Families of numerical semigroups: Frobenius pseudo-varieties and trees associated to them

Aureliano M. Robles-Pérez

Universidad de Granada

A talk based on a joint work with José Carlos Rosales

EACA 2014 - Barcelona
 June 18-20, 2014

Aim of this work

Purpose

- To define a structure that allows to build and to arrange the elements of certain families of numerical semigroups.

Procedure (Basic idea)

- To analyze the family of all numerical semigroups and other outstanding families of numerical semigroups.

Preliminaries

- $\mathbb{N}=\{0,1,2, \ldots\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$

Definition

- A submonoid of \mathbb{N} is a set $M \subseteq \mathbb{N}$ that contains the zero element and is closed under addition.
- A numerical semigroup is a submonoid S of \mathbb{N} such that $\mathbb{N} \backslash S$ is finite.
- $F(S)=\max (\mathbb{Z} \backslash S) \quad$ (Frobenius number)
- $\mathrm{g}(\mathrm{S})=\sharp(\mathbb{N} \backslash S) \quad$ (genus)
- $\mathrm{m}(S)=\min (S \backslash\{0\}) \quad$ (multiplicity)
- If $A \subseteq \mathbb{N}$ is a nonempty set,

$$
\langle A\rangle=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{1}, \ldots, a_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\} .
$$

- If $M=\langle A\rangle$, then A is a system of generators of M.
- In addition, if no proper subset of A generates M, then A is a minimal system of generators of M.

Lemma

- Every submonoid of \mathbb{N} admits a unique minimal system of generators, which in addition is finite.
- $S=\langle A\rangle$ is a numerical semigroup if and only if $\operatorname{gcd}\{A\}=1$.
- The cardinality of the minimal system of generators of S is called the embedding dimension of S and will be denoted by e(S).

Example

$$
S=\{0,5,7,9,10,12,14, \rightarrow\}=\{0,5,7,9,10,12\} \cup\{z \in \mathbb{Z} \mid z \geq 14\}
$$

- $\mathbb{N} \backslash S=\{1,2,3,4,6,8,11,13\}$.
- $F(S)=13$.
- $\mathrm{g}(\mathrm{S})=8$.
- $\mathrm{m}(S)=5$.
- $\langle 5,7,9\rangle$ is the minimal system of generators of S.
- $\mathrm{e}(S)=3$.

Results on numerical semigroups

Lemma

- If S, T are numerical semigroups (with $S \neq \mathbb{N}$), then $S \cup\{F(S)\}$ and $S \cap T$ are numerical semigroups too.

Theorem

- Let S, T be numerical semigroups and let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be the minimal system of generators of S.
Then $S=T \cup\{\mathrm{~F}(T)\}$ if and only if $T=S \backslash\left\{a_{i}\right\}$, where a_{i} is a minimal generator of S such that $a_{i}>F(S)$.
Moreover, if this is the case, then $\mathrm{F}(S)<\mathrm{F}(T)=a_{i}$ and $\mathrm{g}(T)=\mathrm{g}(S)+1$.

Example

$$
S_{1}=\{0,5,7,9,10,12,14, \rightarrow\}=\{0,5,7,9,10,12\} \cup\{z \in \mathbb{Z} \mid z \geq 14\}
$$

- $\langle 5,7,9\rangle$ is the minimal system of generators of S_{1}.
- $\mathrm{F}(S)=13$.
- There does not exist a numerical semigroup T such that $S_{1}=T \cup\{\mathrm{~F}(T)\}$.

Example

$$
S_{2}=\{0,3,5, \rightarrow\}=\{0,3\} \cup\{z \in \mathbb{Z} \mid z \geq 5\}
$$

- $\langle 3,5,7\rangle$ is the minimal system of generators of S_{2}.
- $F(S)=4$.
- There exist two numerical semigroups T such that $S_{2}=T \cup\{\mathrm{~F}(T)\}$.
- $T_{1}=\langle 3,5,7\rangle \backslash\{5\}=\{0,3,6, \rightarrow\}=\langle 3,7,8\rangle$.
- $T_{2}=\langle 3,5,7\rangle \backslash\{7\}=\{0,3,5,6,8, \rightarrow\}=\langle 3,5\rangle$.

The tree of the set of numerical semigroups

Definition

- Let \mathcal{S} be the set formed by all numerical semigroups. We denote by $\mathrm{G}(\mathcal{S})$ the tree associated to \mathcal{S}. In this tree,
- the vertices are the elements of \mathcal{S},
- (T, S) is an edge if $S=T \cup\{\mathrm{~F}(T)\}$,
- and \mathbb{N} is the root.

Proposition

- If S is a numerical semigroup, then the unique path connecting S with \mathbb{N} is given by $\mathrm{C}(S)=\left\{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{n}\right\}$ (the chain of numerical semigroups associated to S), where $S_{0}=S, S_{i+1}=S_{i} \cup\left\{F\left(S_{i}\right)\right\}$, for all $i<n$, and $S_{n}=\mathbb{N}$.

Proposition

- The children of $S \in S$ are $S \backslash\left\{a_{1}\right\}, \ldots, S \backslash\left\{a_{r}\right\}$, where a_{1}, \ldots, a_{r} are the minimal generators of S that are greater than $\mathrm{F}(S)$.

Example

- $\mathrm{C}(\langle 4,5,6,7\rangle)=\{\langle 4,5,6,7\rangle,\langle 3,4,5\rangle,\langle 2,3\rangle,\langle 1\rangle=\mathbb{N}\}$.

Example

- The first levels (with respect the genus) of $\mathrm{G}(\mathcal{S})$.

Observe that the vertex $\langle 3,4\rangle$ has not got children. We say that it is a leaf.

(Frobenius) varieties

Definition (Rosales, 2008)

- A variety is a non-empty family \mathcal{V} of numerical semigroups that fulfills the following conditions,
- if $S, T \in \mathcal{V}$, then $S \cap T \in \mathcal{V}$;
- if $S \in \mathcal{V}$ and $S \neq \mathbb{N}$, then $S \cup\{\mathrm{~F}(S)\} \in \mathcal{V}$.

Families that are varieties

- Arf numerical semigroups.
- Saturated numerical semigroups.
- Numerical semigroups having a Toms decomposition.
- Numerical semigroups defined by strongly admissible linear patterns.

Families that are not varieties

- Numerical semigroups with maximal embedding dimension and multiplicity m.
- Numerical semigroups defined by non-homogeneous patterns.

(Frobenius) pseudo-varieties

Definition (R.-P. and Rosales, 2013)

- A pseudo-variety is a non-empty family \mathcal{P} of numerical semigroups that fulfills the following conditions,
- \mathcal{P} has a maximum element $\max (\mathcal{P})$ (with respect to the inclusion order);
- if $S, T \in \mathcal{P}$, then $S \cap T \in \mathcal{P}$;
- if $S \in \mathcal{P}$ and $S \neq \max (\mathcal{P})$, then $S \cup\{F(S)\} \in \mathcal{P}$.

Remark

- If we take $\max (\mathcal{P})=\mathbb{N}$, then we recover known results for varieties.

Pseudo-varieties and varieties

Lemma

- If \mathcal{P} is a pseudo-variety, then \mathcal{P} is a variety if and only if $\mathbb{N} \in \mathcal{P}$.
- If \mathcal{P} is a family of numerical semigroups with maximum Δ, then \mathcal{P} is a pseudo-variety if and only if $\mathcal{P} \cup \mathrm{C}(\Delta)$ is a variety.

Lemma

- If \mathcal{P} is a pseudo-variety and $S \in \mathcal{P}$, then $\max (\mathcal{P}) \in \mathrm{C}(S)$.
- If S_{1}, S_{2}, Δ are numerical semigroups such that $\Delta \in \mathrm{C}\left(S_{1}\right) \cap \mathrm{C}\left(S_{2}\right)$, then $\Delta \in \mathrm{C}\left(S_{1} \cap S_{2}\right)$.

Theorem

- Let \mathcal{V} be a variety and let Δ be a numerical semigroup such that $\Delta \in \mathcal{V}$.

Then $\mathcal{D}(\mathcal{V}, \Delta)=\{S \in \mathcal{V} \mid \Delta \in \mathcal{C}(S)\}$ is a pseudo-variety.
Moreover, every pseudo-variety can be obtained in this way.

Examples of pseudo-varieties

Families that are pseudo-varieties

- Numerical semigroups that have multiplicity m.
- Numerical semigroups with maximal embedding dimension and multiplicity m.
- Numerical semigroups defined by a non-homogeneous pattern. (Bras-Amorós, García-Sánchez and Vico-Oton, 2013.)

Pseudo-variety $\mathfrak{p}(\mathcal{F})$ generated by a family of numerical semigroups \mathcal{F}

- Intersection of all pseudo-varieties containing \mathcal{F}.

Remark

- $\mathfrak{p}(\mathcal{F})$ is the intersection of all pseudo-varieties that contain \mathcal{F} and whose maximum is the numerical semigroup $\Theta(\mathcal{F})=\min \left(\bigcap_{s \in \mathcal{F}} \mathrm{C}(S)\right)$.

Family that is not pseudo-variety

- Numerical semigroups with maximal embedding dimension.

Example

- $\mathcal{F}=\left\{S_{1}=\langle 5,7,9\rangle, S_{2}=\langle 4,6,7\rangle\right\}$.
- $C\left(S_{1}\right)=\left\{S_{10}=\langle 5,7,9\rangle, S_{11}=\langle 5,7,9,13\rangle, S_{12}=\langle 5,7,9,11,13\rangle\right.$,

$$
\begin{aligned}
& S_{13}=\langle 5,7,8,9,11\rangle, S_{14}=\langle 5,6,7,8,9\rangle, S_{15}=\langle 4,5,6,7\rangle, \\
& \left.S_{16}=\langle 3,4,5\rangle, S_{17}=\langle 2,3\rangle, S_{18}=\langle 1\rangle=\mathbb{N}\right\}
\end{aligned}
$$

- $\mathrm{C}\left(S_{2}\right)=\left\{S_{20}=\langle 4,6,7\rangle, S_{21}=\langle 4,6,7,9\rangle, S_{22}=\langle 4,5,6,7\rangle, S_{23}=\langle 3,4,5\rangle\right.$, $\left.S_{24}=\langle 2,3\rangle, S_{25}=\langle 1\rangle=\mathbb{N}\right\}$.
- $\Theta(\mathcal{F})=\langle 4,5,6,7\rangle=S_{15}=S_{22}$.
- $\mathfrak{p}(\mathcal{F})=\left\{S_{10}, S_{11}, S_{12}, S_{13}, S_{14}, S_{15}=S_{22}, S_{21}, S_{20}, S_{14} \cap S_{21}, S_{14} \cap S_{20}\right.$, $S_{13} \cap S_{21}, S_{13} \cap S_{20}, S_{12} \cap S_{21}, S_{11} \cap S_{21}, S_{10} \cap S_{21}, S_{12} \cap S_{20}$, $\left.S_{11} \cap S_{20}, S_{10} \cap S_{20}\right\}$.

\mathcal{P}-monoids

Definition

- Let \mathcal{P} be a pseudo-variety. We say that a submonoid M of \mathbb{N} is a \mathcal{P}-monoid if it can be expressed as an intersection of elements of \mathcal{P}.
- If $A \subseteq \max (\mathcal{P})$, we define the \mathcal{P}-monoid generated by A, denoted by $\mathcal{P}(A)$, as the intersection of all the \mathcal{P}-monoids containing A (or, equivalently, the intersection of all elements of \mathcal{P} containing A).
- If $M=\mathcal{P}(A)$, then we say that A is a \mathcal{P}-system of generators of M.
- If $M \neq \mathcal{P}(B)$ for every $B \varsubsetneqq A$, then A is a minimal \mathcal{P}-system of generators of M.

Theorem

- Every \mathcal{P}-monoid has a unique minimal \mathcal{P}-system of generators. Additionally, such a \mathcal{P}-system is finite.

Example

- $\mathcal{F}=\left\{S_{1}=\langle 5,7,9\rangle, S_{2}=\langle 4,6,7\rangle\right\}$.
- $C\left(S_{1}\right)=\left\{S_{10}=\langle 5,7,9\rangle, S_{11}=\langle 5,7,9,13\rangle, S_{12}=\langle 5,7,9,11,13\rangle\right.$,

$$
\begin{aligned}
& S_{13}=\langle 5,7,8,9,11\rangle, S_{14}=\langle 5,6,7,8,9\rangle, S_{15}=\langle 4,5,6,7\rangle, \\
& \left.S_{16}=\langle 3,4,5\rangle, S_{17}=\langle 2,3\rangle, S_{18}=\langle 1\rangle=\mathbb{N}\right\} .
\end{aligned}
$$

- $\mathrm{C}\left(S_{2}\right)=\left\{S_{20}=\langle 4,6,7\rangle, S_{21}=\langle 4,6,7,9\rangle, S_{22}=\langle 4,5,6,7\rangle, S_{23}=\langle 3,4,5\rangle\right.$, $\left.S_{24}=\langle 2,3\rangle, S_{25}=\langle 1\rangle=\mathbb{N}\right\}$.
- $\Theta(\mathcal{F})=\langle 4,5,6,7\rangle=S_{15}=S_{22}$.
- $\mathcal{P}=\mathfrak{p}(\mathcal{F})=\left\{S_{10}=\langle 5\rangle_{\mathcal{P}}, S_{11}=\langle 5,13\rangle_{\mathcal{P}}, S_{12}=\langle 5,11\rangle_{\mathcal{P}}, S_{13}=\langle 5,8\rangle_{\mathcal{P}}\right.$, $S_{14}=\langle 5,6\rangle_{\mathcal{P}}, S_{15}=S_{22}=\langle 4,5\rangle_{\mathcal{P}}, S_{21}=\langle 4,9\rangle_{\mathcal{P}}, S_{20}=\langle 4\rangle_{\mathcal{P}}$, $S_{14} \cap S_{21}=\langle 6,9\rangle_{\mathcal{P}}, S_{14} \cap S_{20}=\langle 6\rangle_{\mathcal{P}}, S_{13} \cap S_{21}=\langle 8,9\rangle_{\mathcal{P}}$, $S_{13} \cap S_{20}=\langle 8\rangle_{\mathcal{p}}, S_{12} \cap S_{21}=\langle 9,11\rangle_{\mathcal{p}}, S_{11} \cap S_{21}=\langle 9,13\rangle_{\mathcal{p}}$, $S_{10} \cap S_{21}=\langle 9\rangle_{\mathcal{P}}, S_{12} \cap S_{20}=\langle 11\rangle_{\mathcal{P}}, S_{11} \cap S_{20}=\langle 13\rangle_{\mathcal{P}}$, $\left.S_{10} \cap S_{20}=\langle\emptyset\rangle_{\mathcal{P}}\right\}$.

Remark

- It would be interesting to arrange the elements of $\mathfrak{p}(\mathcal{F})$ in a nice way.

The tree associated to a pseudo-variety

Definition

- Let \mathcal{P} be a pseudo-variety with $\Delta=\max (\mathcal{P})$. We denote by $\mathrm{G}(\mathcal{P})$ the tree associated to \mathcal{P}. In this tree
- the vertices are the elements of \mathcal{P},
- (T, S) is an edge if $S=T \cup\{\mathrm{~F}(T)\}$,
- and Δ is the root.

Proposition

- If $S \in \mathcal{P}$, then the unique path connecting S with Δ is given by $\mathrm{C}_{\boldsymbol{p}}(S)=\left\{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{n}\right\}$, where $S_{0}=S, S_{i+1}=S_{i} \cup\left\{F\left(S_{i}\right)\right\}$, for all $i<n$, and $S_{n}=\Delta$.

Theorem

- The children of $S \in \mathcal{P}$ are $S \backslash\left\{x_{1}\right\}, \ldots, S \backslash\left\{x_{r}\right\}$, where x_{1}, \ldots, x_{r} are elements of the minimal \mathcal{P}-system of generators of S that are greater than $\mathrm{F}(S)$.

Example

$$
\begin{aligned}
& S_{13}=\langle 5,8\rangle_{\mathcal{P}} \quad S_{14} \cap S_{21}=\langle 6,9\rangle_{\mathcal{P}} \quad S_{20}=\langle 4,6\rangle_{\mathcal{P}}=\langle 4,5\rangle_{\mathcal{P}} \\
& S_{12}=\langle 5,11\rangle_{\mathcal{F}} \\
& S_{13} \cap S_{21}=\langle 8,9\rangle_{\mathcal{P}} \quad S_{14} \cap S_{20}=\langle 6\rangle_{\mathcal{P}} \\
& \uparrow \\
& S_{11}=\langle 5,13\rangle_{\mathcal{p}} \\
& \begin{array}{c}
S_{12} \cap S_{21}=\langle 9,11\rangle_{\mathcal{P}} \quad S_{13} \cap S_{20}=\langle 8\rangle_{\mathcal{P}} \\
S_{10} \cap S_{21}=\langle 9,13\rangle_{\mathcal{P}} \quad S_{12} \cap S_{20}=\langle 11\rangle_{\mathcal{P}} \\
S_{21}=\langle 9\rangle_{\mathcal{P}} \quad \\
S_{11} \cap S_{20}=\langle 13\rangle_{\mathcal{P}} \\
S_{10} \cap S_{20}=\langle\emptyset\rangle_{\mathcal{P}}
\end{array} \\
& S_{10} \xlongequal{\uparrow}\langle 5\rangle_{\mathcal{P}}
\end{aligned}
$$

A related question

Problem

- Can we determine automatically the elements of the minimal \mathcal{P}-system of generators of S that are greater than $\mathrm{F}(S)$?

Answers (Some answers)

- Finitely generated pseudo-variety: pseudo-variety $\mathfrak{p}(\mathcal{F})$ generated by a finite family of numerical semigroups \mathcal{F} (equivalently, pseudo-variety which is finite).
- Family of numerical semigroups defined by non-homogeneous patterns.

Finitely generated pseudo-variety

Proposition

- Let \mathcal{F} be a non-empty finite family of numerical semigroups, $\mathcal{P}=\mathfrak{p}(\mathcal{F})$, and $A \subseteq \max (\mathcal{P})$.
For each $S \in \mathcal{F}$ such that $A \nsubseteq S$, let $x_{S}=\min \{a \in A \mid a \notin S\}$.
Then $B=\left\{x_{S} \mid S \in \mathcal{F}\right.$ and $\left.A \nsubseteq S\right\}$ is the minimal \mathcal{P}-system of generators of $\mathcal{P}(A)$.

Example

- $\mathcal{F}=\left\{S_{1}=\langle 5,7,9\rangle, S_{2}=\langle 4,6,7\rangle\right\}$.
- $S=S_{11} \cap S_{21}=\langle 7,9,10,12,13,15\rangle, A=\{7,9,10,12,13,15\}, F(S)=11$.
- $x_{S_{1}}=\min \left\{a \in A \mid a \notin S_{1}\right\}=13$.
- $x_{S_{2}}=\min \left\{a \in A \mid a \notin S_{2}\right\}=9$.
- $S=S_{12} \cap S_{21}=\langle 9,13\rangle_{\mathcal{p}}$.
- 13 is the unique minimal \mathcal{P}-generator of S greater than $\mathrm{F}(S)$.

Variety defined by non-homogeneous patterns

Definition (R.-P. and Rosales, preprint)

- We say that a numerical semigroup S is a numerical \mathcal{A}-semigroup if $\{x+y-1, x+y+1\} \subseteq S$, for all $x, y \in S \backslash\{0\}$.
(Bras-Amorós, Stokes, 2012. Bras-Amorós, García-Sánchez, Vico-Oton, 2013. Stokes, Bras-Amorós, 2014.)

Proposition

- Let S be a numerical \mathcal{A}-semigroup such that $S \neq \mathbb{N}$, and let $x \in \operatorname{msg}(S)$. Then $S \backslash\{x\}$ is a numerical \mathcal{A}-semigroup if and only if $\{x-1, x+1\} \subseteq$ $\{0\} \cup(\mathbb{N} \backslash S) \cup \operatorname{msg}(S)$.
$(\mathrm{msg}(S)$ is the minimal system fo generators of S.)

Example

- $S=\langle 5,7,8,9,11\rangle, F(S)=6$.
- $S \backslash\{5\}, S \backslash\{7\}, S \backslash\{8\}$ are numerical \mathcal{A}-semigroups.
- In the tree associated to the variety of numerical \mathcal{A}-semigroups, $S \backslash\{7\}$ and $S \backslash\{8\}$ are the children of S.

References

M. Bras-Amorós, P. A. García-Sánchez, A. Vico-Oton.

Nonhomogeneous patterns on numerical semigroups.
Int. J. Algebra Comput. 23 (2013), 1469-1483.
M. Bras-Amorós, K. Stokes.

The semigroup of combinatorial configurations.
Semigroup Forum 84 (2012), 91-96.
J. C. Rosales.

Families of numerical semigroups closed under finite intersections and for the Frobenius number.
Houston J. Math. 34 (2008), 339-348.
J. C. Rosales and P. A. García-Sánchez.

Numerical semigroups, Developments in Mathematics, vol. 20.
Springer, New York, 2009.
K. Stokes, M. Bras-Amorós.

Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations.
Semigroup Forum 88 (2014), 11-20.

A. M. Robles-Pérez and J. C. Rosales.

Frobenius pseudo-varieties in numerical semigroups.
Ann. Mat. Pura Appl. (2013) (Online First Articles, doi:10.1007/s10231-013-0375-1).

A. M. Robles-Pérez and J. C. Rosales.

Numerical semigroups in a problem about transport with benefits.

Preprint.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

