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Abstract. Let S be a numerical semigroup with embedding dimension three. If its min-
imal generators are pairwise relatively prime numbers, then we give semi-explicit formulas
for the Frobenius number and the genus of S in such way that, if the multiplicity of S is
fixed, then they become explicit.

1. Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a subset S of N that
is closed under addition, 0 ∈ S and N \ S is finite. The elements of N \ S are the gaps of S,
and the cardinality of such a set is called the genus of S, denoted by g(S). The Frobenius
number of S is the largest integer that does not belong to S and it is denoted by F(S).

If A ⊆ N is a nonempty set, then 〈A〉 is the submonoid of (N,+) generated by A, that
is, 〈A〉 = {λ1a1 + . . . + λnan | n ∈ N \ {0}, a1, . . . , an ∈ A, λ1, . . . , λn ∈ N}. In [8] it
is proved that 〈A〉 is a numerical semigroup if and only if gcd{A} = 1, where gcd means
greatest common divisor.

It is well known (see [8]) that every numerical semigroup S admits a unique minimal
system of generators X = {n1 < n2 < . . . < ne}, that is, X ⊆ S is a finite set such that
S = 〈X〉 and, in addition, no proper subset of X generates S. The integers e and n1 are
known as the embedding dimension (e(S)) and the multiplicity (m(S)) of S, respectively.

The Frobenius problem (see [3]) consists of finding formulas for the Frobenius number
and the genus of a numerical semigroup in terms of its minimal system of generators. The
problem was solved by Sylvester and Curran Sharp (see [9]) when the embedding dimension
is two. In fact, if S = 〈n1, n2〉, then F(S) = n1n2 − n1 − n2 and g(S) = (n1−1)(n2−1)

2 .
At present, this problem is open for embedding dimensions greater than or equal to three.

To be precise, in [1] Curtis showed that it is impossible to find a polynomial formula (that is,
a finite set of polynomials) that computes the Frobenius number if the embedding dimension
is equal to three. On the other hand, several authors (see [6, 3]) have developed algorithms
that compute the Frobenius number for each numerical semigroup with dimension three.
Actually, in [4] Ramírez-Alfonsín and Rødseth obtain an efficient algorithm that computes
certain parameters, and then give a semi-explicit formula for the Frobenius number. Our
aim is to highlight the possibility of obtaining an explicit formula if the multiplicity is fixed.

If m is a positive integer, we denote by L(m) the set of numerical semigroups with
multiplicitym and embedding dimension three. Using the concept of set of chained solutions
of certain system of equations, we will solve explicitly the Frobenius problem for L(m).
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2. Background

Let {n1, n2, n3} be the minimal system of generators of a numerical semigroup S. If
d = gcd{n1, n2}, it is well known (see [2, 6]) that F(S) = dF

(
〈n1
d ,

n2
d , n3〉

)
+ (d− 1)n3 and

g(S) = d g
(
〈n1
d ,

n2
d , n3〉

)
+ (d−1)(n3−1)

2 .

Remark 2.1. Let S be a numerical semigroup minimally generated by {n1, n2, n3}. In [8,
Chapter 9] it is proved that S is a symmetric numerical semigroup if and only if there exists
a rearrangement of its generators such that e

(〈
n1
d ,

n2
d , n3

〉)
= 2 with d = gcd{n1, n2}. Thus,

we have that F(S) = 1
dn1n2 − n1 − n2 + (d− 1)n3

(
and g(S) = F(S)+1

2

)
in such a case.

Therefore, we can focus our attention on numerical semigroups whose three minimal gen-
erators m1,m2,m3 are pairwise relatively prime numbers (that is, non-symmetric numerical
semigroups). Moreover, and without loss of generality, we will suppose that m1 < m2 < m3.

We will say that (a1, . . . , an) is an integer n-tuple if a1, . . . , an ∈ Z (where Z is the set of
integers). We will say that the n-tuple (a1, . . . , an) is strongly positive if a1, . . . , an ∈ N\{0}.

The next result will be fundamental for our purpose.

Lemma 2.2. [7, Theorem 8] Let m1,m2,m3 be pairwise relatively prime positive integers.
Then the system of equations

(1)

 m1 = x12x13 + x12x23 + x13x32
m2 = x13x21 + x21x23 + x23x31
m3 = x12x31 + x21x32 + x31x32

has a strongly positive integer solution if and only if e(〈m1,m2,m3〉) = 3. Moreover, if such
a solution exists, then it is unique.

Let S = 〈m1,m2,m3〉. If (x12, x13, x23, x32, x21, x31) = (r12, r13, r23, r32, r21, r31) is the
solution of system (1), we denote by Six(S) = (r12, r13, r23, r32, r21, r31). The importance of
knowing Six(S) is shown in the following result.

Lemma 2.3. [7, Propositions 15 and 17] Under the above conditions, we have that
(1) F(〈m1,m2,m3〉) = 1

2((c1 − 2)m1 + (c2 − 2)m2 + (c3 − 2)m3 + |r23m3 − r32m2|),
(2) g(〈m1,m2,m3〉) = 1

2((c1 − 1)m1 + (c2 − 1)m2 + (c3 − 1)m3 − c1c2c3 + 1),
where c1 = r21 + r31, c2 = r12 + r32, and c3 = r13 + r23.

3. Sets of chained solutions

Let us observe that, if m1,m2,m3 are pairwise relatively prime positive integers such that
e(〈m1,m2,m3〉) = 3, then there exists k ∈ {2, . . . ,m1 − 1} such that gcd{k,m1} = 1 and
m3 ≡ km2 (mod m1). From now on we assume these conditions.

Proposition 3.1. Let (x12, x13, x23, x32) = (a12, a13, a23, a32) be a strongly positive integer
solution of m1 = x12x13 + x12x23 + x13x32. Then there exist a21, a31 positive integers such
that (a12, a13, a23, a32, a21, a31) is a strongly positive integer solution of (1) if and only if the
following conditions are fulfilled:

1) a12 + a32 − ka23 ≡ 0 (mod m1);
2) ka13 + ka23 − a32 ≡ 0 (mod m1);
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3) a23
a12+a32

< m2
m3

< a13+a23
a32

.

As a consequence of Proposition 3.1, we have that the unique strongly positive integer
solution of (1) is an extension of a strongly positive integer solution of the system

(2)

 x12x13 + x12x23 + x13x32 = m1

x12 + x32 − kx23 ≡ 0 (mod m1)
kx13 + kx23 − x32 ≡ 0 (mod m1) .

If (a, b, c, d) is a strongly positive integer 4-tuple, then we denote by I(a, b, c, d) the open
interval

]
c

a+d ,
b+c
d

[
.

Lemma 3.2. Let X = {s1, . . . , sn} be a set of strongly positive integer solutions of (2) such
that

1) the initial end of I(s1) is 1
k ;

2) for each i ∈ {1, . . . , n−1}, the final end of I(si) is equal to the initial end of I(si+1);
3) the final end of I(sn) is greater than or equal to one.

Then there exists a unique i ∈ {1, . . . , n} such that m2
m3
∈ I(si).

A set X as in Lemma 3.2 will be called a set of chained solutions of (2).

Theorem 3.3. Let X = {s1, . . . , sn} be a set of chained solutions of (2). If m2
m3
∈ I(si) and

si = (a12, a13, a23, a32), then

Six(〈m1,m2,m3〉) =
(
a12, a13, a23, a32,

(a12 + a32)m2 − a23m3

m1
,
(a13 + a23)m3 − a32m2

m1

)
.

As a consequence of Theorem 3.3, if we have a set of chained solutions of (2), then we
have a formula for Six(S). Therefore, we need a procedure to compute such a set. As usual,
if x is a real number, then we set bxc = max{z ∈ Z | z ≤ x}. Moreover, if a, b are integers
such that b 6= 0, then a mod b = a−

⌊
a
b

⌋
b.

Lemma 3.4. Under the stated conditions,
(1) (x12, x13, x23, x32) =

(
m1 mod k,

⌊
m1
k

⌋
, 1, k −m1 mod k

)
is a strongly positive inte-

ger solution of (2).
(2) if (x12, x13, x23, x32) = (a12, a13, a23, a32) is a strongly positive integer solution of (2)

and a32 > a12, then (x12, x13, x23, x32) = (a12, a13, a13 + a23, a32 − a12) is another
strongly positive integer solution of (2). Moreover, the final end of I(a12, a13, a23, a32)
and the initial end of I(a12, a13, a13 + a23, a32 − a12) are equal.

(3) if (x12, x13, x23, x32) = (a12, a13, a23, a32) is a strongly positive integer solution of
(2), a12 ≥ a32, and the final end of I(a12, a13, a23, a32) is less than one, then
(x12, x13, x23, x32) = (a12 − (t − 1)a32, ta13 + (t − 1)a23, a13 + a23, ta32 − a12) is
another strongly positive integer solution of (2) for t =

⌊
a12
a32

⌋
+ 1. Moreover, the

initial end of I(a12− (t− 1)a32, ta13+(t− 1)a23, a13+ a23, ta32− a12) is equal to the
final end of I(a12, a13, a23, a32).

By beginning with the solution given in Lemma 3.4-(1), if we apply the constructions
of Lemma 3.4-(2,3) in a suitable order, then we get that there the exists a set of chained
solutions of (2).
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Remark 3.5. See [5] for more details about the proofs of the results of this section.

4. An example

In order to clarify our results, let us see an example.

Example 4.1. Let us have S ∈ L(5) and let m1 = 5 < m2 < m3 be the minimal generators
of S. Then m3 ≡ km2 (mod 5) for some k ∈ {2, 3, 4}. Consequently, we have that,

• if m3 ≡ 2m2 (mod 5), then X = {(1, 2, 1, 1)} is a set of chained solutions of (2).
Therefore, Six(〈5,m2,m3〉) =

(
1, 2, 1, 1, 2m2−m3

5 , 3m3−m2
5

)
, F(S) = 2m3 − 5, and

g(S) = 2m2+4m3
5 − 2.

• if m3 ≡ 3m2 (mod 5), then X = {(2, 1, 1, 1)} is a set of chained solutions of (2).
Therefore, Six(〈5,m2,m3〉) =

(
2, 1, 1, 1, 3m2−m3

5 , 2m3−m2
5

)
, F(S) = m2+m3−5, and

g(S) = 4m2+2m3
5 − 2.

• if m3 ≡ 4m2 (mod 5), then X = {(1, 1, 1, 3), (1, 1, 2, 2)} is a set of chained solutions
of (2). Therefore,
– if m2

m3
< 2

3 , then Six(〈5,m2,m3〉) =
(
1, 1, 1, 3, 4m2−m3

5 , 2m3−3m2
5

)
,

F(S) = 1
2 (3m2 +m3 + |3m2 −m3|)− 5, and g(S) = 6m2+m3

5 − 2.
– if m2

m3
> 2

3 , then Six(〈5,m2,m3〉) =
(
1, 1, 2, 2, 3m2−2m3

5 , 3m3−2m2
5

)
,

F(S) = 2m3 − 5, and g(S) = 3m2+3m3
5 − 2.

Remark 4.2. Let us observe that we only have used Lemma 3.4-(1,2) in the previous example.
For using Lemma 3.4-(3) it is necessary a multiplicity greater than or equal to eleven. Thus, if
we takem1 = 101 and k = 72, thenX = {(29, 1, 1, 43), (29, 1, 2, 14), (1, 7, 3, 13), (1, 7, 10, 12)}
is a set of chained solutions of (2).
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