PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITIES WHICH ARE MODULAR

AURELIANO M. ROBLES-PÉREZ AND JOSÉ CARLOS ROSALES

Abstract. Let $S(a, b, c)$ be the set of integer solutions of an expression of the form $ax \mod b \leq cx$. We want to determine the conditions for which there exists another expression of the form $a^*x \mod b^* \leq x$ such that $S(a^*, b^*, 1) = S(a, b, c)$, and, in the affirmative case, compute algorithmically a^* and b^*.

Introduction

Let m, n be integers such that $n \neq 0$. We denote by $m \mod n$ the remainder of the division of m by n. Following the notation of [7], we say that a proportionally modular Diophantine inequality is an expression of the form $ax \mod b \leq cx$, where a, b, c are positive integers.

Let $S(a, b, c)$ be the set of integer solutions of $ax \mod b \leq cx$. It is easy to see that $S(a, b, c) = S(a \mod b, b, c)$. Moreover, if $a \leq c$, then $S(a, b, c) = \mathbb{N}$. Therefore, we can focus our attention to the case $0 < c < a < b$.

A modular Diophantine inequality (see [8]) is an expression of the form $ax \mod b \leq x$, where a, b are positive integers such that $1 < a < b$. Obviously, a modular Diophantine inequality is a proportionally modular Diophantine inequality. A natural question is on the truth of the reciprocal assertion in the following sense: if a, b, c are given, do there exist a^*, b^* such that $S(a, b, c) = S(a^*, b^*, 1)$? We will answer in a particular case (see [4]).

1. Numerical semigroups and Diophantine inequalities

A numerical semigroup is a subset S of \mathbb{N} (set of nonnegative integers) such that it is closed under addition, $0 \in S$ and $\mathbb{N} \setminus S$ is finite. It is well known (see [6]) that every numerical semigroup admits a unique set $X = \{n_1, n_2, \ldots, n_e\} \subseteq S$ such that $S = \langle X \rangle = \{\lambda_1n_1 + \lambda_2n_2 + \ldots + \lambda_en_e \mid \lambda_1, \ldots, \lambda_n \in \mathbb{N}\}$. We say that X is the minimal system of generators of S. If $n_1 < n_2 < \ldots < n_e$, then n_1, n_2 are known as the multiplicity and the ratio of S, and $e = e(S)$ is the embedding dimension of S.

In [7] it is proved that $S(a, b, c)$ is a numerical semigroup. Such type of numerical semigroups are called proportionally modular numerical semigroups (PM-semigroups). If $c = 1$, then we have the modular numerical semigroups (M-semigroups). Thus, every M-semigroup is a PM-semigroup, but the reciprocal statement is not true (see [7, Example 26]).

It is interesting to remark that proportionally modular numerical semigroups are tightly related to problems in classification theory of C^\ast-algebras via K_0-groups (see [10]). In particular, in [5] it is shown that a semigroup having a Toms’ decomposition is a finite

Both authors were supported by MTM2007-62346, MEC (Spain), and FEDER funds.
intersection of PM-semigroups. More in general, numerical semigroups have applications to Algebraic Geometry (see [1]).

As a consequence of [9, Theorem 31] (see its proof and [9, Corollary 18]) we have a characterization for PM-semigroups in terms of the minimal system of generators: a numerical semigroup \(S \) is a PM-semigroup if and only if there exists a convex arrangement \(n_1, n_2, \ldots, n_e \) of its set of minimal generators that satisfies the following conditions,

\[
\begin{align*}
(1) \quad & \gcd\{n_i, n_{i+1}\} = 1 \quad \text{for all} \quad i \in \{1, \ldots, e-1\}; \\
(2) \quad & (n_{i-1} + n_{i+1}) \equiv 0 \mod n_i \quad \text{for all} \quad i \in \{2, \ldots, e-1\}.
\end{align*}
\]

Let us observe that it is easy to determine whether or not a numerical semigroup is a PM-semigroup.

As a first step to give such a characterization, and therefore an answer to the original question of this work, our aim will be to show the explicit descriptions of all the \(M \)-semigroups. In [8] there is an algorithm to give the answer to this problem, but we have not got a good characterization for \(M \)-semigroups.

As a first step to give such a characterization, and therefore an answer to the original question of this work, our aim will be to show the explicit descriptions of all the \(M \)-semigroups with embedding dimension equal to three. In order to do it, we consider two ideas: the relation between PM-semigroups and numerical semigroups associated with an interval (see [7]) on the one side, and the description of a PM-semigroup with embedding dimension equal to three when we fix the multiplicity and the ratio on the other side.

2. Preliminaries

Let \(\alpha, \beta \) be two positive rational numbers with \(\alpha < \beta \) and let \(T \) be the submonoid of \((\mathbb{Q}_0^+, +) \) generated by the interval \([\alpha, \beta]\). In [7] it is shown that \(T \cap \mathbb{N} \) is a PM-semigroup and that every PM-semigroup is of this form. We will denote \(T \cap \mathbb{N} = S([\alpha, \beta]) \).

Lemma 2.1. [7, Corollary 9]

1. Let \(a, b, c \) be positive integers such that \(c < a < b \). Then \(S(a, b, c) = S\left(\frac{b}{a_1}, \frac{b}{a_2}\right) \).

2. Let \(a_1, a_2, b_1, b_2 \) be positive integers such that \(1 < \frac{b_1}{a_1} < \frac{b_2}{a_2} \). Then \(S\left(\frac{b_1}{a_1}, \frac{b_2}{a_2}\right) = S(a_1b_2, b_1b_2, a_1b_2 - a_2b_1) \).

If \(a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_p \) are positive integers such that \(a_ib_{i+1} - a_{i+1}b_i = 1 \) for all \(i \in \{1, 2, \ldots, p-1\} \), then the sequence of rational numbers \(\frac{b_1}{a_1} < \frac{b_2}{a_2} < \ldots < \frac{b_p}{a_p} \) is a Bézout sequence. The fractions \(\frac{b_1}{a_1} \) and \(\frac{b_p}{a_p} \) are the ends of the sequence. We say that a Bézout sequence is proper if \(a_ib_{i+h} - a_{i+h}b_i \geq 2 \) for all \(h \geq 2 \) such that \(i, i+h \in \{1, 2, \ldots, p\} \). On the other hand, we will say that two fractions \(\frac{b_1}{a_1} < \frac{b_2}{a_2} \) are adjacent if

\[
\frac{b_2}{a_2+1} < \frac{b_1}{a_1}, \quad \text{and either} \quad a_1 = 1 \quad \text{or} \quad \frac{b_2}{a_2} < \frac{b_1}{a_1-1}.
\]

We note that an useful tool for computing Bézout sequences is the Stern-Brocot tree (see [2, 3]).

Lemma 2.2. [9, Theorem 20, Theorem 23]

1. Let \(\frac{b_1}{a_1} < \frac{b_2}{a_2} < \ldots < \frac{b_p}{a_p} \) be a proper Bézout sequence with adjacent ends. Then \(\{b_1, b_2, \ldots, b_p\} \) is the minimal system of generators of \(S\left(\frac{b_1}{a_1}, \frac{b_p}{a_p}\right) \),
(2) Let S be a PM-semigroup with $e(S) = p \geq 2$. Then there exist an arrangement of the set of minimal generators of S, n_1, \ldots, n_p, and positive integers a_1, \ldots, a_p such that $\frac{n_1}{a_1} < \frac{n_2}{a_2} < \ldots < \frac{n_p}{a_p}$ is a proper Bézout sequence with adjacent ends.

3. ALL M-SEMIGROUPS WITH EMBEDDING DIMENSION EQUAL TO THREE

Firstly, we give two families of M-semigroups with embedding dimension equal to three.

Proposition 3.1.

1. Let λ, d, d' be integers greater than one such that $\gcd(d, d') = 1$. Then $S = \langle \lambda d, d + d', \lambda d' \rangle$ is an M-semigroup with $e(S) = 3$.
2. Let m_1, m_2 be positive integers such that $\gcd\{m_1, m_2\} = 1$. Let q be a divisor of $\gcd\{m_2 - 1, m_1 + m_2\}$ such that $2 \leq q < \min\{m_1, m_2\}$. Then $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$ is an M-semigroup with $e(S) = 3$.

Secondly, we show that every M-semigroup with embedding dimension equal to three belongs to one of the families described in the previous proposition.

Proposition 3.2. Let $S = S\left(\left[\frac{b}{a}, \frac{b}{a-1} \right] \right)$ be a numerical semigroup such that $e(S) = 3$. Let us have $\gcd\{a, b\} = d$ and $\gcd\{a-1, b\} = d'$.

1. If $d \neq 1$ and $d' \neq 1$, then there exists an integer λ greater than one such that $\gcd\{d, d'\} = \gcd\{\lambda, d + d'\} = 1$ and $S = \langle \lambda d, d + d', \lambda d' \rangle$.
2. If $d = 1$ and/or $d' = 1$, then there exist three positive integers m_1, m_2, q such that $\gcd\{m_1, m_2\} = 1$, q is a divisor of $\gcd\{m_2 - 1, m_1 + m_2\}$, $2 \leq q < \min\{m_1, m_2\}$, and $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$.

Finally, we summarize both results in the next theorem.

Theorem 3.3. S is an M-semigroup with $e(S) = 3$ if and only if

(T1) $S = \langle \lambda d, d + d', \lambda d' \rangle$, where λ, d, d' are integers greater than one such that $\gcd\{d, d'\} = \gcd\{\lambda, d + d'\} = 1$,

(T2) $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$, where m_1, m_2, q are positive integers such that $\gcd\{m_1, m_2\} = 1$, q is a divisor of $\gcd\{m_2 - 1, m_1 + m_2\}$, and $2 \leq q < \min\{m_1, m_2\}$.

4. MULTIPPLICITY AND RATIO FIXED

Let $\{n_1, n_2, n_3\}$ be the minimal system of generators of a numerical semigroup S. Let us suppose that $n_1 < n_2 < n_3$. The aim of this section is to describe all M-semigroups with embedding dimension equal to three when we fix the multiplicity and the ratio of S, this is, when n_1 and n_2 are fixed. We use the following sets,

* $A(n_1) = \{2, \ldots, n_1 - 1\}$;
* $A(n_1, n_2) = \left\{ \left[\frac{2n_2}{n_1} \right], \ldots, n_2 - 1 \right\}$, where $\left[\frac{2n_2}{n_1} \right] = \min\{z \in \mathbb{Z} \mid q \leq z\}$;
* $D(n) = \{k \in \mathbb{N} \mid k \mid n\}$.

Theorem 4.1. Let n_1, n_2, n_3 be integers such that $3 \leq n_1 < n_2 < n_3$, $\gcd\{n_1, n_2\} = 1$, and $n_3 \notin \langle n_1, n_2 \rangle$. Then $S = \langle n_1, n_2, n_3 \rangle$ is an M-semigroup if and only if n_3 belongs to

1. $B_1 = \{kn_2 - n_1 \mid k \in A(n_1) \cap [D(n_1 - 1) \cup D(n_1) \cup D(n_1 + 1)]\}$
2. $B_2 = \{tn_1 - n_2 \mid t \in A(n_1, n_2) \cap [D(n_2 - 1) \cup D(n_2) \cup D(n_2 + 1)]\}$.

Moreover,

1. S is (T1) if and only if $k \in D(n_1)$ or $t \in D(n_2)$.

2. S is (T2) if and only if $k \in D(n_1 - 1) \cup D(n_1 + 1)$ or $t \in D(n_2 - 1) \cup D(n_2 + 1)$.

5. Conclusion

Let $S = S(a,b,c)$ be the set of solutions of $ax \text{mod} b \leq cx$, where a,b,c are positive integers such that $c < a < b$. By Lemma 2.1, $S = S\left(\left[\frac{b}{a}, \frac{b}{a - c}\right]\right)$. If $e(S) = 3$, applying Lemma 2.2, $S = \langle n_1, n_2, n_3 \rangle$. From Theorem 4.1, we can determine if S is an M-semigroup. Finally, since the proofs of the results in Section 3 are constructive, we find a^*, b^* such that $S = S(a^*, b^*, 1)$.

At this point, the proposed problem is partially solved. In order to give the complete answer, we need to remove the condition $e(S) = 3$ in Sections 3 and 4. In fact, we believe that the key is to show a general characterization for M-semigroups.

Let us have S with minimal system of generators n_1, n_2, \ldots, n_e which are arranged according the characterization of PM-semigroups. Then $n_{i+1} = k_in_i - n_{i-1}$, $2 \leq i \leq e - 1$. If we replace n_3 in n_4, (n_3, n_4) in n_5, and so on, we have $n_e = \alpha_en_2 - \beta_en_1$. Thus, we finish with the following statement.

Conjecture. S is an M-semigroup if and only if $\alpha_e \in D(n_1 - 1) \cup D(n_1) \cup D(\beta_en_1 + 1)$.

References

A.M. Robles-Pérez, Department of Applied Mathematics, University of Granada

E-mail address: arobles@ugr.es

J.C. Rosales, Department of Algebra, University of Granada

E-mail address: jrosales@ugr.es