The numerical semigroup of the integers which are bounded by a submonoid of \mathbb{N}^2 *

Aureliano M. Robles-Pérez¹ and José Carlos Rosales^{2**}

- ¹ Dpto. de Matemática Aplicada, Univ. de Granada, 18071-Granada, Spain. arobles@ugr.es
- ² Dpto. de Álgebra, Univ. de Granada, 18071-Granada, Spain. jrosales@ugr.es

Abstract. Let *M* be a submonoid of $(\mathbb{N}^2, +)$ such that

$$A(M) = \{ n \in \mathbb{N} \mid a < n < b \text{ for some } (a, b) \in M \}$$

is a non-empty set. Then $A(M) \cup \{0\}$ is a numerical semigroup. We will show that a numerical semigroup S can be obtained in this way if and only if $\{a+b-1, a+b+1\} \subseteq S$ for all $a, b \in S \setminus \{0\}$. We will see that such numerical semigroups form a Frobenius variety and we will study it.

Keywords: submonoids, numerical semigroups, non-homogeneous patterns, Frobenius varieties, trees.

1 Introduction

Let \mathbb{N} be the set of nonnegative integers and let M be a submonoid of $(\mathbb{N}^2, +)$ (that is, a subset of \mathbb{N}^2 that is closed for the addition and that contains the zero element (0,0)). We will say that a positive integer n is *bounded* by M if there exists $(a,b) \in M$ such that a < n < b. We will denote by $A(M) = \{n \in \mathbb{N} \mid n \text{ is bounded by } M\}.$

A numerical semigroup is a submonoid S of $(\mathbb{N}, +)$ such that gcd(S) = 1.

It is easy to check that, if M is a submonoid of $(\mathbb{N}^2, +)$ such that A(M)is not empty, then $A(M) \cup \{0\}$ is a numerical semigroup. This fact allows us to give the concept of *numerical* \mathcal{A} -semigroup. Indeed, a numerical semigroup S is a *numerical* \mathcal{A} -semigroup if there exists M, submonoid of $(\mathbb{N}^2, +)$, such that $S = A(M) \cup \{0\}$.

The purpose of this work is to study this family of numerical semigroups. First of all, we will show a characterization of them, via the concept of non-homogeneous pattern (see [1]), and how we can obtain all of them.

^{*} Supported by FQM-343 (Junta de Andalucía), MTM2010-15595 (MICINN, Spain), and FEDER funds.

^{**} Partially supported by Junta de Andalucía/FEDER Grant Number FQM-5849.

2 Aureliano M. Robles-Pérez and José Carlos Rosales

We have that, if S is a numerical semigroup, then $\mathbb{N} \setminus S$ is finite. This fact allows us to define the *Frobenius number* of S, denoted by F(S), as the greatest integer that does not belong to S (see [4]).

A Frobenius variety (see [6]) is a non-empty family \mathcal{V} of numerical semigroups that fulfills the following conditions,

- 1. if $S, T \in \mathcal{V}$, then $S \cap T \in \mathcal{V}$;
- 2. if $S \in \mathcal{V}$ and $S \neq \mathbb{N}$, then $S \cup \{F(S)\} \in \mathcal{V}$.

If we denote by $\mathcal{A} = \{S \mid S \text{ is a numerical } \mathcal{A}\text{-semigroup}\}$, then we will show that \mathcal{A} is a Frobenius variety. As a consequence of this result, we will arrange the elements of \mathcal{A} in a tree $G(\mathcal{A})$ with root \mathbb{N} .

Finally, we will see that, if X is a non-empty set of positive integers, then there exists the smallest numerical \mathcal{A} -semigroup, $\mathcal{A}(X)$, that contains X. Moreover, we will design an algorithm to compute $\mathcal{A}(X)$ starting from X.

We end this introduction pointing out that this work is a short version of the manuscript [5] that is under review process.

2 Numerical \mathcal{A} -semigroups

Let us remember that, if M is a submonoid of $(\mathbb{N}^2, +)$, then

$$A(M) = \{ n \in \mathbb{N} \mid a < n < b \text{ for some } (a, b) \in \mathbb{N}^2 \}.$$

Lemma 1. Let M be a submonoid of $(\mathbb{N}^2, +)$. If $x, y \in A(M)$, then we have that $\{x + y - 1, x + y, x + y + 1\} \subseteq A(M)$.

Remark 1. Let us observe that there exist numerical semigroups that are not numerical \mathcal{A} -semigroups. For example, the numerical semigroup $S = \{0, 5, 7, 9, 10, 12, 14, \rightarrow\}$ (where the symbol \rightarrow means that every integer greater than 14 belongs to S) is not a numerical \mathcal{A} -semigroup because $5 + 7 + 1 \notin S$.

Let X be a non-empty subset of a commutative monoid $(\mathfrak{M}, +)$. The monoid generated by X, denoted by $\langle X \rangle$, is the smallest (with respect to the set inclusion) submonoid of $(\mathfrak{M}, +)$ containing X. It is known (see [7]) that $\langle X \rangle = \{\lambda_1 x_1 + \cdots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \ldots, x_n \in X, \lambda_1, \ldots, \lambda_n \in \mathbb{N}\}.$

If $\mathfrak{M} = \langle X \rangle$, then we say that X is a system of generators of \mathfrak{M} (or that \mathfrak{M} is generated by X). It is well known (see [8]) that the submonoids of $(\mathbb{N}, +)$ (in particular, the numerical semigroups) are finitely generated.

Lemma 2. Let S be the numerical semigroup generated by a set of positive integers $\{n_1, \ldots, n_p\}$. Let us assume that $\{x + y - 1, x + y + 1\} \subseteq S$, for every $x, y \in S \setminus \{0\}$. If $\lambda_1, \ldots, \lambda_p, x \in \mathbb{N}$ and $\lambda_1(n_1 - 1) + \cdots + \lambda_p(n_p - 1) < x < \lambda_1(n_1 + 1) + \cdots + \lambda_p(n_p + 1)$, then $x \in S$.

In the next result (that is a consequence of Lemmas 1 and 2) we give a characterization of numerical \mathcal{A} -semigroups.

Theorem 1. Let S be a numerical semigroup. The following conditions are equivalent.

- 1. S is a numerical A-semigroup.
- 2. If $x, y \in S \setminus \{0\}$, then $\{x + y 1, x + y + 1\} \subseteq S$.

The next result guarantees us that, to study numerical \mathcal{A} -semigroups, we can focus in finitely generated submonoids of $(\mathbb{N}^2, +)$.

Corollary 1. Let S be a numerical semigroup. The following conditions are equivalent.

- 1. S is a numerical A-semigroup.
- 2. $S = A(M) \cup \{0\}$ for some finitely generated submonoid M of $(\mathbb{N}^2, +)$.
- 3. There exist $a_1, b_1, \ldots, a_p, b_p \in \mathbb{N}$ such that $S = \{n \in \mathbb{N} \mid a_1x_1 + \cdots + a_px_p < n < b_1x_1 + \cdots + b_px_p \text{ for some } x_1, \ldots, x_p \in \mathbb{N}\} \cup \{0\}.$

From Item 3 of Corollary 1, we can see a numerical \mathcal{A} -semigroup as a set that contains the integers n such that the system of inequalities

$$a_1 x_1 + \dots + a_p x_p < n < b_1 x_1 + \dots + b_p x_p$$

has solution in \mathbb{N}^p (where $\{a_1, b_1, \ldots, a_p, b_p\} \subseteq \mathbb{N}$ is a fixed set).

Let $(\mathfrak{M}, +)$ be a commutative monoid and let X be a system of generators of \mathfrak{M} . If $\mathfrak{M} \neq \langle Y \rangle$ for all $Y \subset X$ (with $Y \neq X$), then we say that X is a minimal system of generators of \mathfrak{M} .

The following result is consequence of [8, Lemma 2.3, Corollary 2.8].

Lemma 3. Let M be a submonoid of $(\mathbb{N}, +)$. Then the minimal system of generators of M is $X = (M \setminus \{0\}) \setminus ((M \setminus \{0\}) + (M \setminus \{0\}))$. In addition, X is finite and is contained in every system of generators of M.

Let S be a numerical semigroup and let $\{n_1, \ldots, n_p\} \subseteq \mathbb{N} \setminus \{0\}$ be a system of generators of S. If $s \in S$, then it is defined the *order* of s in S by (see [2]) $\operatorname{ord}(s; S) = \max \{a_1 + \cdots + a_p \mid a_1n_1 + \cdots + a_pn_p = s, \text{ with } a_1, \ldots, a_p \in \mathbb{N}\}.$ If no ambiguity is possible, then we write $\operatorname{ord}(s)$.

Remark 2. From Lemma 3, the definition of $\operatorname{ord}(s; S)$ is independent of the considered system of generators of S, that is, only depends on s and S. Thus, we can take the minimal system of generators of S in order to define $\operatorname{ord}(s; S)$.

Lemma 4. Let S be the numerical semigroup with minimal system of generators $\{n_1, \ldots, n_p\}$ and let $s \in S$.

- 1. If $i \in \{1, ..., p\}$ and $s n_i \in S$, then $\operatorname{ord}(s n_i) \leq \operatorname{ord}(s) 1$.
- 2. If $s = a_1n_1 + \dots + a_pn_p$, with $\operatorname{ord}(s) = a_1 + \dots + a_p$ and $a_i \neq 0$, then $\operatorname{ord}(s n_i) = \operatorname{ord}(s) 1$.

4 Aureliano M. Robles-Pérez and José Carlos Rosales

As a consequence of Theorem 1 and Lemma 4, we have another characterization of numerical \mathcal{A} -semigroups.

Proposition 1. Let S be a numerical semigroup with minimal system of generators given by $\{n_1, \ldots, n_p\}$. The following conditions are equivalent.

- 1. S is a numerical A-semigroup.
- 2. If $i, j \in \{1, ..., p\}$, then $\{n_i + n_j 1, n_i + n_j + 1\} \subseteq S$. 3. If $s \in S \setminus \{0, n_1, ..., n_p\}$, then $\{s - 1, s + 1\} \subseteq S$. 4. If $s \in S \setminus \{0\}$, then $s + z \in S$ for all $z \in \mathbb{Z}$ such that $|z| < \operatorname{ord}(s)$.

Remark 3. Item 2 of the above proposition allows us to decide, faster than with Theorem 1, if a numerical semigroup is a numerical \mathcal{A} -semigroup.

Remark 4. Let us remember that the gaps of a numerical semigroup S are the elements of the set $\mathbb{N} \setminus S$. As a consequence of Item 3 of Proposition 1, we have that a numerical \mathcal{A} -semigroups S can be characterized as a numerical semigroup satisfying that, if $s \in S$ is a maximum or a minimum of an interval of non-gaps, then s is a minimal generator of S or s = 0.

Example 1. Let S be the numerical semigroup minimally generated by $\{3, 5, 7\}$. Since $\{3+3\} + \{-1, 1\}, \{3+5\} + \{-1, 1\}, \{3+7\} + \{-1, 1\}, \{5+5\} + \{-1, 1\}, \{5+7\} + \{-1, 1\}, and \{7+7\} + \{-1, 1\}$ are subsets of S, then we can assert that S is a numerical \mathcal{A} -semigroup (remember Remark 3).

On the other hand, we have that $S = \{0, 3, 5, 6, 7, \rightarrow\}$ and, thereby, its intervals of non-gaps are $\{0\}$, $\{3\}$ and $\{5, \rightarrow\}$. Inasmuch as the maximum and the minimum of such a sets are zero or a minimal generator, from Remark 4, we have another way to state that S is a numerical \mathcal{A} -semigroup.

Example 2. Let T be the numerical semigroup minimally generated by $\{5, 7, 9\}$. Then $T = \{0, 5, 7, 9, 10, 12, 14, \rightarrow\}$ and its intervals of non-gaps are $\{0\}, \{5\}, \{7\}, \{9, 10\}, \{12\}, \text{ and } \{14, \rightarrow\}$. Since $\max\{9, 10\} = 10$ is different from zero and it is not a minimal generator of T, then T is not a numerical \mathcal{A} -semigroup.

3 The Frobenius variety of the numerical \mathcal{A} -semigroups

Lemma 5. Let S, T be numerical semigroups.

- 1. $S \cap T$ is a numerical semigroup.
- 2. If $S \neq \mathbb{N}$, then $S \cup \{F(S)\}$ is a numerical semigroup.

From Lemma 5 and Theorem 1, we have the following result.

Proposition 2. The set $\mathcal{A} = \{S \mid S \text{ is a numerical } \mathcal{A}\text{-semigroup}\}$ is a Frobenius variety.

A graph G is a pair (V, E), where V is a non-empty set and E is a subset of $\{(v, w) \in V \times V \mid v \neq w\}$. The elements of V are called *vertices* of G and the elements of E are called *edges* of G. A *path* (of length n) connecting the vertices x and y of G is a sequence of different edges of the form $(v_0, v_1), (v_1, v_2), \ldots, (v_{n-1}, v_n)$ such that $v_0 = x$ and $v_n = y$.

We say that a graph G is a *tree* if there exists a vertex v^* (the *root* of G) such that, for every other vertex x of G, there exists a unique path connecting x and v^* . If (x, y) is an edge of the tree, then we say that x is a *child* of y.

We define the graph $G(\mathcal{A})$ in the following way,

- \mathcal{A} is the set of vertices of $G(\mathcal{A})$;
- $(S, S') \in \mathcal{A} \times \mathcal{A}$ is an edge of $G(\mathcal{A})$ if $S' = S \cup \{F(S)\}.$

If S is a numerical semigroup, then we will denote by msg(S) the minimal system of generators of S. It is easy to show (see [8, Exercise 2.1]) that, if S is a numerical semigroup and $x \in S$, then $S \setminus \{x\}$ is a numerical semigroup if and only if $x \in msg(S)$.

The next result is consequence of [6, Proposition 24, Theorem 27].

Theorem 2. $G(\mathcal{A})$ is a tree with root \mathbb{N} . Moreover, the set of children of a vertex $S \in \mathcal{A}$ is $\{S \setminus \{x\} \mid x \in msg(S), x > F(S), and S \setminus \{x\} \in \mathcal{A}\}$.

Now, we will characterize the elements $x \in msg(S)$ such that $S \setminus \{x\} \in \mathcal{A}$.

Proposition 3. Let S be a numerical \mathcal{A} -semigroup such that $S \neq \mathbb{N}$, and let $x \in \operatorname{msg}(S)$. Then $S \setminus \{x\}$ is a numerical \mathcal{A} -semigroup if and only if $\{x-1, x+1\} \subseteq \{0\} \cup (\mathbb{N} \setminus S) \cup \operatorname{msg}(S)$.

Corollary 2. Let S be a numerical A-semigroup such that $S \neq \mathbb{N}$, and let x be a minimal generator of S greater than F(S). Then $S \setminus \{x\}$ is a numerical A-semigroup if and only if $\{x - 1, x + 1\} \subseteq msg(S) \cup \{F(S)\}$.

By applying Theorem 2 and Corollary 2 (see Example 3) we can build recursively the tree $G(\mathcal{A})$ such as it is shown in the following figure.

6 Aureliano M. Robles-Pérez and José Carlos Rosales

Example 3. Let S be the numerical semigroup with minimal system of generators $\{4, 6, 7, 9\}$. Then $S = \{0, 4, 6, \rightarrow\}$ and, therefore, F(S) = 5. From Proposition 1, we deduce that S is a numerical \mathcal{A} -semigroup. By applying Theorem 2 and Corollary 2, we get that S has a unique child in $G(\mathcal{A})$. Namely, $S \setminus \{6\} = \langle 4, 7, 9, 10 \rangle$.

Remark 5. Let us observe that, if S' is a child of S in $G(\mathcal{A})$, then F(S') > F(S)and g(S') = g(S) + 1. Therefore, when we go on along the branches of the tree $G(\mathcal{A})$, we get numerical semigroups with greater Frobenius number and genus. Thus, we can use this construction in order to obtain all the numerical \mathcal{A} -semigroups with a given Frobenius number or genus.

4 The smallest numerical \mathcal{A} -semigroup that contains a given set of positive integers

Since \mathcal{A} is a Frobenius variety, we have that the finite intersection of numerical \mathcal{A} -semigroups is a numerical \mathcal{A} -semigroup. However, the infinite intersection of numerical \mathcal{A} -semigroups is not always a numerical \mathcal{A} -semigroup. On the other hand, it is clear that the (finite or infinite) intersection of numerical semigroups is always a submonoid of $(\mathbb{N}, +)$.

If M is a submonoid of $(\mathbb{N}, +)$, then we will say that M is an \mathcal{A} -monoid if it can be expressed like the intersection of numerical \mathcal{A} -semigroups. Being that the intersection of \mathcal{A} -monoids is an \mathcal{A} -monoid, we can give the following definition.

Definition 1. Let X be a subset of \mathbb{N} . The A-monoid generated by X (denoted by $\mathcal{A}(X)$) is the intersection of all A-monoids containing X.

Let us observe that $\mathcal{A}(X)$ is the smallest \mathcal{A} -monoid containing X.

Proposition 4. If $X \subseteq \mathbb{N}$, then $\mathcal{A}(X)$ is the intersection of all numerical \mathcal{A} -semigroups that contain X. Moreover, if $X \neq \emptyset$ and $X \subseteq \mathbb{N} \setminus \{0\}$, then $\mathcal{A}(X)$ is a numerical \mathcal{A} -semigroup.

As a consequence of Proposition 4, we have that M is an \mathcal{A} -monoid if and only if M is a numerical \mathcal{A} -semigroup or $M = \{0\}$. Moreover, from Lemma 3 and Proposition 4, we can prove the next result.

Theorem 3. $\mathcal{A} = \{\mathcal{A}(X) \mid X \text{ is a non-empty finite subset of } \mathbb{N} \setminus \{0\}\}.$

If M is an \mathcal{A} -monoid and X is a subset of \mathbb{N} such that $M = \mathcal{A}(X)$, then we will say that X is an \mathcal{A} -system of generators of M. In addition, if $M \neq \mathcal{A}(Y)$ for all $Y \subset X$ (with $Y \neq X$), then we will say that X is a minimal \mathcal{A} -system of generators of M. From [6, Corollary 19], we have the following result.

7

Proposition 5. Every A-monoid has a unique minimal A-system of generators, which in addition is finite.

The next result follows from [6, Proposition 24].

Proposition 6. Let M be an A-monoid and let $x \in M$. Then $M \setminus \{x\}$ is an A-monoid if and only if x is a minimal A-system generator of M.

Corollary 3. Let X be a non-empty subset of $\mathbb{N} \setminus \{0\}$. Then the set given by $\{x \in X \mid \mathcal{A}(X) \setminus \{x\} \text{ is a numerical } \mathcal{A}\text{-semigroup}\}$ is the minimal $\mathcal{A}\text{-system}$ of generators of $\mathcal{A}(X)$.

Example 4. Beginning in Example 3, we know that $S = \langle 4, 6, 7, 9 \rangle$ is a numerical \mathcal{A} -semigroup. By applying Proposition 3, we easily deduce that

 $\{x \in \{4, 6, 7, 9\} \mid S \setminus \{x\} \text{ is a numerical } \mathcal{A}\text{-semigroup}\} = \{4, 6\}.$

Therefore, $S = \mathcal{A}(\{4, 6\})$ and $\{4, 6\}$ is its minimal \mathcal{A} -system of generators.

Let x_1, \ldots, x_t be positive integers. We will denote by $S(x_1, \ldots, x_t)$ the set $\{a_1x_1 + \cdots + a_tx_t + z \mid a_1, \ldots, a_t \in \mathbb{N}, z \in \mathbb{Z}, \text{ and } |z| < a_1 + \cdots + a_t\} \cup \{0\}.$

Theorem 4. If x_1, \ldots, x_t are positive integers, then $S(x_1, \ldots, x_t)$ is the smallest numerical A-semigroup that contains the set $\{x_1, \ldots, x_t\}$.

Corollary 4. If m is a positive integer, then

 $\mathcal{A}(\{m\}) = \{km + z \mid k \in \mathbb{N} \setminus \{0\} \text{ and } z \in \{-(k-1), \dots, k-1\}\} \cup \{0\}.$

Example 5. The smallest numerical \mathcal{A} -semigroup containing m = 10 is the set $\mathcal{A}(\{10\}) = \{k \cdot 10 + z \mid k \in \mathbb{N} \setminus \{0\} \text{ and } z \in \{-(k-1), \dots, k-1\}\} \cup \{0\} = \{0, 10, 19, 20, 21, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 46, \rightarrow\}$. By using minimal generators, $\mathcal{A}(\{10\}) = \langle 10, 19, 21, 28, 32, 37, 43, 46, 54, 55 \rangle$.

Let us observe that, in Theorem 4, are described the elements of the smallest numerical \mathcal{A} -semigroup containing a given set of positive integers. However, in order to compute such a numerical \mathcal{A} -semigroup, we propose the following algorithm that is justified by Proposition 1.

Algorithm 1. INPUT: A finite set X of positive integers.

OUTPUT: The minimal system of generators of $\mathcal{A}(X)$.

- (1) $Y = msg(\langle X \rangle).$
- (2) $Z = Y \cup \left(\bigcup_{a,b \in Y} \{a+b-1, a+b+1\} \right).$
- (3) If $msg(\langle Z \rangle) = Y$, then return Y.
- (4) Set $Y = msg(\langle Z \rangle)$ and go to (2).

Example 6. We are going to compute $\mathcal{A}(\{5,7\})$ applying Algorithm 1.

- $Y = \{5, 7\}.$
- $Z = \{5, 7, 9, 11, 13, 15\}.$
- $msg(\langle Z \rangle) = \{5, 7, 9, 11, 13\}.$
- $Y = \{5, 7, 9, 11, 13\}.$
- $Z = \{5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27\}.$
- $msg(\langle Z \rangle) = \{5, 7, 9, 11, 13\}.$
- $\mathcal{A}(\{5,7\}) = \langle 5,7,9,11,13 \rangle.$

The most complex process in Algorithm 1 is the computation of $msg(\langle Z \rangle)$, that is, the computation of the minimal system of generators of a numerical semigroup S starting from a system of generators of it. For this purpose, we can use the GAP package called numericalsgps (see [3]).

References

- M. Bras-Amorós, P. A. García-Sánchez and A. Vico-Oton. Nonhomogeneous patterns on numerical semigroups. Int. J. Algebra Comput., 23:1469–1483, 2013.
- [2] L. Bryant. Goto numbers of a numerical semigroup ring and the Gorensteiness of associated graded rings. *Comm. Algebra*, 38:2092–2128, 2010.
- [3] M. Delgado, P. A. García-Sánchez, and J. Morais. "numericalsgps": a GAP package on numerical semigroups. http://www.gap-system.org/Packages/numericalsgps.html.
- [4] J. L. Ramírez Alfonsín. The Diophantine Frobenius problem. Oxford Univ. Press, 2005.
- [5] A. M. Robles-Pérez and J. C. Rosales. Numerical semigroups in a problem about transport with benefits. Preprint.
- [6] J. C. Rosales. Families of numerical semigroups closed under finite intersections and for the Frobenius number. *Houston J. Math.*, 34:339–348, 2008.
- [7] J. C. Rosales and P. A. García-Sánchez. Finitely generated commutative monoids. Nova Science Publishers, New York, 1999.
- [8] J. C. Rosales and P. A. García-Sánchez. Numerical semigroups. Developments in Mathematics, vol. 20. Springer, New York, 2009.