Proportionally modular Diophantine inequalities which are modular

A.M. Robles-Pérez, J.C. Rosales
(Universidad de Granada)

EACA 2010
Santiago de Compostela, July 19-21, 2010

Diophantine inequalities.General type

Definition

A proportionally modular Diophantine inequality is an expression of the form

$$
a x \bmod b \leq c x
$$

where a (the factor), b (the modulus), and c (the proportion) are positive integers.
(Let m, n be integers such that $n \neq 0$. Then $m \bmod n$ is the remainder of the division of m by n.)

Set of nonnegative integer solutions

$$
S(a, b, c)=\{x \in \mathbb{Z} \mid a x \bmod b \leq c x\}
$$ about Diophantine inequalities

Numerical semigroups
Diophantine inequalities and numerical semigroups
Bézout sequences
Algorithm
Algorithm
Answers and examples

M-semigroups
with $e=3$
Characterization
Two families of M-semigroups by generators
All M-semigroups with embedding dimension equal to three Multiplicity and ratio fixed
M-semigroups

A simplification

Lemma

Let a, b, c positive integers.
(1) $\mathrm{S}(a, b, c)=\mathrm{S}(\operatorname{amod} b, b, c)$.
(2) $\mathrm{S}(a, b, c)=\mathbb{N}$ if $a \leq c$.
(\mathbb{N} is the set of nonnegative integers.)

Not restrictive condition

$$
c<a<b
$$

Diophantine inequalities.Particular type

Definition

A modular Diophantine inequality is an expression of the form

$$
a x \bmod b \leq x
$$

where a, b are positive integers (such that $a<b$).

Set of nonnegative integer solutions

$$
S(a, b)=S(a, b, 1)=\{x \in \mathbb{Z} \mid a x \bmod b \leq x\}
$$

ntroduction

Diophantine inequalities.- The

 question
Problem

Let us have $\mathrm{S}(a, b, c)$. Does there exist positive integers a^{*}, b^{*} such that $\mathrm{S}(a, b, c)=\mathrm{S}\left(a^{*}, b^{*}\right)$?

Example

(1) $\mathrm{S}(21,189,3)=\mathrm{S}(7,63)$.
(2) $\mathrm{S}(41,369,5)=\mathrm{S}(8,72)$.
(3) $\mathrm{S}(51,459,6) \neq \mathrm{S}\left(a^{*}, b^{*}\right)$ for all $a^{*}, b^{*} \in \mathbb{N}$.

Tool: numerical semigroups

Definition

A numerical semigroup is a subset S of \mathbb{N} that is closed under addition, contains the zero element, and has finite complement in \mathbb{N}.

Example

(1) $S=S(a, b, c)=\{x \in \mathbb{Z} \mid a x \bmod b \leq c x\}$ (PM-semigroup).
(2) $S=\mathrm{S}([\alpha, \beta])$.

- $\alpha, \beta \in \mathbb{Q}$ such that $0<\alpha<\beta ; J=[\alpha, \beta]$.
- $\langle J\rangle=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{1}, \ldots, a_{n} \in J, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\}$.
- $\langle J\rangle \cap \mathbb{N}=\mathrm{S}([\alpha, \beta])$.
(3) $S=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.
- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq \mathbb{N} \backslash\{0\}$ such that $\operatorname{gcd}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=1$.
- $\langle A\rangle=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n} \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

Example

(1) $S(41,369,5)=S\left(\left[\frac{369}{41}, \frac{369}{36}\right]\right)=S\left(\left[\frac{9}{1}, \frac{41}{4}\right]\right)$
(2) $\mathrm{S}(51,459,6)=\mathrm{S}\left(\left[\frac{459}{51}, \frac{459}{45}\right]\right)=\mathrm{S}\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right)$

Lemma

(1) Let a, b, c positive integers such that $c<a<b$. Then

$$
S(a, b, c)=S\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right)
$$

(2) Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integers such that $1<\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$. Then

$$
S\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}\right]\right)=S\left(a_{1} b_{2}, b_{1} b_{2}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

Connection

Example

(1) $\frac{9}{1}<\frac{10}{1}<\frac{21}{2}$

$$
S(21,189,3)=S\left(\left[\frac{189}{21}, \frac{189}{18}\right]\right)=S\left(\left[\frac{9}{1}, \frac{21}{2}\right]\right)=\langle 9,10,21\rangle
$$

(2) $\frac{9}{1}<\frac{10}{1}<\frac{41}{4}$
$S(41,369,5)=S\left(\left[\frac{369}{41}, \frac{369}{36}\right]\right)=S\left(\left[\frac{9}{1}, \frac{41}{4}\right]\right)=\langle 9,10,41\rangle$
(3) $\frac{9}{1}<\frac{10}{1}<\frac{51}{5}$
$\mathrm{S}(51,459,6)=\mathrm{S}\left(\left[\frac{459}{51}, \frac{459}{45}\right]\right)=\mathrm{S}\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right)=\langle 9,10,51\rangle$

Example

(1) $\frac{9}{5}<\frac{2}{1}<\frac{9}{4}$

$$
S(5,9,1)=S\left(\left[\frac{9}{5}, \frac{9}{4}\right]\right)=\langle 2,9\rangle
$$

(2) $\frac{23}{13}<\frac{16}{9}<\frac{9}{5}<\frac{2}{1}<\frac{9}{4}<\frac{16}{7}$
$\mathrm{S}(208,368,47)=\mathrm{S}\left(\left[\frac{368}{208}, \frac{368}{161}\right]\right)=\mathrm{S}\left(\left[\frac{23}{13}, \frac{16}{7}\right]\right)=\langle 2,9\rangle$
(3) $\frac{9}{1}<\frac{10}{1}<\frac{11}{1}<\frac{12}{1}$

Bézout sequences (more ...)

$$
S(4,36,3)=S\left(\left[\frac{36}{4}, \frac{36}{3}\right]\right)=S\left(\left[\frac{9}{1}, \frac{12}{1}\right]\right)=\langle 9,10,11,12\rangle
$$

Algorithm

Algorithm

(1) $S(a, b, c) \Rightarrow S\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right) \quad(1<c<a<b)$
(2) $S\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right) \Rightarrow S\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{p}}{a_{p}}\right]\right) \quad\left(\operatorname{gcd}\left\{a_{1}, b_{1}\right\}=\operatorname{gcd}\left\{a_{p}, b_{p}\right\}=1\right)$
(3) $S\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{p}}{a_{p}}\right]\right) \Rightarrow \frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{p}}{a_{p}}$
(Bézout sequence)
(4) $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{p}}{a_{p}} \Rightarrow\left\langle b_{1}, b_{2}, \ldots, b_{p}\right\rangle \quad$ (System of generators)
(5 $\left\langle b_{1}, b_{2}, \ldots, b_{p}\right\rangle \Rightarrow\left\langle n_{1}, n_{2}, \ldots, n_{e}\right\rangle \quad$ (Minimal system of generators)
(6) $\left\langle n_{1}, n_{2}, \ldots, n_{e}\right\rangle \Rightarrow$ Is $\mathrm{S}(a, b, c)$ modular?
6.1 No \Rightarrow Other questions?
6.2 Yes $\Rightarrow S\left(a^{*}, b^{*}\right)$?

Some answers

Remark

(1) $\mathrm{S}(a, b, c)=\left\langle n_{1}, n_{2}\right\rangle \Rightarrow \mathrm{S}(a, b, c)=\mathrm{S}\left(u n_{2}, n_{1} n_{2}\right) \quad\left(u n_{2}-v n_{1}=1\right)$
(2) $\mathrm{S}(a, b, c)=\left\langle n_{1}, n_{2}, n_{3}\right\rangle \Rightarrow$ Whole answer
(3) $\mathrm{S}(a, b, c)=\left\langle n_{1}, n_{2}, \ldots, n_{e}\right\rangle, e \geq 4 \Rightarrow$ Partial conjecture

Example

$S(208,368,47)=\langle 2,9\rangle$
(1) $1 \times 9-4 \times 2=1 \Rightarrow \mathrm{~S}(208,368,47)=\mathrm{S}(9,18)$
(2) $5 \times 2-1 \times 9=1 \Rightarrow \mathrm{~S}(208,368,47)=\mathrm{S}(10,18)$

And remember that $\mathrm{S}(5,9,1)=\mathrm{S}(5,9)=\langle 2,9\rangle$.

Characterization for PM-semigroups

Lemma

A numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement $n_{1}, n_{2}, \ldots, n_{e}$ of its set of minimal generators that satisfies the following conditions
(1) $\operatorname{gcd}\left\{n_{i}, n_{i+1}\right\}=1$ for all $i \in\{1, \ldots, e-1\}$,
(2) $\left(n_{i-1}+n_{i+1}\right) \equiv 0 \bmod n_{i}$ for all $i \in\{2, \ldots, e-1\}$.

Definition

A sequence of integers $x_{1}, x_{2}, \ldots, x_{q}$ is arranged in a convex form if one of the following conditions is satisfied,
(1) $x_{1} \leq x_{2} \leq \ldots \leq x_{q}$;
(2) $x_{1} \geq x_{2} \geq \ldots \geq x_{q}$;
(3) there exists $h \in\{2, \ldots, q-1\}$ such that $x_{1} \geq \ldots \geq x_{h} \leq \ldots \leq x_{q}$.

By generators via characterization

Proposition

(1) Let λ, d, d^{\prime} be integers greater than one such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$.
Then $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$ is an M-semigroup with $\mathrm{e}(S)=3$.
(2) Let m_{1}, m_{2} be positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$. Let q be a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$ such that
$2 \leq q<\min \left\{m_{1}, m_{2}\right\}$.
Then $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ is an M-semigroup with $\mathrm{e}(S)=3$.

Example

(1) $\langle 9,10,21\rangle=\langle 3 \cdot 3,3+7,3 \cdot 7\rangle$
(2) $\langle 9,10,41\rangle=\left\langle 9, \frac{9+41}{5}, 41\right\rangle \quad(5=\operatorname{gcd}\{41-1,9+41\})$
(3) $\langle 9,10,51\rangle$ Not possible!

Example

(1) $\langle 9,10,21\rangle=\langle 3 \cdot 3,3+7,3 \cdot 7\rangle$

$$
\begin{array}{r}
9 \cdot(3 \cdot 3)-8 \cdot(3+7)=1 \\
\langle 9,10,21\rangle=\mathrm{S}((9 \cdot 3-8) \cdot 3,3 \cdot 3 \cdot 7)=\mathrm{S}(57,63)
\end{array}
$$

(2) $\langle 9,10,41\rangle=\left\langle 9, \frac{9+41}{5}, 41\right\rangle$

$$
\begin{gathered}
2 \cdot 41-9 \cdot 9=1 \Rightarrow 10 \cdot 41-45 \cdot 9=5 \\
\langle 9,10,41\rangle=\mathrm{S}\left(\frac{41-1}{5} \cdot 10, \frac{41-1}{5} \cdot 9\right)=\mathrm{S}(80,72)=\mathrm{S}(8,72)
\end{gathered}
$$

By generators via characterization

By generators via closed intervals

Proposition

Let $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that $\mathrm{e}(S)=3$.
Let us have $\operatorname{gcd}\{a, b\}=d$ and $\operatorname{gcd}\{a-1, b\}=d^{\prime}$.
(1) If $d \neq 1$ and $d^{\prime} \neq 1$, then there exists an integer λ greater than one such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$ and

$$
S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle
$$

(2) If $d=1$ and/or $d^{\prime}=1$, then there exist three positive integers m_{1}, m_{2}, q such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1, q$ is a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}, 2 \leq q<\min \left\{m_{1}, m_{2}\right\}$, and $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$.

Remark

Observe that $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ is always a modular numerical semigroup.

Families by generators

Theorem

S is an M -semigroup with $\mathrm{e}(S)=3$ if and only if
(T1) $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$, where λ, d, d^{\prime} are integers greater than one such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$,
(T2) or $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$, where m_{1}, m_{2}, q are positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1, q$ is a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$, and $2 \leq q<\min \left\{m_{1}, m_{2}\right\}$.

Remark

If S is an M-semigroup of type (T1) then it is not (T2). Consequently, if S is (T2) then it is not (T1).

PM-semigroups with n_{1}, n_{2} fixed

Lemma

Let n_{1}, n_{2}, n_{3} be integers such that $3 \leq n_{1}<n_{2}<n_{3}, \operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$, and $n_{3} \notin\left\langle n_{1}, n_{2}\right\rangle$. Then $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ is a PM-semigroup if and only if n_{3} belongs to one of the following sets.
(1) $C_{1}=\left\{k n_{2}-n_{1} \mid k \in A\left(n_{1}\right)\right\}$.
(2) $C_{2}=\left\{t n_{1}-n_{2} \mid t \in A\left(n_{1}, n_{2}\right)\right\}$.

Moreover, $C_{1} \cap C_{2}=\left\{n_{1} n_{2}-n_{1}-n_{2}\right\}$.

Definition

Let n_{1}, n_{2} be integers such that $3 \leq n_{1}<n_{2}$ and $\operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$.

- $A\left(n_{1}\right)=\left\{2, \ldots, n_{1}-1\right\}$.
- $A\left(n_{1}, n_{2}\right)=\left\{\left[\frac{2 n_{2}}{n_{1}}\right\rceil, \ldots, n_{2}-1\right\}$.
- $D(n)=\{k \in \mathbb{N}$ such that $k \mid n\}$.
(If $q \in \mathbb{Q}$, then $\lceil q\rceil=\min \{z \in \mathbb{Z} \mid q \leq z\}$)

M-semigroups with n_{1}, n_{2} fixed

Theorem

Let n_{1}, n_{2}, n_{3} be integers such that $3 \leq n_{1}<n_{2}<n_{3}, \operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$, and $n_{3} \notin\left\langle n_{1}, n_{2}\right\rangle$. Then $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ is an M-semigroup if and only if n_{3} belongs to
(1) $B_{1}=\left\{k n_{2}-n_{1} \mid k \in A\left(n_{1}\right) \cap\left[D\left(n_{1}-1\right) \cup D\left(n_{1}\right) \cup D\left(n_{1}+1\right)\right]\right\}$,
(2) or

$$
B_{2}=\left\{t n_{1}-n_{2} \mid t \in A\left(n_{1}, n_{2}\right) \cap\left[D\left(n_{2}-1\right) \cup D\left(n_{2}\right) \cup D\left(n_{2}+1\right)\right]\right\} .
$$

Moreover,
(1) S is $(T 1)$ if and only if $k \in D\left(n_{1}\right)$ or $t \in D\left(n_{2}\right)$.
(2) S is $(T 2)$ if and only if $k \in D\left(n_{1}-1\right) \cup D\left(n_{1}+1\right)$ or $t \in D\left(n_{2}-1\right) \cup D\left(n_{2}+1\right)$.

Example

(1) $\langle 9,10,21\rangle=\langle 9,10,3 \times 10-9\rangle$ is (T1)
(2) $\langle 9,10,41\rangle=\langle 9,10,5 \times 10-9\rangle$ is (T2)
(3) $\langle 9,10,51\rangle=\langle 9,10,6 \times 10-9\rangle$ is not modular

Example

(1) $(T 1): S(21,189,3)=\langle 9,10,21\rangle=\langle 3 \cdot 3,3+7,3 \cdot 7\rangle$

$$
9 \cdot(3 \cdot 3)-8 \cdot(3+7)=1
$$

$S(21,189,3)=S((9 \cdot 3-8) \cdot 3,3 \cdot 3 \cdot 7)=S(57,63)$
(2) $T 2): \mathrm{S}(41,369,5)=\langle 9,10,41\rangle=\left\langle 9, \frac{9+41}{5}, 41\right\rangle$

$$
\begin{gathered}
2 \cdot 41-9 \cdot 9=1 \Rightarrow 10 \cdot 41-45 \cdot 9=5 \\
S(41,369,5)=\mathrm{S}\left(\frac{41-1}{5} \cdot 10, \frac{41-1}{5} \cdot 9\right)=\mathrm{S}(80,72)=\mathrm{S}(8,72)
\end{gathered}
$$

M-semigroups with $n_{1}=9$,

$$
n_{2}=10
$$

Conjecture

Let $S=\left\langle n_{1}, n_{2}, \ldots, n_{e}\right\rangle$ be a PM-semigroup.
Let us suppose that $n_{1}, n_{2}, \ldots, n_{e}$ are arranged according the characterization of PM -semigroups. Let us consider the notation

- $n_{3}=k_{2} n_{2}-n_{1}=\alpha_{3} n_{2}-\beta_{3} n_{1}$;
- $n_{4}=k_{3} n_{3}-n_{2}=k_{3}\left(\alpha_{3} n_{2}-\beta_{3} n_{1}\right)-n_{2}=\alpha_{4} n_{2}-\beta_{4} n_{1} ;$
- $n_{5}=k_{4} n_{4}-n_{3}=k_{4}\left(\alpha_{4} n_{2}-\beta_{4} n_{1}\right)-\left(\alpha_{3} n_{2}-\beta_{3} n_{1}\right)=\alpha_{5} n_{2}-\beta_{5} n_{1}$;
- ...
- $n_{e}=\alpha_{e} n_{2}-\beta_{e} n_{1}$.

Then, $S=\left\langle n_{1}, n_{2}, \ldots, n_{e}\right\rangle$ is an M-semigroup if and only if

$$
\alpha_{e} \in D\left(n_{1}-1\right) \cup D\left(n_{1}\right) \cup D\left(\beta_{e} n_{1}+1\right)
$$

Proposition (J.M. Urbano-Blanco, Ph.D. Thesis)

Let m, c, k positive integers such that $\operatorname{gcd}\{m, c\}=1$. Then, $S=\langle m, m+c, \ldots, m+k c\rangle$ is a PM-semigroup. Moreover, S is modular if and only if $m \bmod k \in\{0,1\}$.
(1) $m+k c=k(m+c)-(k-1) m$;
(2) $k \in D(m-1) \Leftrightarrow m \bmod k=1$;
(3) $k \in D(m) \Leftrightarrow m \bmod k=0$;
(4) $k \in D((k-1) m) \Leftrightarrow m \bmod k=0$.
(5) Moreover, $k \in D(m+1) \Leftrightarrow m \bmod k=k-1$

References

Diophantine inequalities and numerical semigroups
Bézout sequences
Atgorithm
Algorithm
Answers and examples
V. Barucci, D.E. Dobbs and M. Fontana.

Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains.
Memoirs of the Amer. Math. Soc. 598, 1997.
B
M. Bullejos and J.C. Rosales.

Proportionally modular Diophantine inequalities and the Stern-Brocot tree. Mathematics of Computation, Vol. 78:1211-1226, 2009.
A.M. Robles-Pérez, J.C. Rosales and P. Vasco.

Modular numerical semigroups with embedding dimension equal to three.
To appear in Illinois Journal of Mathematics.
θ
J.C. Rosales and P.A. García-Sánchez.

Numerical semigroups. Developments in Mathematics, vol. 20.
Springer, 2009.
.
J.C. Rosales, P.A. García-Sánchez, J.I. García-García and J.M. Urbano-Blanco.

Proportionally modular Diophantine inequalities.
J. Number Theory, 103:281-294, 2003.
\square
J.C. Rosales, P.A. García-Sánchez and J.M. Urbano-Blanco.

Modular Diophantine inequalities and numerical semigroups.
Pacific J. Math., 218:379-398, 2005.
\boxminus
J.C. Rosales, P.A. García-Sánchez, J.M. Urbano-Blanco.

The set of solutions of a proportionally modular Diophantine inequality.
J. Number Theory, 128:453-467, 2008.

