A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

References

Proportionally modular Diophantine inequalities which are modular

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

EACA 2010 Santiago de Compostela, July 19-21, 2010

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup: with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Diophantine inequalities.-General type

Definition

A proportionally modular Diophantine inequality is an expression of the form

 $ax \mod b \le cx$

where a (the factor), b (the modulus), and c (the proportion) are positive integers.

(Let m, n be integers such that $n \neq 0$. Then $m \mod n$ is the remainder of the division of m by n.)

Set of nonnegative integer solutions

 $S(a,b,c) = \{x \in \mathbb{Z} \mid ax \mod b \le cx\}$

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm Answers and examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

fixed

M-semigroups with $e \ge 3$

Conjecture

References

Lemma

Let a, b, c positive integers.

- $(1) S(a,b,c) = S(a \mod b, b, c).$
- 2 $S(a,b,c) = \mathbb{N}$ if $a \leq c$.

(N is the set of nonnegative integers.)

Not restrictive condition

c < a < b

A simplification

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm Answers and

M-semigroup: with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Diophantine inequalities.-Particular type

Definition

A modular Diophantine inequality is an expression of the form

 $ax \mod b \leq x$,

where a, b are positive integers (such that a < b).

Set of nonnegative integer solutions

 $S(a,b) = S(a,b,1) = \{x \in \mathbb{Z} \mid ax \mod b \le x\}$

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Diophantine inequalities.- The question

Problem

Let us have S(a,b,c). Does there exist positive integers a^*,b^* such that $S(a,b,c) = S(a^*,b^*)$?

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Example

(21, 189, 3) = S(7, 63).

2
$$S(41, 369, 5) = S(8, 72).$$

③
$$S(51,459,6) \neq S(a^*,b^*)$$
 for all $a^*,b^* \in \mathbb{N}$.

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup: with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Tool: numerical semigroups

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Definition

A **numerical semigroup** is a subset *S* of \mathbb{N} that is closed under addition, contains the zero element, and has finite complement in \mathbb{N} .

Example

 $S = S(a, b, c) = \{x \in \mathbb{Z} \mid ax \mod b \le cx\}$ (PM-semigroup).

 $S = S([\alpha,\beta]).$

- $\alpha, \beta \in \mathbb{Q}$ such that $0 < \alpha < \beta; J = [\alpha, \beta]$.
- $\langle J \rangle = \{\lambda_1 a_1 + \ldots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, a_1, \ldots, a_n \in J, \lambda_1, \ldots, \lambda_n \in \mathbb{N}\}.$
- $\langle J \rangle \cap \mathbb{N} = \mathcal{S}([\alpha,\beta]).$

- $A = \{a_1, a_2, ..., a_n\} \subseteq \mathbb{N} \setminus \{0\}$ such that $gcd\{a_1, a_2, ..., a_n\} = 1$.
- $\langle A \rangle = \{\lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1, \ldots, \lambda_n \in \mathbb{N}\} = \langle a_1, a_2, \ldots, a_n \rangle.$

Connection

Lemma

Introduction

A simple question about Diophantine inequalities

Proportionally modular Diophantine

inequalities which are modular A.M. Robles-Pérez.

J.C. Rosales (Universidad de Granada)

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroups with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

1 Let a, b, c positive integers such that c < a < b. Then

$$S(a,b,c) = S\left(\left[\frac{b}{a},\frac{b}{a-c}\right]\right).$$

2 Let a_1, a_2, b_1, b_2 be positive integers such that $1 < \frac{b_1}{a_1} < \frac{b_2}{a_2}$. Then

$$S\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right) = S(a_1b_2, b_1b_2, a_1b_2 - a_2b_1).$$

Example

1 $S(41, 369, 5) = S\left(\left[\frac{369}{41}, \frac{369}{36}\right]\right) = S\left(\left[\frac{9}{1}, \frac{41}{4}\right]\right)$ **2** $S(51, 459, 6) = S\left(\left[\frac{459}{51}, \frac{459}{45}\right]\right) = S\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right)$

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Bézout sequences

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Example

$$9 = \frac{9}{1} < \frac{10}{1} < \frac{21}{2}$$

$$S(21, 189, 3) = S\left(\left[\frac{189}{21}, \frac{189}{18}\right]\right) = S\left(\left[\frac{9}{1}, \frac{21}{2}\right]\right) = \langle 9, 10, 21 \rangle$$

$$9 = \frac{9}{1} < \frac{10}{1} < \frac{41}{4}$$

$$S(41, 369, 5) = S\left(\left[\frac{369}{41}, \frac{369}{36}\right]\right) = S\left(\left[\frac{9}{1}, \frac{41}{4}\right]\right) = \langle 9, 10, 41 \rangle$$

3 $\frac{9}{1} < \frac{10}{1} < \frac{51}{5}$ S(51,459,6) = S($\left[\frac{459}{51}, \frac{459}{45}\right]$) = S($\left[\frac{9}{1}, \frac{51}{5}\right]$) = $\langle 9, 10, 51 \rangle$

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroup:

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup: with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Bézout sequences (more ...)

Example

2

0

$$\frac{9}{5} < \frac{2}{1} < \frac{9}{4}$$

$$S(5,9,1) = S\left(\left[\frac{9}{5}, \frac{9}{4}\right]\right) = \langle 2,9 \rangle$$

$$\frac{23}{13} < \frac{16}{9} < \frac{9}{5} < \frac{2}{1} < \frac{9}{4} < \frac{16}{7}$$

 $S(208, 368, 47) = S\left(\left[\frac{368}{208}, \frac{368}{161}\right]\right) = S\left(\left[\frac{23}{13}, \frac{16}{7}\right]\right) = \langle 2, 9 \rangle$

3 $\frac{9}{1} < \frac{10}{1} < \frac{11}{1} < \frac{12}{1}$ S(4,36,3) = S($\left[\frac{36}{4}, \frac{36}{3}\right]$) = S($\left[\frac{9}{1}, \frac{12}{1}\right]$) = $\langle 9, 10, 11, 12 \rangle$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Algorithm

Algorithm

6.2 Yes \Rightarrow S(a^*, b^*)?

Introduction

A simple question about Diophantine inequalities Numerical semigroups

Proportionally modular Diophantine

inequalities which are modular A.M. Bobles-Pérez

J.C. Rosales (Universidad de Granada)

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup: with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three Multiplicity and ratio

fixed

M-semigroups with $e \ge 3$

Conjecture

References

1	$S(a,b,c) \Rightarrow S\left(\left[\frac{b}{a},\frac{b}{a-c}\right]\right) (1 < c < a < b)$
2	$S\left(\left[\frac{b}{a},\frac{b}{a-c}\right]\right) \Longrightarrow S\left(\left[\frac{b_1}{a_1},\frac{b_p}{a_p}\right]\right) \qquad (\gcd\{a_1,b_1\} = \gcd\{a_p,b_p\} = 1)$
3	$S\left(\left[\frac{b_1}{a_1},\frac{b_p}{a_p}\right]\right) \Longrightarrow \frac{b_1}{a_1} < \frac{b_2}{a_2} < \dots < \frac{b_p}{a_p} \qquad (\textit{Bézout sequence})$
4	$\frac{b_1}{a_1} < \frac{b_2}{a_2} < \dots < \frac{b_p}{a_p} \Rightarrow \langle b_1, b_2, \dots, b_p \rangle \text{ (System of generators)}$
6	$\langle b_1, b_2, \dots, b_p \rangle \Rightarrow \langle n_1, n_2, \dots, n_e \rangle$ (Minimal system of generators)
6	$\langle n_1, n_2, \dots, n_e \rangle \Rightarrow Is S(a, b, c) modular?$
	6.1 No \Rightarrow Other questions?

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroups with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Some answers

Remark

 $S(a,b,c) = \langle n_1, n_2 \rangle \Rightarrow S(a,b,c) = S(un_2, n_1n_2) \quad (un_2 - vn_1 = 1)$ $S(a,b,c) = \langle n_1, n_2, n_3 \rangle \Rightarrow Whole answer$

3 $S(a,b,c) = \langle n_1, n_2, ..., n_e \rangle, e \ge 4 \Rightarrow$ Partial conjecture

Example

 $S(208,368,47) = \langle 2,9 \rangle$

- 1 × 9 4 × 2 = 1 \Rightarrow S(208, 368, 47) = S(9, 18)
- **2** $5 \times 2 1 \times 9 = 1 \Rightarrow S(208, 368, 47) = S(10, 18)$

And remember that S(5,9,1) = S(5,9) = (2,9).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm Answers and

M-semigroup: with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Characterization for PM-semigroups

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Lemma

A numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement $n_1, n_2, ..., n_e$ of its set of minimal generators that satisfies the following conditions

```
1 gcd\{n_i, n_{i+1}\} = 1 for all i \in \{1, ..., e-1\},
```

2 $(n_{i-1} + n_{i+1}) \equiv 0 \mod n_i$ for all $i \in \{2, ..., e-1\}$.

Definition

A sequence of integers $x_1, x_2, ..., x_q$ is arranged in a convex form if one of the following conditions is satisfied,

 $1 \quad x_1 \leq x_2 \leq \ldots \leq x_q;$

 $2 \quad x_1 \ge x_2 \ge \ldots \ge x_q;$

3 there exists $h \in \{2, \dots, q-1\}$ such that $x_1 \ge \dots \ge x_h \le \dots \le x_q$.

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three Multiplicity and ratio

M-semigroups with $e \ge 3$

Conjecture

References

• Let λ , d, d' be integers greater than one such that $gcd\{d, d'\} = gcd\{\lambda, d + d'\} = 1$. Then $S = \langle \lambda d, d + d', \lambda d' \rangle$ is an M-semigroup with e(S) = 3.

2 Let m_1, m_2 be positive integers such that $gcd\{m_1, m_2\} = 1$. Let q be a divisor of $gcd\{m_2 - 1, m_1 + m_2\}$ such that $2 \le q < \min\{m_1, m_2\}$. Then $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$ is an M-semigroup with e(S) = 3.

Example

Proposition

- $(9,10,21) = \langle 3 \cdot 3, 3 + 7, 3 \cdot 7 \rangle$
- (2) $\langle 9, 10, 41 \rangle = \langle 9, \frac{9+41}{5}, 41 \rangle$ (5 = gcd{41-1,9+41})
- **③** ⟨9, 10, 51⟩ Not possible!

By generators via characterization

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three Multiplicity and ratio

fixed

M-semigroup: with $e \ge 3$

Conjecture

References

By generators via characterization

Example

$$(9,10,21) = \langle 3\cdot 3, 3+7, 3\cdot 7 \rangle 9 \cdot (3\cdot 3) - 8 \cdot (3+7) = 1 \langle 9,10,21 \rangle = S((9\cdot 3-8) \cdot 3, 3\cdot 3\cdot 7) = S(57,63) (9,10,41) = \langle 9, \frac{9+41}{5}, 41 \rangle 2 \cdot 41 - 9 \cdot 9 = 1 \Rightarrow 10 \cdot 41 - 45 \cdot 9 = 5 \langle 9,10,41 \rangle = S(\frac{41-1}{5} \cdot 10, \frac{41-1}{5} \cdot 9) = S(80,72) = S(8,72)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroup:

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm Answers an

M-semigroup

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

By generators via closed intervals

Proposition

Let $S = S\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that e(S) = 3. Let us have $gcd\{a, b\} = d$ and $gcd\{a - 1, b\} = d'$.

If d ≠ 1 and d' ≠ 1, then there exists an integer λ greater than one such that gcd{d, d'} = gcd{λ, d + d'} = 1 and S = ⟨λd, d + d', λd'⟩.

2) If d = 1 and/or d' = 1, then there exist three positive integers m_1, m_2, q such that $gcd\{m_1, m_2\} = 1$, q is a divisor of $gcd\{m_2 - 1, m_1 + m_2\}, 2 \le q < \min\{m_1, m_2\}, and$ $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle.$

Remark

Observe that $S = S\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ is always a modular numerical semigroup.

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities Numerical semigrou

inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Families by generators

Theorem

S is an M-semigroup with e(S) = 3 if and only if

(T1) $S = \langle \lambda d, d + d', \lambda d' \rangle$, where λ, d, d' are integers greater than one such that $gcd\{d, d'\} = gcd\{\lambda, d + d'\} = 1$,

(T2) or $S = \langle m_1, \frac{m_1+m_2}{q}, m_2 \rangle$, where m_1, m_2, q are positive integers such that $gcd\{m_1, m_2\} = 1$, q is a divisor of $gcd\{m_2 - 1, m_1 + m_2\}$, and $2 \le q < min\{m_1, m_2\}$.

Remark

If S is an M-semigroup of type (T1) then it is not (T2). Consequently, if S is (T2) then it is not (T1).

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities Numerical semigroup Diophantine inequalities and numerical semigroup

.

Algorithm

Algorithm

M-semigroup

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$ Conjecture

PM-semigroups with n_1, n_2 fixed

Lemma

Let n_1, n_2, n_3 be integers such that $3 \le n_1 < n_2 < n_3$, $gcd\{n_1, n_2\} = 1$, and $n_3 \notin \langle n_1, n_2 \rangle$. Then $\langle n_1, n_2, n_3 \rangle$ is a PM-semigroup if and only if n_3 belongs to one of the following sets.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

1
$$C_1 = \{kn_2 - n_1 \mid k \in A(n_1)\}.$$

2
$$C_2 = \{tn_1 - n_2 \mid t \in A(n_1, n_2)\}.$$

Moreover, $C_1 \cap C_2 = \{n_1 n_2 - n_1 - n_2\}$.

Definition

Let n_1, n_2 be integers such that $3 \le n_1 < n_2$ and $gcd\{n_1, n_2\} = 1$.

•
$$A(n_1) = \{2, ..., n_1 - 1\}.$$

•
$$A(n_1, n_2) = \left\{ \left\lceil \frac{2n_2}{n_1} \right\rceil, \dots, n_2 - 1 \right\}.$$

(If
$$q \in \mathbb{Q}$$
, then $\lceil q \rceil = \min\{z \in \mathbb{Z} \mid q \le z\}$)

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities Numerical semigroup Diophantine inequalities and numerical semigroup

Bézout sequences

Algorithm

Algorithm Answers and

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$ Conjecture

References

M-semigroups with n_1, n_2 fixed

Theorem

Let n_1, n_2, n_3 be integers such that $3 \le n_1 < n_2 < n_3$, $gcd\{n_1, n_2\} = 1$, and $n_3 \notin \langle n_1, n_2 \rangle$. Then $S = \langle n_1, n_2, n_3 \rangle$ is an M-semigroup if and only if n_3 belongs to

1
$$B_1 = \{kn_2 - n_1 \mid k \in A(n_1) \cap [D(n_1 - 1) \cup D(n_1) \cup D(n_1 + 1)]\}$$

2 or

 $B_2 = \{tn_1 - n_2 \mid t \in A(n_1, n_2) \cap [D(n_2 - 1) \cup D(n_2) \cup D(n_2 + 1)]\}.$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Moreover,

- **1** S is (T1) if and only if $k \in D(n_1)$ or $t \in D(n_2)$.
- ② S is (T2) if and only if $k \in D(n_1 1) \cup D(n_1 + 1)$ or t ∈ D(n₂ − 1) ∪ D(n₂ + 1).

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

M-semigroups with $n_1 = 9$, $n_2 = 10$

Example

1 PM-semigroups

- $\langle 9, 10, 10k 9 \rangle$ with $k \in \{2, 3, 4, 5, 6, 7, 8\}$
- $\langle 9, 10, 9t 10 \rangle$ with $t \in \{3, 4, 5, 6, 7, 8, 9\}$

2 M-semigroups

- $\langle 9, 10, 10k 9 \rangle$ with $k \in \{2, 3, 4, 5, 8\}$
- $\langle 9, 10, 9t 10 \rangle$ with $t \in \{3, 5, 9\}$

(Observe that $\langle 9, 10, 10 \times 8 - 9 \rangle = \langle 9, 10, 9 \times 9 - 10 \rangle = \langle 9, 10, 71 \rangle$.)

Example

- (9,10,21) = $(9,10,3 \times 10 9)$ is (T1)
- **2** $\langle 9, 10, 41 \rangle = \langle 9, 10, 5 \times 10 9 \rangle$ is (T2)
- (3) $(9, 10, 51) = (9, 10, 6 \times 10 9)$ is not modular

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

Answers and examples

M-semigroup with e = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$ Conjecture

References

M-semigroups with $n_1 = 9$, $n_2 = 10$

Example

(T1):
$$S(21, 189, 3) = \langle 9, 10, 21 \rangle = \langle 3 \cdot 3, 3 + 7, 3 \cdot 7 \rangle$$

 $9 \cdot (3 \cdot 3) - 8 \cdot (3 + 7) = 1$
 $S(21, 189, 3) = S((9 \cdot 3 - 8) \cdot 3, 3 \cdot 3 \cdot 7) = S(57, 63)$
(T2): $S(41, 369, 5) = \langle 9, 10, 41 \rangle = \langle 9, \frac{9+41}{5}, 41 \rangle$
 $2 \cdot 41 - 9 \cdot 9 = 1 \Rightarrow 10 \cdot 41 - 45 \cdot 9 = 5$
 $S(41, 369, 5) = S(\frac{41-1}{5} \cdot 10, \frac{41-1}{5} \cdot 9) = S(80, 72) = S(8, 72)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities

Numerical semigroups

Diophantine inequalities and numerical semigroups

Bézout sequences

Algorithm

Algorithm

M-semigrou

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Conjecture

Let $S = \langle n_1, n_2, ..., n_e \rangle$ be a PM-semigroup. Let us suppose that $n_1, n_2, ..., n_e$ are arranged according the characterization of PM-semigroups. Let us consider the notation

- $n_3 = k_2 n_2 n_1 = \alpha_3 n_2 \beta_3 n_1;$
- $n_4 = k_3 n_3 n_2 = k_3 (\alpha_3 n_2 \beta_3 n_1) n_2 = \alpha_4 n_2 \beta_4 n_1;$
- $n_5 = k_4 n_4 n_3 = k_4 (\alpha_4 n_2 \beta_4 n_1) (\alpha_3 n_2 \beta_3 n_1) = \alpha_5 n_2 \beta_5 n_1;$

• ...

• $n_e = \alpha_e n_2 - \beta_e n_1$.

Then, $S = \langle n_1, n_2, ..., n_e \rangle$ is an M-semigroup if and only if

$$\alpha_e \in D(n_1-1) \cup D(n_1) \cup D(\beta_e n_1+1).$$

A.M. Robles-Pérez, J.C. Rosales (Universidad de Granada)

Introduction

A simple question about Diophantine inequalities Numerical semigroup Diophantine inequalities and

Bézout sequence

Algorithm

Algorithm

Answers and examples

M-semigroup with *e* = 3

Characterization

Two families of M-semigroups by generators

All M-semigroups with embedding dimension equal to three

Multiplicity and ratio fixed

M-semigroups with $e \ge 3$

Conjecture

References

Proposition (J.M. Urbano-Blanco, Ph.D. Thesis)

Let m, c, k positive integers such that $gcd\{m, c\} = 1$. Then, $S = \langle m, m + c, ..., m + kc \rangle$ is a PM-semigroup. Moreover, S is modular if and only if $m \mod k \in \{0, 1\}$.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

1 m + kc = k(m+c) - (k-1)m;

- 2 $k \in D(m-1) \Leftrightarrow m \mod k = 1;$
- 3 $k \in D(m) \Leftrightarrow m \mod k = 0;$
- 4 $k \in D((k-1)m) \Leftrightarrow m \mod k = 0.$
- **6** Moreover, $k \in D(m+1) \Leftrightarrow m \mod k = k-1$

References

Proportionally modular Diophantine inequalities which are modular

A.M. Robles-Pérez. J.C. Rosales (Universidad de Granada)

References

V Barucci D.F. Dobbs and M. Fontana

Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains. Memoirs of the Amer. Math. Soc. 598, 1997.

M. Bullejos and J.C. Rosales. Proportionally modular Diophantine inequalities and the Stern-Brocot tree. Mathematics of Computation, Vol. 78:1211–1226, 2009.

A.M. Bobles-Pérez, J.C. Bosales and P. Vasco.

Modular numerical semigroups with embedding dimension equal to three. To appear in Illinois Journal of Mathematics.

J.C. Rosales, P.A. García-Sánchez, J.I. García-García and J.M. Urbano-Blanco.

J C Bosales and PA García-Sánchez

Numerical semigroups. Developments in Mathematics, vol. 20. Springer, 2009.

Proportionally modular Diophantine inequalities. J. Number Theory, 103:281-294, 2003.

J. Number Theory, 128:453-467, 2008.

J.C. Bosales, P.A. García-Sánchez and J.M. Urbano-Blanco. Modular Diophantine inequalities and numerical semigroups. Pacific J. Math., 218:379-398, 2005.

The set of solutions of a proportionally modular Diophantine inequality.

J.C. Rosales, P.A. García-Sánchez, J.M. Urbano-Blanco,

