PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITIES WHICH ARE MODULAR

AURELIANO M. ROBLES-PÉREZ AND JOSÉ CARLOS ROSALES

ABSTRACT. Let S(a, b, c) be the set of integer solutions of an expression of the form $ax \mod b \leq cx$. We want to determine the conditions for which there exists another expression of the form $a^*x \mod b^* \leq x$ such that $S(a^*, b^*, 1) = S(a, b, c)$, and, in the affirmative case, compute algorithmically a^* and b^* .

INTRODUCTION

Let m, n be integers such that $n \neq 0$. We denote by $m \mod n$ the remainder of the division of m by n. Following the notation of [7], we say that a *proportionally modular Diophantine inequality* is an expression of the form $ax \mod b \leq cx$, where a, b, c are positive integers.

Let S(a, b, c) be the set of integer solutions of $ax \mod b \leq cx$. It is easy to see that $S(a, b, c) = S(a \mod b, b, c)$. Moreover, if $a \leq c$, then $S(a, b, c) = \mathbb{N}$. Therefore, we can focus our attention to the case 0 < c < a < b.

A modular Diophantine inequality (see [8]) is an expression of the form $ax \mod b \leq x$, where a, b are positive integers such that 1 < a < b. Obviously, a modular Diophantine inequality is a proportionally modular Diophantine inequality. A natural question is on the truth of the reciprocal assertion in the following sense: if a, b, c are given, do there exist a^*, b^* such that $S(a, b, c) = S(a^*, b^*, 1)$? We will answer in a particular case (see [4]).

1. NUMERICAL SEMIGROUPS AND DIOPHANTINE INEQUALITIES

A numerical semigroup is a subset S of \mathbb{N} (set of nonnegative integers) such that it is closed under addition, $0 \in S$ and $\mathbb{N} \setminus S$ is finite. It is well known (see [6]) that every numerical semigroup admits a unique set $X = \{n_1, n_2, \ldots, n_e\} \subseteq S$ such that $S = \langle X \rangle =$ $\{\lambda_1 n_1 + \lambda_2 n_2 + \ldots + \lambda_e n_e \mid \lambda_1, \ldots, \lambda_n \in \mathbb{N}\}$. We say that X is the minimal system of generators of S. If $n_1 < n_2 < \ldots < n_e$, then n_1, n_2 are known as the multiplicity and the ratio of S, and e = e(S) is the embedding dimension of S.

In [7] it is proved that S(a, b, c) is a numerical semigroup. Such type of numerical semigroups are called *proportionally modular numerical semigroups* (PM-semigroups). If c = 1, then we have the *modular numerical semigroups* (M-semigroups). Thus, every M-semigroup is a PM-semigroup, but the reciprocal statement is not true (see [7, Example 26]).

It is interesting to remark that proportionally modular numerical semigroups are tightly related to problems in classification theory of C^* -algebras via K_0 -groups (see [10]). In particular, in [5] it is shown that a semigroup having a Toms' decomposition is a finite

Both authors were supported by MTM2007-62346, MEC (Spain), and FEDER funds.

intersection of PM-semigroups. More in general, numerical semigroups have applications to Algebraic Geometry (see [1]).

As a consequence of [9, Theorem 31] (see its proof and [9, Corollary 18]) we have a characterization for PM-semigroups in terms of the minimal system of generators: a numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement n_1, n_2, \ldots, n_e of its set of minimal generators that satisfies the following conditions,

- (1) $gcd\{n_i, n_{i+1}\} = 1$ for all $i \in \{1, \dots, e-1\}$; (2) $(n_{i-1} + n_{i+1}) \equiv 0 \mod n_i$ for all $i \in \{2, \dots, e-1\}$.

Let us observe that it is easy to determine whether or not a numerical semigroup is a PMsemigroup via the previous characterization. However, this question is more complicated for M-semigroups. In [8] there is an algorithm to give the answer to this problem, but we have not got a good characterization for M-semigroups.

As a first step to give such a characterization, and therefore an answer to the original question of this work, our aim will be to show the explicit descriptions of all the M-semigroups with embedding dimension equal to three. In order to do it, we consider two ideas: the relation between PM-semigroups and numerical semigroups associated with an interval (see [7]) on the one side, and the description of a PM-semigroup with embedding dimension equal to three when we fix the multiplicity and the ratio on the other side.

2. Preliminaries

Let α, β be two positive rational numbers with $\alpha < \beta$ and let T be the submonoid of $(\mathbb{Q}_0^+, +)$ generated by the interval $[\alpha, \beta]$. In [7] it is shown that $T \cap \mathbb{N}$ is a PM-semigroup and that every PM-semigroup is of this form. We will be denote $T \cap \mathbb{N} = S([\alpha, \beta])$.

Lemma 2.1. [7, Corollary 9]

(1) Let a, b, c be positive integers such that c < a < b. Then $S(a, b, c) = S\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right)$. (2) Let a_1, a_2, b_1, b_2 be positive integers such that $1 < \frac{b_1}{a_1} < \frac{b_2}{a_2}$. Then $S\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right) =$ $S(a_1b_2, b_1b_2, a_1b_2 - a_2b_1).$

If $a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_p$ are positive integers such that $a_i b_{i+1} - a_{i+1} b_i = 1$ for all $i \in \{1, 2, \dots, p-1\}$, then the sequence of rational numbers $\frac{b_1}{a_1} < \frac{b_2}{a_2} < \dots < \frac{b_p}{a_p}$ is a *Bézout* sequence. The fractions $\frac{b_1}{a_1}$ and $\frac{b_p}{a_p}$ are the ends of the sequence. We say that a Bézout sequence is proper if $a_i b_{i+h} - a_{i+h} b_i \ge 2$ for all $h \ge 2$ such that $i, i+h \in \{1, 2, \ldots, p\}$. On the other hand, we will say that two fractions $\frac{b_1}{a_1} < \frac{b_2}{a_2}$ are adjacent if

$$\frac{b_2}{a_2+1} < \frac{b_1}{a_1}$$
, and either $a_1 = 1$ or $\frac{b_2}{a_2} < \frac{b_1}{a_1-1}$

We note that an useful tool for computing Bézout sequences is the Stern-Brocot tree (see [2, 3]).

Lemma 2.2. [9, Theorem 20, Theorem 23]

(1) Let $\frac{b_1}{a_1} < \frac{b_2}{a_2} < \ldots < \frac{b_p}{a_p}$ be a proper Bézout sequence with adjacent ends. Then $\{b_1, b_2, \ldots, b_p\}$ is the minimal system of generators of $S\left(\left\lceil \frac{b_1}{a_1}, \frac{b_p}{a_p}\right\rceil\right)$.

- (2) Let S be a PM-semigroup with $e(S) = p \ge 2$. Then there exist an arrangement of the set of minimal generators of S, n_1, \ldots, n_p , and positive integers a_1, \ldots, a_p such that $\frac{n_1}{a_1} < \frac{n_2}{a_2} < \ldots < \frac{n_p}{a_n}$ is a proper Bézout sequence with adjacent ends.
 - 3. All M-semigroups with embedding dimension equal to three

Firstly, we give two families of M-semigroups with embedding dimension equal to three.

Proposition 3.1. (1) Let λ, d, d' be integers greater than one such that $gcd\{d, d'\} = gcd\{\lambda, d+d'\} = 1$. Then $S = \langle \lambda d, d+d', \lambda d' \rangle$ is an M-semigroup with e(S) = 3.

(2) Let m_1, m_2 be positive integers such that $gcd\{m_1, m_2\} = 1$. Let q be a divisor of $gcd\{m_2-1, m_1+m_2\}$ such that $2 \le q < \min\{m_1, m_2\}$. Then $S = \langle m_1, \frac{m_1+m_2}{q}, m_2 \rangle$ is an M-semigroup with e(S) = 3.

Secondly, we show that every M-semigroup with embedding dimension equal to three belongs to one of the families described in the previous proposition.

Proposition 3.2. Let $S = S\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that e(S) = 3. Let us have $gcd\{a, b\} = d$ and $gcd\{a - 1, b\} = d'$.

- (1) If $d \neq 1$ and $d' \neq 1$, then there exists an integer λ greater than one such that $gcd\{d, d'\} = gcd\{\lambda, d+d'\} = 1$ and $S = \langle \lambda d, d+d', \lambda d' \rangle$.
- (2) If d = 1 and/or d' = 1, then there exist three positive integers m_1, m_2, q such that $gcd\{m_1, m_2\} = 1$, q is a divisor of $gcd\{m_2 1, m_1 + m_2\}$, $2 \le q < \min\{m_1, m_2\}$, and $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$.

Finally, we summarize both results in the next theorem.

Theorem 3.3. S is an M-semigroup with e(S) = 3 if and only if

- (T1) $S = \langle \lambda d, d+d', \lambda d' \rangle$, where λ, d, d' are integers greater than one such that $gcd\{d, d'\} = gcd\{\lambda, d+d'\} = 1$,
- (T2) $or S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$, where m_1, m_2, q are positive integers such that $gcd\{m_1, m_2\} = 1$, q is a divisor of $gcd\{m_2 1, m_1 + m_2\}$, and $2 \le q < \min\{m_1, m_2\}$.

4. Multiplicity and ratio fixed

Let $\{n_1, n_2, n_3\}$ be the minimal system of generators of a numerical semigroup S. Let us suppose that $n_1 < n_2 < n_3$. The aim of this section is to describe all M-semigroups with embedding dimension equal to three when we fix the multiplicity and the ratio of S, this is, when n_1 and n_2 are fixed. We use the following sets,

* $A(n_1) = \{2, \dots, n_1 - 1\};$ * $A(n_1, n_2) = \left\{ \left\lceil \frac{2n_2}{n_1} \right\rceil, \dots, n_2 - 1 \right\}, \text{ where } \left\lceil \frac{2n_2}{n_1} \right\rceil = \min\{z \in \mathbb{Z} \mid q \le z\};$ * $D(n) = \{k \in \mathbb{N} \text{ such that } k \mid n\}.$

Theorem 4.1. Let n_1, n_2, n_3 be integers such that $3 \le n_1 < n_2 < n_3$, $gcd\{n_1, n_2\} = 1$, and $n_3 \notin \langle n_1, n_2 \rangle$. Then $S = \langle n_1, n_2, n_3 \rangle$ is an M-semigroup if and only if n_3 belongs to

- (1) $B_1 = \{kn_2 n_1 \mid k \in A(n_1) \cap [D(n_1 1) \cup D(n_1) \cup D(n_1 + 1)]\}$
- (2) or $B_2 = \{tn_1 n_2 \mid t \in A(n_1, n_2) \cap [D(n_2 1) \cup D(n_2) \cup D(n_2 + 1)]\}.$

Moreover,

(1) S is (T1) if and only if $k \in D(n_1)$ or $t \in D(n_2)$.

(2) S is (T2) if and only if $k \in D(n_1 - 1) \cup D(n_1 + 1)$ or $t \in D(n_2 - 1) \cup D(n_2 + 1)$.

5. Conclusion

Let S = S(a, b, c) be the set of solutions of $ax \mod b \leq cx$, where a, b, c are positive integers such that c < a < b. By Lemma 2.1, $S = S\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right)$. If e(S) = 3, applying Lemma 2.2, $S = \langle n_1, n_2, n_3 \rangle$. From Theorem 4.1, we can determine if S is an M-semigroup. Finally, since the proofs of the results in Section 3 are constructive, we find a^*, b^* such that $S = S(a^*, b^*, 1)$.

At this point, the proposed problem is partially solved. In order to give the complete answer, we need to remove the condition e(S) = 3 in Sections 3 and 4. In fact, we believe that the key is to show a general characterization for M-semigroups.

Let us have S with minimal system of generators n_1, n_2, \ldots, n_e which are arranged according the characterization of PM-semigroups. Then $n_{i+1} = k_i n_i - n_{i-1}$, $2 \le i \le e - 1$. If we replace n_3 in n_4 , (n_3, n_4) in n_5 , and so on, we have $n_e = \alpha_e n_2 - \beta_e n_1$. Thus, we finish with the following statement.

Conjecture. S is an M-semigroup if and only if $\alpha_e \in D(n_1 - 1) \cup D(n_1) \cup D(\beta_e n_1 + 1)$.

References

- V. Barucci, D.E. Dobbs, and M. Fontana, "Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains", Memoirs of the Amer. Math. Soc. 598, 1997.
- [2] M. Bullejos and J.C. Rosales, Proportionally modular Diophantine inequalities and the Stern-Brocot tree, *Mathematics of Computation*, Vol. 78, 1211–1226, 2009.
- [3] R. Graham, D. Knuth and O. Patashnik, "Concrete Mathematics, 2nd edition", Addison-Wesley, 1994.
- [4] A.M. Robles-Pérez and J.C. Rosales, Modular numerical semigroups with embedding dimension equal to three, to appear in *Illinois Journal of Mathematics*.
- [5] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups having a Toms decomposition, Canad. Math. Bull., Vol. 51, 134–139, 2008.
- [6] J.C. Rosales and P.A. García-Sánchez, "Numerical semigroups", Developments in Mathematics, vol. 20, Springer, 2009.
- [7] J.C. Rosales, P.A. García-Sánchez, J.I. García-García, and J.M. Urbano-Blanco, Proportionally modular Diophantine inequalities, J. Number Theory, Vol. 103, 281–294, 2003.
- [8] J.C. Rosales, P.A. García-Sánchez, and J.M. Urbano-Blanco, Modular Diophantine inequalities and numerical semigroups, *Pacific J. Math.*, Vol. 218, 379–398, 2005.
- [9] J.C. Rosales, P.A. García-Sánchez, and J.M. Urbano-Blanco, The set of solutions of a proportionally modular Diophantine inequality, J. Number Theory, Vol. 128, 453–467, 2008.
- [10] A. Toms, Strongly perforated K₀-groups of simple C*-algebras, Canad. Math. Bull., Vol. 46, 457–472, 2003.

A.M. Robles-Pérez, Department of Applied Mathematics, University of Granada E-mail address: arobles@ugr.es

J.C. Rosales, Department of Algebra, University of Granada *E-mail address*: jrosales@ugr.es