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Abstract. In order to collect common properties of several families of numerical semi-
groups, the concept of Frobenius pseudo-variety is introduced. Moreover, we study the
tree structure that arise with it.

1. Introduction: some results on numerical semigroups

Let Z and N be the sets of integers and non-negative integers, respectively. A submonoid
of N is a setM ⊆ N that contains the zero element and is closed under addition. A numerical
semigroup is a submonoid S of N such that N \ S is finite. Notable elements of a numerical
semigroup S are F(S) = max(Z \S) (Frobenius number of S), g(S) = ](N \S) (genus of S),
and m(S) = min(S \ {0}) (multiplicity of S). (As usual, ]A denotes the cardinality of A.)

Remark 1.1. The content of this section can be seen (or easily deduced from the results that
appear) in [4] and the references therein.

Given a non-empty set A ⊆ N, the submonoid Mof N generated by A is the set

〈A〉 = {λ1a1 + · · ·+ λnan | n ∈ N \ {0}, a1, . . . , an ∈ A, λ1, . . . , λn ∈ N}.
If this is the case, we say that A is a system of generators of M . Moreover, if M 6= 〈B〉 for
every B  A, then A is a minimal system of generators of M . It is well known that every
submonoid of N has a unique minimal system of generators, which in addition is finite. On
the other hand, 〈A〉 is a numerical semigroup if and only if gcd(A) = 1.

If X is the minimal system of generators of a numerical semigroup S, then e(S) = ]X
is the embedding dimension of S. It is easy to see that e(S) ≤ m(S). In particular, if
e(S) = m(S), then we say that S has maximal embedding dimension (see [5]).

It is well known that, if S, T are numerical semigroups (with S 6= N), then S ∪ {F(S)}
and S ∩ T are numerical semigroups too. Moreover, we have the following result.

Theorem 1.2. Let S, T be numerical semigroups and let A = {a1, . . . , an} be the minimal
system of generators of S. Then S = T ∪ {F(T )} if and only if T = S \ {ai}, where
ai is a minimal generator of S such that ai > F(S). Moreover, if this is the case, then
F(S) < F(T ) = ai and g(T ) = g(S) + 1.

A (directed) graph G is a pair (V,E), where V is a non-empty set and E is a subset of
{(v, w) ∈ V × V | v 6= w}. The elements of V are called vertices of G and the elements
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of E are called edges of G. A path (of length n) connecting the vertices x and y of G is a
sequence of different edges of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and
vn = y. A graph G is a tree if there exists a vertex r (known as the root of G) such that,
for every other vertex x of G, there exists a unique path connecting x and r. If (x, y) is an
edge of the tree, then we say that x is a child of y.

Let S be the set formed by all numerical semigroups. Theorem 1.2 allows us to build the
tree associated to S, which we denote by G(S). In this tree, the vertices are the elements of S
(that is, the numerical semigroups), (T, S) is an edge if S = T∪{F(T )}, and N is the root. On
the other hand, if S is a numerical semigroup, then the unique path connecting S with N is
given by (the chain of numerical semigroups associated to S) C(S) = {S0  S1  · · ·  Sn},
where S0 = S, Si+1 = Si ∪ {F(Si)}, for all i < n, and Sn = N.

The next result (see [4, Prop. 7.1]) follows from Theorem 1.2 and the previous paragraph.

Proposition 1.3. The graph G(S) is a tree with root equal to N. Moreover, the children of
S ∈ S are S \ {a1}, . . . , S \ {ar}, where a1, . . . , ar are the minimal generators of S that are
greater than F(S).

2. Frobenius varieties

For certain families of numerical semigroups we can observe a similar behaviour to that
described in the previous section. For example (see [4]), we have the family of Arf numerical
semigroups, the family of saturated numerical semigroups, the family of numerical semi-
groups having a Toms decomposition, and the family of numerical semigroups defined by a
strongly admissible linear homogeneous pattern. This observation led to introduce, in [3],
the concept of (Frobenius) variety.

Definition 2.1. A variety is a non-empty family V of numerical semigroups that fulfills the
following conditions,

(1) if S, T ∈ V, then S ∩ T ∈ V;
(2) if S ∈ V and S 6= N, then S ∪ {F(S)} ∈ V.

Since the intersection of varieties is another variety, we can define the variety generated
by a family of numerical semigroups F (denoted by F(F)) as the intersection of all varieties
containing F . Let us observe that F(F) is the smallest, with respect to the inclusion order,
variety containing F .

In [3] was shown that several facts, that hold for the above mentioned families (and,
as we have said before, that generalize the situation of Section 1), are also satisfied in
any variety. Nevertheless, there exist outstanding families that are not varieties, but that
preserve such behaviour. For example, the family of numerical semigroups with maximal
embedding dimension and multiplicity m is not a variety (see [5]), but satisfies several
properties of such families. In order to study this class of numerical semigroups, recently (see
[1]) have been introduced the non-homogeneous patterns and, moreover, have been defined
the non-homogeneous Frobenius varieties of multiplicity m (or m-varieties for short).

3. Frobenius pseudo-varieties

In order to study families of numerical semigroups that are not varieties, in [2] (see this
reference for a detailed development of this section), we introduced the next concept.
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Definition 3.1. A (Frobenius) pseudo-variety is a non-empty family P of numerical semi-
groups that fulfills the following conditions,

(1) P has a maximum element max(P) (with respect to the inclusion order);
(2) if S, T ∈ P, then S ∩ T ∈ P;
(3) if S ∈ P and S 6= max(P), then S ∪ {F(S)} ∈ P.

Remark 3.2. Observe that, in [1], the maximum element of an m-varietyM is the numerical
semigroup {0,m,→} = {0,m} ∪ {z ∈ N | z > m} and the multiplicity of all numerical
semigroups, that belong toM, is equal to m. We have removed these restrictions.

3.1. Pseudo-varieties and varieties. From the definitions, it is clear that every variety is
a pseudo-variety. However, there are pseudo-varieties that are not varieties. For example, if
S is a numerical semigroup different from N, then {S} is a pseudo-variety but not a variety.

It is clear that, if P is a pseudo-variety, then P is a variety if and only if N ∈ P.
Furthermore, if P is a family of numerical semigroups with maximum ∆, then P is a pseudo-
variety if and only if P ∪ C(∆) is a variety.

On the other hand, if P is a pseudo-variety and S ∈ P, then max(P) ∈ C(S). Moreover,
if S1, S2,∆ are numerical semigroups such that ∆ ∈ C(S1) ∩ C(S2), then ∆ ∈ C(S1 ∩ S2).

The previous comments allow us to establish the following result.

Theorem 3.3. Let V be a variety and let ∆ be a numerical semigroup such that ∆ ∈ V.
Then D(V,∆) = {S ∈ V | ∆ ∈ C(S)} is a pseudo-variety. Moreover, every pseudo-variety
can be obtained in this way.

Remark 3.4. If we take max(P) = N in Subsections 3.3 and 3.4, then we recover analogous
results for varieties that were shown in [3].

3.2. Examples of pseudo-varieties. Let m ∈ N \ {0}. Let S(m) be the set formed by all
numerical semigroups that have multiplicity m. It is clear that the family S(m) is a pseudo-
variety. In the same line, the family of all numerical semigroups with maximal embedding
dimension and multiplicity m is another pseudo-variety. We must observe that the family
of all numerical semigroups with maximal embedding dimension is not a pseudo-variety.

In general, the intersection of pseudo-varieties is not a pseudo-variety. For example, if
S1, S2 are different numerical semigroups, then P1 = {S1} and P2 = {S2} are pseudo-
varieties, but not P1 ∩ P2 = {∅}. In spite of all, we can define the pseudo-variety generated
by a family of numerical semigroups F (denoted by p(F)) as the intersection of all pseudo-
varieties containing F . In fact, p(F) is the intersection of all pseudo-varieties that contain
F and whose maximum is Θ(F), where Θ(F) is the numerical semigroup min

(⋂
S∈F C(S)

)
.

3.3. P-monoids. Let P be a pseudo-variety. We say that a submonoid M of N is a P-
monoid if it can be expressed as an intersection of elements of P. It is obvious that the
intersection of P-monoids is a P-monoid.

If A ⊆ max(P), we define the P-monoid generated by A, denoted by P(A), as the inter-
section of all the P-monoids containing A (or, equivalently, the intersection of all elements
of P containing A). We have that P(A) is the smallest (with respect to the inclusion order)
P-monoid containing A.

If M = P(A), then we say that A is a P-system of generators of M . In addition, if
M 6= P(B) for every B  A, then A is a minimal P-system of generators of M .
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Theorem 3.5. Every P-monoid has a unique minimal P-system of generators. Additionally,
such a P-system is finite.

3.4. The tree associated to a pseudo-variety. For a pseudo-variety P, we define the
graph G(P) in the following way,

• the set of vertices of G(P) is P;
• (S, S′) ∈ P × P is an edge of G(P) if and only if S′ = S ∪ {F(S)}.

If S ∈ P, then we can define recursively the sequence,
• S0 = S,
• if Si 6= max(P), then Si+1 = Si ∪ {F(Si)}.

We have that CP(S) = {S0  S1  · · ·  Sn} (where Sn = max(P)) is precisely the unique
path connecting S with max(P).

Observe that we can construct recursively G(P) from max(P). Indeed, it is sufficient to
know how to compute the children of each vertex S. Let T a child of S in G(P), that is,
S = T ∪{F(T )} or, equivalently, T = S \ {F(T )}. Thereby, there exists an integer x > F(S)
such that T = S \ {x}. On the other hand, if M is a P-monoid and x ∈ M , then M \ {x}
is a P-monoid if and only if x belongs to the minimal P-system of generators of M . Thus,
we can show the next result (that it is analogue to Proposition 1.3).

Theorem 3.6. The graph G(P) is a tree with root equal to max(P). Moreover, the children
of a vertex S ∈ P are S\{x1}, . . . , S\{xr}, where x1, . . . , xr are the elements of the minimal
P-system of generators of S that are greater than F(S).

Remark 3.7. Theorem 3.6 can be used to describe and enumerate the members of families of
numerical semigroups having certain properties (that lead to the pseudo-variety structure).
For example, we have that, if S′ is a child of S in G(P), then F(S′) > F(S) and g(S′) =
g(S) + 1. Therefore, we get numerical semigroups with greater Frobenius number and genus
when we go on along the branches of the tree. Thus, we can use this construction in order
to obtain all the numerical semigroups, in the pseudo-variety P, with a given Frobenius
number or genus.
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