators, we know that if Lλ∗
satisfies a maximum principle, then Lλ satisfies a maximum prin-
ciple for each λ ∈ [λ∗, 0). So, taking λ∗ = − c2

4 , we have a maxi-
mum principle in [− c2

4 , 0).
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(c) If λ 6∈ σR(L) and Gλ ≥ δ > 0 (this is equivalent to ess infT2 Gλ >
0) then there exists ε0 such that Lλ+ε verifies the strong max-
imum principle if |ε| ≤ ε0. Since ess infT2 Gλ > 0 for λ = − c2

4 ,
then we have a maximum principle for some λ < −c2

4 .

(d) We define ν = − inf{λ ∈ (−∞, 0) : Lλ satisfies the maxi-
mum principle}. We can prove that this infimum is a minimum.
Moreover, we know that ν depends on c (ν = ν(c)) and that
ν(c) < c2+1

4 . So we have a maximum principle for Lλ when
λ ∈ [−ν, 0). We must remark that ess infT2 G = 0 for −ν(c).

2. In order to prove the asymptotic results:

(a) When c tends to zero we take λ̄ < 0 fixed and u∗(t, x) = 1 −
cos t cos x + εw(t, x) (remember that we have used this function
before). This function changes sign and f = (u∗)tt−(u∗)xx−λ̄u∗
is positive. If c is small, then g = Lλ̄u∗ = f + c(u∗)t is positive
too. Therefore the maximum principle does not hold for that λ̄.

(b) When c tends to infinity we use the estimates

|e c
2 tG(t, x)− 1

2
J0

(√
d(t2 − x2)

)
| ≤ k1e

−cπ if (t, x) ∈ D10,

|e c
2 (t+2π)G(t, x)− 1

2
{J0

(√
d[(t + 2π)2 − (x− 2π)2]

)

+J0

(√
d[(t + 2π)2 − x2]

)
}| ≤ k2e

−cπ if (t, x) ∈ D01.

And with this we finish the “proof”. We go on with the last part of this
note.

6 Upper and lower solutions

We return to the nonlinear equation

Lu = utt − uxx + cut = F (t, x, u) in D′(T2), (6.1)

where F : T2 ×R −→ R satisfies Carathéodory conditions. We say that u∗
is a lower solution if and only if

u∗ ∈ L∞(T2) and Lu∗ ≤ F (t, x, u∗) in D′(T2).

We say that u∗ is an upper solution if and only if it verifies the reversed
inequality. Again we are using this concept in a weak sense, but in this case
we must take positive test functions.

We have a result of classical style about the existence of solutions.
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Theorem 6.1. Let u∗, u∗ be upper and lower solutions of (6.1) satisfying

u∗ ≤ u∗ a.e. R2.

In addition, assume

F (t, x, u2)− F (t, x, u1) ≥ −ν(u2 − u1) (6.2)

for a.e. (t, x) ∈ R2 and every u1, u2, with

u∗(t, x) ≤ u1 ≤ u2 ≤ u∗(t, x).

(The constant ν = ν(c) was defined by Theorem 4.1). Then (6.1) has a
solution u ∈ C(T2) satisfying

u∗ ≤ u ≤ u∗ a.e. R2.

We use the method of upper and lower solutions but we must observe
two facts:

1. We want to apply the maximum principle. So we need that the asso-
ciated linear equation satisfies F (t, x, u) ≥ −ν(c). For this we impose
the condition (6.2).

2. In this case the upper and lower solutions are weak. So we need a
maximum principle for measures.

Lemma 6.2. If λ ∈ [−ν, 0) and Lλu ≥ 0 in D′(T2) for u ∈ L1(T2) then
u ≥ 0 a.e. in R2.

7 Applications to sine-Gordon equation

At last we will see two results for the sine-Gordon equation, one qualitative
and another one quantitative.

In the first one, we consider a free parameter s, but the mean value of f
is equal to zero,

utt − uxx + cut + a sin u = f(t, x) + s. (7.1)

The problem is equivalent to (1.1). Remember that f = f̃+f̄ with
∫
T2 f̃ = 0

and 1
4π2

∫
T2 f = f̄ .

Following Mawhin’s ideas in his result for the forced pendulum (see [2])
we have a necessary and sufficient condition for existence of solutions.

Theorem 7.1. If |a| ≤ ν(c), there exists an I ⊆ R nonempty closed inter-
val such that (7.1) has solutions if and only if s ∈ I.
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For the quantitative result we forget the parameter s and suppose that∫
T2 f = 0 :

utt − uxx + cut + a sin u = f(t, x). (7.2)

We need to solve the auxiliary problem

Lu = f(t, x),
∫

T2
u = 0 (with f ∈ L1(T2)).

For this problem we have that there exists a unique solution U ∈ C(T2).
Moreover if ‖U‖∞ ≤ π

2 , then u∗ = U − π
2 and u∗ = U + π

2 are lower and
upper solutions of (7.2).

Theorem 7.2. If ‖U‖∞ ≤ π
2 and 0 < a ≤ ν, then (7.2) has a doubly

periodic solution u such that ‖u− U‖∞ ≤ π
2 .
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