PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITIES WHICH ARE MODULAR

AURELIANO M. ROBLES-PÉREZ AND JOSÉ CARLOS ROSALES

Abstract

Let $\mathrm{S}(a, b, c)$ be the set of integer solutions of an expression of the form $a x \bmod b \leq c x$. We want to determine the conditions for which there exists another expression of the form $a^{*} x \bmod b^{*} \leq x$ such that $\mathrm{S}\left(a^{*}, b^{*}, 1\right)=\mathrm{S}(a, b, c)$, and, in the affirmative case, compute algorithmically a^{*} and b^{*}.

Introduction

Let m, n be integers such that $n \neq 0$. We denote by $m \bmod n$ the remainder of the division of m by n. Following the notation of [7], we say that a proportionally modular Diophantine inequality is an expression of the form $a x \bmod b \leq c x$, where a, b, c are positive integers.

Let $\mathrm{S}(a, b, c)$ be the set of integer solutions of $a x \bmod b \leq c x$. It is easy to see that $\mathrm{S}(a, b, c)=\mathrm{S}(a \bmod b, b, c)$. Moreover, if $a \leq c$, then $\mathrm{S}(a, b, c)=\mathbb{N}$. Therefore, we can focus our attention to the case $0<c<a<b$.

A modular Diophantine inequality (see [8]) is an expression of the form $a x \bmod b \leq x$, where a, b are positive integers such that $1<a<b$. Obviously, a modular Diophantine inequality is a proportionally modular Diophantine inequality. A natural question is on the truth of the reciprocal assertion in the following sense: if a, b, c are given, do there exist a^{*}, b^{*} such that $\mathrm{S}(a, b, c)=\mathrm{S}\left(a^{*}, b^{*}, 1\right)$? We will answer in a particular case (see [4]).

1. Numerical semigroups and Diophantine inequalities

A numerical semigroup is a subset S of \mathbb{N} (set of nonnegative integers) such that it is closed under addition, $0 \in S$ and $\mathbb{N} \backslash S$ is finite. It is well known (see [6]) that every numerical semigroup admits a unique set $X=\left\{n_{1}, n_{2}, \ldots, n_{e}\right\} \subseteq S$ such that $S=\langle X\rangle=$ $\left\{\lambda_{1} n_{1}+\lambda_{2} n_{2}+\ldots+\lambda_{e} n_{e} \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\}$. We say that X is the minimal system of generators of S. If $n_{1}<n_{2}<\ldots<n_{e}$, then n_{1}, n_{2} are known as the multiplicity and the ratio of S, and $e=\mathrm{e}(S)$ is the embedding dimension of S.

In [7] it is proved that $\mathrm{S}(a, b, c)$ is a numerical semigroup. Such type of numerical semigroups are called proportionally modular numerical semigroups (PM-semigroups). If $c=1$, then we have the modular numerical semigroups (M-semigroups). Thus, every M-semigroup is a PM-semigroup, but the reciprocal statement is not true (see [7, Example 26]).

It is interesting to remark that proportionally modular numerical semigroups are tightly related to problems in classification theory of C^{*}-algebras via K_{0}-groups (see [10]). In particular, in [5] it is shown that a semigroup having a Toms' decomposition is a finite

[^0]intersection of PM-semigroups. More in general, numerical semigroups have applications to Algebraic Geometry (see [1]).

As a consequence of [9, Theorem 31] (see its proof and [9, Corollary 18]) we have a characterization for PM-semigroups in terms of the minimal system of generators: a numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement $n_{1}, n_{2}, \ldots, n_{e}$ of its set of minimal generators that satisfies the following conditions,
(1) $\operatorname{gcd}\left\{n_{i}, n_{i+1}\right\}=1$ for all $i \in\{1, \ldots, e-1\}$;
(2) $\left(n_{i-1}+n_{i+1}\right) \equiv 0 \bmod n_{i}$ for all $i \in\{2, \ldots, e-1\}$.

Let us observe that it is easy to determine whether or not a numerical semigroup is a PMsemigroup via the previous characterization. However, this question is more complicated for M-semigroups. In [8] there is an algorithm to give the answer to this problem, but we have not got a good characterization for M-semigroups.

As a first step to give such a characterization, and therefore an answer to the original question of this work, our aim will be to show the explicit descriptions of all the M-semigroups with embedding dimension equal to three. In order to do it, we consider two ideas: the relation between PM-semigroups and numerical semigroups associated with an interval (see [7]) on the one side, and the description of a PM-semigroup with embedding dimension equal to three when we fix the multiplicity and the ratio on the other side.

2. Preliminaries

Let α, β be two positive rational numbers with $\alpha<\beta$ and let T be the submonoid of $\left(\mathbb{Q}_{0}^{+},+\right)$generated by the interval $[\alpha, \beta]$. In [7] it is shown that $T \cap \mathbb{N}$ is a PM-semigroup and that every PM-semigroup is of this form. We will be denote $\mathrm{T} \cap \mathbb{N}=\mathrm{S}([\alpha, \beta])$.

Lemma 2.1. [7, Corollary 9]
(1) Let a, b, c be positive integers such that $c<a<b$. Then $\mathrm{S}(a, b, c)=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right)$.
(2) Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integers such that $1<\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$. Then $\mathrm{S}\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}\right]\right)=$ $\mathrm{S}\left(a_{1} b_{2}, b_{1} b_{2}, a_{1} b_{2}-a_{2} b_{1}\right)$.

If $a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{p}$ are positive integers such that $a_{i} b_{i+1}-a_{i+1} b_{i}=1$ for all $i \in\{1,2, \ldots, p-1\}$, then the sequence of rational numbers $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\ldots<\frac{b_{p}}{a_{p}}$ is a Bézout sequence. The fractions $\frac{b_{1}}{a_{1}}$ and $\frac{b_{p}}{a_{p}}$ are the ends of the sequence. We say that a Bézout sequence is proper if $a_{i} b_{i+h}-a_{i+h} b_{i} \geq 2$ for all $h \geq 2$ such that $i, i+h \in\{1,2, \ldots, p\}$. On the other hand, we will say that two fractions $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$ are adjacent if

$$
\frac{b_{2}}{a_{2}+1}<\frac{b_{1}}{a_{1}}, \text { and either } a_{1}=1 \text { or } \frac{b_{2}}{a_{2}}<\frac{b_{1}}{a_{1}-1}
$$

We note that an useful tool for computing Bézout sequences is the Stern-Brocot tree (see $[2,3])$.

Lemma 2.2. [9, Theorem 20, Theorem 23]
(1) Let $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\ldots<\frac{b_{p}}{a_{p}}$ be a proper Bézout sequence with adjacent ends. Then $\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$ is the minimal system of generators of $\mathrm{S}\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{p}}{a_{p}}\right]\right)$.
(2) Let S be a PM-semigroup with $\mathrm{e}(S)=p \geq 2$. Then there exist an arrangement of the set of minimal generators of S, n_{1}, \ldots, n_{p}, and positive integers a_{1}, \ldots, a_{p} such that $\frac{n_{1}}{a_{1}}<\frac{n_{2}}{a_{2}}<\ldots<\frac{n_{p}}{a_{p}}$ is a proper Bézout sequence with adjacent ends.

3. All M-semigroups with embedding dimension equal to three

Firstly, we give two families of M-semigroups with embedding dimension equal to three.
Proposition 3.1. (1) Let λ, d, d^{\prime} be integers greater than one such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=$ $\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$. Then $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$ is an M-semigroup with $\mathrm{e}(S)=3$.
(2) Let m_{1}, m_{2} be positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$. Let q be a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$ such that $2 \leq q<\min \left\{m_{1}, m_{2}\right\}$. Then $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ is an M -semigroup with $\mathrm{e}(S)=3$.
Secondly, we show that every M-semigroup with embedding dimension equal to three belongs to one of the families described in the previous proposition.
Proposition 3.2. Let $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that $\mathrm{e}(S)=3$. Let us have $\operatorname{gcd}\{a, b\}=d$ and $\operatorname{gcd}\{a-1, b\}=d^{\prime}$.
(1) If $d \neq 1$ and $d^{\prime} \neq 1$, then there exists an integer λ greater than one such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$ and $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$.
(2) If $d=1$ and/or $d^{\prime}=1$, then there exist three positive integers m_{1}, m_{2}, q such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1, q$ is a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}, 2 \leq q<\min \left\{m_{1}, m_{2}\right\}$, and $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$.
Finally, we summarize both results in the next theorem.
Theorem 3.3. S is an M-semigroup with $\mathrm{e}(S)=3$ if and only if
(T1) $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$, where λ, d, d^{\prime} are integers greater than one such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=$ $\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$,
(T2) or $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$, where m_{1}, m_{2}, q are positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}$ $=1, q$ is a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$, and $2 \leq q<\min \left\{m_{1}, m_{2}\right\}$.

4. Multiplicity and ratio fixed

Let $\left\{n_{1}, n_{2}, n_{3}\right\}$ be the minimal system of generators of a numerical semigroup S. Let us suppose that $n_{1}<n_{2}<n_{3}$. The aim of this section is to describe all M-semigroups with embedding dimension equal to three when we fix the multiplicity and the ratio of S, this is, when n_{1} and n_{2} are fixed. We use the following sets,

* $A\left(n_{1}\right)=\left\{2, \ldots, n_{1}-1\right\}$;
* $A\left(n_{1}, n_{2}\right)=\left\{\left\lceil\frac{2 n_{2}}{n_{1}}\right\rceil, \ldots, n_{2}-1\right\}$, where $\left\lceil\frac{2 n_{2}}{n_{1}}\right\rceil=\min \{z \in \mathbb{Z} \mid q \leq z\}$;
* $D(n)=\{k \in \mathbb{N}$ such that $k \mid n\}$.

Theorem 4.1. Let n_{1}, n_{2}, n_{3} be integers such that $3 \leq n_{1}<n_{2}<n_{3}, \operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$, and $n_{3} \notin\left\langle n_{1}, n_{2}\right\rangle$. Then $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ is an M-semigroup if and only if n_{3} belongs to
(1) $B_{1}=\left\{k n_{2}-n_{1} \mid k \in A\left(n_{1}\right) \cap\left[D\left(n_{1}-1\right) \cup D\left(n_{1}\right) \cup D\left(n_{1}+1\right)\right]\right\}$
(2) or $B_{2}=\left\{t n_{1}-n_{2} \mid t \in A\left(n_{1}, n_{2}\right) \cap\left[D\left(n_{2}-1\right) \cup D\left(n_{2}\right) \cup D\left(n_{2}+1\right)\right]\right\}$.

Moreover,

(1) S is (T1) if and only if $k \in D\left(n_{1}\right)$ or $t \in D\left(n_{2}\right)$.
(2) S is (T2) if and only if $k \in D\left(n_{1}-1\right) \cup D\left(n_{1}+1\right)$ or $t \in D\left(n_{2}-1\right) \cup D\left(n_{2}+1\right)$.

5. Conclusion

Let $S=\mathrm{S}(a, b, c)$ be the set of solutions of $a x \bmod b \leq c x$, where a, b, c are positive integers such that $c<a<b$. By Lemma 2.1, $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right)$. If $\mathrm{e}(S)=3$, applying Lemma 2.2, $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$. From Theorem 4.1, we can determine if S is an M-semigroup. Finally, since the proofs of the results in Section 3 are constructive, we find a^{*}, b^{*} such that $S=\mathrm{S}\left(a^{*}, b^{*}, 1\right)$.

At this point, the proposed problem is partially solved. In order to give the complete answer, we need to remove the condition $\mathrm{e}(S)=3$ in Sections 3 and 4. In fact, we believe that the key is to show a general characterization for M -semigroups.

Let us have S with minimal system of generators $n_{1}, n_{2}, \ldots, n_{e}$ which are arranged according the characterization of PM-semigroups. Then $n_{i+1}=k_{i} n_{i}-n_{i-1}, 2 \leq i \leq e-1$. If we replace n_{3} in $n_{4},\left(n_{3}, n_{4}\right)$ in n_{5}, and so on, we have $n_{e}=\alpha_{e} n_{2}-\beta_{e} n_{1}$. Thus, we finish with the following statement.
Conjecture. S is an M-semigroup if and only if $\alpha_{e} \in D\left(n_{1}-1\right) \cup D\left(n_{1}\right) \cup D\left(\beta_{e} n_{1}+1\right)$.

References

[1] V. Barucci, D.E. Dobbs, and M. Fontana, "Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains", Memoirs of the Amer. Math. Soc. 598, 1997.
[2] M. Bullejos and J.C. Rosales, Proportionally modular Diophantine inequalities and the Stern-Brocot tree, Mathematics of Computation, Vol. 78, 1211-1226, 2009.
[3] R. Graham, D. Knuth and O. Patashnik, "Concrete Mathematics, 2nd edition", Addison-Wesley, 1994.
[4] A.M. Robles-Pérez and J.C. Rosales, Modular numerical semigroups with embedding dimension equal to three, to appear in Illinois Journal of Mathematics.
[5] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups having a Toms decomposition, Canad. Math. Bull., Vol. 51, 134-139, 2008.
[6] J.C. Rosales and P.A. García-Sánchez, "Numerical semigroups", Developments in Mathematics, vol. 20, Springer, 2009.
[7] J.C. Rosales, P.A. García-Sánchez, J.I. García-García, and J.M. Urbano-Blanco, Proportionally modular Diophantine inequalities, J. Number Theory, Vol. 103, 281-294, 2003.
[8] J.C. Rosales, P.A. García-Sánchez, and J.M. Urbano-Blanco, Modular Diophantine inequalities and numerical semigroups, Pacific J. Math., Vol. 218, 379-398, 2005.
[9] J.C. Rosales, P.A. García-Sánchez, and J.M. Urbano-Blanco, The set of solutions of a proportionally modular Diophantine inequality, J. Number Theory, Vol. 128, 453-467, 2008.
[10] A. Toms, Strongly perforated K_{0}-groups of simple C^{*}-algebras, Canad. Math. Bull., Vol. 46, 457-472, 2003.
A.M. Robles-Pérez, Department of Applied Mathematics, University of Granada

E-mail address: arobles@ugr.es
J.C. Rosales, Department of Algebra, University of Granada

E-mail address: jrosales@ugr.es

[^0]: Both authors were supported by MTM2007-62346, MEC (Spain), and FEDER funds.

