The numerical semigroup of the integers which are bounded by a submonoid of \mathbb{N}^{2} *

Aureliano M. Robles-Pérez ${ }^{1}$ and José Carlos Rosales ${ }^{2 \star \star}$
1 Dpto. de Matemática Aplicada, Univ. de Granada, 18071-Granada, Spain. arobles@ugr.es
2 Dpto. de Álgebra, Univ. de Granada, 18071-Granada, Spain. jrosales@ugr.es

$$
\begin{aligned}
& \text { Abstract. Let } M \text { be a submonoid of }\left(\mathbb{N}^{2},+\right) \text { such that } \\
& \qquad \mathrm{A}(M)=\{n \in \mathbb{N} \mid a<n<b \text { for some }(a, b) \in M\}
\end{aligned}
$$

is a non-empty set. Then $\mathrm{A}(M) \cup\{0\}$ is a numerical semigroup. We will show that a numerical semigroup S can be obtained in this way if and only if $\{a+b-1, a+b+1\} \subseteq$ S for all $a, b \in S \backslash\{0\}$. We will see that such numerical semigroups form a Frobenius variety and we will study it.

Keywords: submonoids, numerical semigroups, non-homogeneous patterns, Frobenius varieties, trees.

1 Introduction

Let \mathbb{N} be the set of nonnegative integers and let M be a submonoid of $\left(\mathbb{N}^{2},+\right)$ (that is, a subset of \mathbb{N}^{2} that is closed for the addition and that contains the zero element $(0,0)$). We will say that a positive integer n is bounded by M if there exists $(a, b) \in M$ such that $a<n<b$. We will denote by $\mathrm{A}(M)=\{n \in \mathbb{N} \mid n$ is bounded by $M\}$.

A numerical semigroup is a submonoid S of $(\mathbb{N},+)$ such that $\operatorname{gcd}(S)=1$.
It is easy to check that, if M is a submonoid of $\left(\mathbb{N}^{2},+\right)$ such that $\mathrm{A}(M)$ is not empty, then $\mathrm{A}(M) \cup\{0\}$ is a numerical semigroup. This fact allows us to give the concept of numerical \mathcal{A}-semigroup. Indeed, a numerical semigroup S is a numerical \mathcal{A}-semigroup if there exists M, submonoid of $\left(\mathbb{N}^{2},+\right)$, such that $S=\mathrm{A}(M) \cup\{0\}$.

The purpose of this work is to study this family of numerical semigroups. First of all, we will show a characterization of them, via the concept of nonhomogeneous pattern (see [1]), and how we can obtain all of them.

[^0]We have that, if S is a numerical semigroup, then $\mathbb{N} \backslash S$ is finite. This fact allows us to define the Frobenius number of S, denoted by $\mathrm{F}(S)$, as the greatest integer that does not belong to S (see [4]).

A Frobenius variety (see [6]) is a non-empty family \mathcal{V} of numerical semigroups that fulfills the following conditions,

1. if $S, T \in \mathcal{V}$, then $S \cap T \in \mathcal{V}$;
2. if $S \in \mathcal{V}$ and $S \neq \mathbb{N}$, then $S \cup\{\mathrm{~F}(S)\} \in \mathcal{V}$.

If we denote by $\mathcal{A}=\{S \mid S$ is a numerical \mathcal{A}-semigroup $\}$, then we will show that \mathcal{A} is a Frobenius variety. As a consequence of this result, we will arrange the elements of \mathcal{A} in a tree $\mathrm{G}(\mathcal{A})$ with root \mathbb{N}.

Finally, we will see that, if X is a non-empty set of positive integers, then there exists the smallest numerical \mathcal{A}-semigroup, $\mathcal{A}(X)$, that contains X. Moreover, we will design an algorithm to compute $\mathcal{A}(X)$ starting from X.

We end this introduction pointing out that this work is a short version of the manuscript [5] that is under review process.

2 Numerical \mathcal{A}-semigroups

Let us remember that, if M is a submonoid of $\left(\mathbb{N}^{2},+\right)$, then

$$
\mathrm{A}(M)=\left\{n \in \mathbb{N} \mid a<n<b \text { for some }(a, b) \in \mathbb{N}^{2}\right\}
$$

Lemma 1. Let M be a submonoid of $\left(\mathbb{N}^{2},+\right)$. If $x, y \in \mathrm{~A}(M)$, then we have that $\{x+y-1, x+y, x+y+1\} \subseteq \mathrm{A}(M)$.

Remark 1. Let us observe that there exist numerical semigroups that are not numerical \mathcal{A}-semigroups. For example, the numerical semigroup $S=$ $\{0,5,7,9,10,12,14, \rightarrow\}$ (where the symbol \rightarrow means that every integer greater than 14 belongs to S) is not a numerical \mathcal{A}-semigroup because $5+7+1 \notin S$.

Let X be a non-empty subset of a commutative monoid $(\mathfrak{M},+)$. The monoid generated by X, denoted by $\langle X\rangle$, is the smallest (with respect to the set inclusion) submonoid of ($\mathfrak{M},+$) containing X. It is known (see [7]) that $\langle X\rangle=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n} \mid n \in \mathbb{N} \backslash\{0\}, x_{1}, \ldots, x_{n} \in X, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\}$.

If $\mathfrak{M}=\langle X\rangle$, then we say that X is a system of generators of \mathfrak{M} (or that \mathfrak{M} is generated by X). It is well known (see [8]) that the submonoids of $(\mathbb{N},+)$ (in particular, the numerical semigroups) are finitely generated.

Lemma 2. Let S be the numerical semigroup generated by a set of positive integers $\left\{n_{1}, \ldots, n_{p}\right\}$. Let us assume that $\{x+y-1, x+y+1\} \subseteq S$, for every $x, y \in S \backslash\{0\}$. If $\lambda_{1}, \ldots, \lambda_{p}, x \in \mathbb{N}$ and $\lambda_{1}\left(n_{1}-1\right)+\cdots+\lambda_{p}\left(n_{p}-1\right)<x<$ $\lambda_{1}\left(n_{1}+1\right)+\cdots+\lambda_{p}\left(n_{p}+1\right)$, then $x \in S$.

In the next result (that is a consequence of Lemmas 1 and 2) we give a characterization of numerical \mathcal{A}-semigroups.

Theorem 1. Let S be a numerical semigroup. The following conditions are equivalent.

1. S is a numerical \mathcal{A}-semigroup.
2. If $x, y \in S \backslash\{0\}$, then $\{x+y-1, x+y+1\} \subseteq S$.

The next result guarantees us that, to study numerical \mathcal{A}-semigroups, we can focus in finitely generated submonoids of $\left(\mathbb{N}^{2},+\right)$.

Corollary 1. Let S be a numerical semigroup. The following conditions are equivalent.

1. S is a numerical \mathcal{A}-semigroup.
2. $S=\mathrm{A}(M) \cup\{0\}$ for some finitely generated submonoid M of $\left(\mathbb{N}^{2},+\right)$.
3. There exist $a_{1}, b_{1}, \ldots, a_{p}, b_{p} \in \mathbb{N}$ such that $S=\left\{n \in \mathbb{N} \mid a_{1} x_{1}+\cdots+a_{p} x_{p}<\right.$ $n<b_{1} x_{1}+\cdots+b_{p} x_{p}$ for some $\left.x_{1}, \ldots, x_{p} \in \mathbb{N}\right\} \cup\{0\}$.

From Item 3 of Corollary 1, we can see a numerical \mathcal{A}-semigroup as a set that contains the integers n such that the system of inequalities

$$
a_{1} x_{1}+\cdots+a_{p} x_{p}<n<b_{1} x_{1}+\cdots+b_{p} x_{p}
$$

has solution in \mathbb{N}^{p} (where $\left\{a_{1}, b_{1}, \ldots, a_{p}, b_{p}\right\} \subseteq \mathbb{N}$ is a fixed set).
Let $(\mathfrak{M},+)$ be a commutative monoid and let X be a system of generators of \mathfrak{M}. If $\mathfrak{M} \neq\langle Y\rangle$ for all $Y \subset X$ (with $Y \neq X)$, then we say that X is a minimal system of generators of \mathfrak{M}.

The following result is consequence of [8, Lemma 2.3, Corollary 2.8].
Lemma 3. Let M be a submonoid of $(\mathbb{N},+)$. Then the minimal system of generators of M is $X=(M \backslash\{0\}) \backslash((M \backslash\{0\})+(M \backslash\{0\}))$. In addition, X is finite and is contained in every system of generators of M.

Let S be a numerical semigroup and let $\left\{n_{1}, \ldots, n_{p}\right\} \subseteq \mathbb{N} \backslash\{0\}$ be a system of generators of S. If $s \in S$, then it is defined the order of s in S by (see [2]) $\operatorname{ord}(s ; S)=\max \left\{a_{1}+\cdots+a_{p} \mid a_{1} n_{1}+\cdots+a_{p} n_{p}=s\right.$, with $\left.a_{1}, \ldots, a_{p} \in \mathbb{N}\right\}$. If no ambiguity is possible, then we write $\operatorname{ord}(s)$.

Remark 2. From Lemma 3, the definition of $\operatorname{ord}(s ; S)$ is independent of the considered system of generators of S, that is, only depends on s and S. Thus, we can take the minimal system of generators of S in order to define $\operatorname{ord}(s ; S)$.

Lemma 4. Let S be the numerical semigroup with minimal system of generators $\left\{n_{1}, \ldots, n_{p}\right\}$ and let $s \in S$.

1. If $i \in\{1, \ldots, p\}$ and $s-n_{i} \in S$, then $\operatorname{ord}\left(s-n_{i}\right) \leq \operatorname{ord}(s)-1$.
2. If $s=a_{1} n_{1}+\cdots+a_{p} n_{p}$, with $\operatorname{ord}(s)=a_{1}+\cdots+a_{p}$ and $a_{i} \neq 0$, then $\operatorname{ord}\left(s-n_{i}\right)=\operatorname{ord}(s)-1$.

As a consequence of Theorem 1 and Lemma 4, we have another characterization of numerical \mathcal{A}-semigroups.

Proposition 1. Let S be a numerical semigroup with minimal system of generators given by $\left\{n_{1}, \ldots, n_{p}\right\}$. The following conditions are equivalent.

1. S is a numerical \mathcal{A}-semigroup.
2. If $i, j \in\{1, \ldots, p\}$, then $\left\{n_{i}+n_{j}-1, n_{i}+n_{j}+1\right\} \subseteq S$.
3. If $s \in S \backslash\left\{0, n_{1}, \ldots, n_{p}\right\}$, then $\{s-1, s+1\} \subseteq S$.
4. If $s \in S \backslash\{0\}$, then $s+z \in S$ for all $z \in \mathbb{Z}$ such that $|z|<\operatorname{ord}(s)$.

Remark 3. Item 2 of the above proposition allows us to decide, faster than with Theorem 1, if a numerical semigroup is a numerical \mathcal{A}-semigroup.

Remark 4. Let us remember that the gaps of a numerical semigroup S are the elements of the set $\mathbb{N} \backslash S$. As a consequence of Item 3 of Proposition 1, we have that a numerical \mathcal{A}-semigroups S can be characterized as a numerical semigroup satisfying that, if $s \in S$ is a maximum or a minimum of an interval of non-gaps, then s is a minimal generator of S or $s=0$.

Example 1. Let S be the numerical semigroup minimally generated by $\{3,5,7\}$. Since $\{3+3\}+\{-1,1\},\{3+5\}+\{-1,1\},\{3+7\}+\{-1,1\},\{5+5\}+\{-1,1\}$, $\{5+7\}+\{-1,1\}$, and $\{7+7\}+\{-1,1\}$ are subsets of S, then we can assert that S is a numerical \mathcal{A}-semigroup (remember Remark 3).

On the other hand, we have that $S=\{0,3,5,6,7, \rightarrow\}$ and, thereby, its intervals of non-gaps are $\{0\},\{3\}$ and $\{5, \rightarrow\}$. Inasmuch as the maximum and the minimum of such a sets are zero or a minimal generator, from Remark 4, we have another way to state that S is a numerical \mathcal{A}-semigroup.

Example 2. Let T be the numerical semigroup minimally generated by $\{5,7,9\}$. Then $T=\{0,5,7,9,10,12,14, \rightarrow\}$ and its intervals of non-gaps are $\{0\},\{5\}$, $\{7\},\{9,10\},\{12\}$, and $\{14, \rightarrow\}$. Since $\max \{9,10\}=10$ is different from zero and it is not a minimal generator of T, then T is not a numerical \mathcal{A}-semigroup.

3 The Frobenius variety of the numerical \mathcal{A}-semigroups

Lemma 5. Let S, T be numerical semigroups.

1. $S \cap T$ is a numerical semigroup.
2. If $S \neq \mathbb{N}$, then $S \cup\{\mathrm{~F}(S)\}$ is a numerical semigroup.

From Lemma 5 and Theorem 1, we have the following result.
Proposition 2. The set $\mathcal{A}=\{S \mid S$ is a numerical \mathcal{A}-semigroup $\}$ is a Frobenius variety.

A graph G is a pair (V, E), where V is a non-empty set and E is a subset of $\{(v, w) \in V \times V \mid v \neq w\}$. The elements of V are called vertices of G and the elements of E are called edges of G. A path (of length n) connecting the vertices x and y of G is a sequence of different edges of the form $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{n-1}, v_{n}\right)$ such that $v_{0}=x$ and $v_{n}=y$.

We say that a graph G is a tree if there exists a vertex v^{*} (the root of G) such that, for every other vertex x of G, there exists a unique path connecting x and v^{*}. If (x, y) is an edge of the tree, then we say that x is a child of y.

We define the graph $\mathrm{G}(\mathcal{A})$ in the following way,

- \mathcal{A} is the set of vertices of $\mathrm{G}(\mathcal{A})$;
- $\left(S, S^{\prime}\right) \in \mathcal{A} \times \mathcal{A}$ is an edge of $\mathrm{G}(\mathcal{A})$ if $S^{\prime}=S \cup\{\mathrm{~F}(S)\}$.

If S is a numerical semigroup, then we will denote by $\operatorname{msg}(S)$ the minimal system of generators of S. It is easy to show (see [8, Exercise 2.1]) that, if S is a numerical semigroup and $x \in S$, then $S \backslash\{x\}$ is a numerical semigroup if and only if $x \in \operatorname{msg}(S)$.

The next result is consequence of [6, Proposition 24, Theorem 27].
Theorem 2. $\mathrm{G}(\mathcal{A})$ is a tree with root \mathbb{N}. Moreover, the set of children of a vertex $S \in \mathcal{A}$ is $\{S \backslash\{x\} \mid x \in \operatorname{msg}(S), x>\mathrm{F}(S)$, and $S \backslash\{x\} \in \mathcal{A}\}$.

Now, we will characterize the elements $x \in \operatorname{msg}(S)$ such that $S \backslash\{x\} \in \mathcal{A}$.
Proposition 3. Let S be a numerical \mathcal{A}-semigroup such that $S \neq \mathbb{N}$, and let $x \in \operatorname{msg}(S)$. Then $S \backslash\{x\}$ is a numerical \mathcal{A}-semigroup if and only if $\{x-1, x+1\} \subseteq\{0\} \cup(\mathbb{N} \backslash S) \cup \operatorname{msg}(S)$.

Corollary 2. Let S be a numerical \mathcal{A}-semigroup such that $S \neq \mathbb{N}$, and let x be a minimal generator of S greater than $\mathrm{F}(S)$. Then $S \backslash\{x\}$ is a numerical \mathcal{A}-semigroup if and only if $\{x-1, x+1\} \subseteq \operatorname{msg}(S) \cup\{\mathrm{F}(S)\}$.

By applying Theorem 2 and Corollary 2 (see Example 3) we can build recursively the tree $\mathrm{G}(\mathcal{A})$ such as it is shown in the following figure.

Example 3. Let S be the numerical semigroup with minimal system of generators $\{4,6,7,9\}$. Then $S=\{0,4,6, \rightarrow\}$ and, therefore, $\mathrm{F}(S)=5$. From Proposition 1, we deduce that S is a numerical \mathcal{A}-semigroup. By applying Theorem 2 and Corollary 2 , we get that S has a unique child in $\mathrm{G}(\mathcal{A})$. Namely, $S \backslash\{6\}=\langle 4,7,9,10\rangle$.

Remark 5. Let us observe that, if S^{\prime} is a child of S in $\mathrm{G}(\mathcal{A})$, then $\mathrm{F}\left(S^{\prime}\right)>\mathrm{F}(S)$ and $\mathrm{g}\left(S^{\prime}\right)=\mathrm{g}(S)+1$. Therefore, when we go on along the branches of the tree $\mathrm{G}(\mathcal{A})$, we get numerical semigroups with greater Frobenius number and genus. Thus, we can use this construction in order to obtain all the numerical \mathcal{A}-semigroups with a given Frobenius number or genus.

4 The smallest numerical \mathcal{A}-semigroup that contains a given set of positive integers

Since \mathcal{A} is a Frobenius variety, we have that the finite intersection of numerical \mathcal{A}-semigroups is a numerical \mathcal{A}-semigroup. However, the infinite intersection of numerical \mathcal{A}-semigroups is not always a numerical \mathcal{A}-semigroup. On the other hand, it is clear that the (finite or infinite) intersection of numerical semigroups is always a submonoid of $(\mathbb{N},+)$.

If M is a submonoid of $(\mathbb{N},+)$, then we will say that M is an \mathcal{A}-monoid if it can be expressed like the intersection of numerical \mathcal{A}-semigroups. Being that the intersection of \mathcal{A}-monoids is an \mathcal{A}-monoid, we can give the following definition.

Definition 1. Let X be a subset of \mathbb{N}. The \mathcal{A}-monoid generated by X (denoted by $\mathcal{A}(X)$) is the intersection of all \mathcal{A}-monoids containing X.

Let us observe that $\mathcal{A}(X)$ is the smallest \mathcal{A}-monoid containing X.
Proposition 4. If $X \subseteq \mathbb{N}$, then $\mathcal{A}(X)$ is the intersection of all numerical \mathcal{A} semigroups that contain X. Moreover, if $X \neq \emptyset$ and $X \subseteq \mathbb{N} \backslash\{0\}$, then $\mathcal{A}(X)$ is a numerical \mathcal{A}-semigroup.

As a consequence of Proposition 4, we have that M is an \mathcal{A}-monoid if and only if M is a numerical \mathcal{A}-semigroup or $M=\{0\}$. Moreover, from Lemma 3 and Proposition 4, we can prove the next result.

Theorem 3. $\mathcal{A}=\{\mathcal{A}(X) \mid X$ is a non-empty finite subset of $\mathbb{N} \backslash\{0\}\}$.
If M is an \mathcal{A}-monoid and X is a subset of \mathbb{N} such that $M=\mathcal{A}(X)$, then we will say that X is an \mathcal{A}-system of generators of M. In addition, if $M \neq \mathcal{A}(Y)$ for all $Y \subset X$ (with $Y \neq X$), then we will say that X is a minimal \mathcal{A}-system of generators of M. From [6, Corollary 19], we have the following result.

Proposition 5. Every \mathcal{A}-monoid has a unique minimal \mathcal{A}-system of generators, which in addition is finite.

The next result follows from [6, Proposition 24].
Proposition 6. Let M be an \mathcal{A}-monoid and let $x \in M$. Then $M \backslash\{x\}$ is an \mathcal{A}-monoid if and only if x is a minimal \mathcal{A}-system generator of M.

Corollary 3. Let X be a non-empty subset of $\mathbb{N} \backslash\{0\}$. Then the set given by $\{x \in X \mid \mathcal{A}(X) \backslash\{x\}$ is a numerical \mathcal{A}-semigroup $\}$ is the minimal \mathcal{A}-system of generators of $\mathcal{A}(X)$.

Example 4. Beginning in Example 3, we know that $S=\langle 4,6,7,9\rangle$ is a numerical \mathcal{A}-semigroup. By applying Proposition 3 , we easily deduce that

$$
\{x \in\{4,6,7,9\} \mid S \backslash\{x\} \text { is a numerical } \mathcal{A} \text {-semigroup }\}=\{4,6\} .
$$

Therefore, $S=\mathcal{A}(\{4,6\})$ and $\{4,6\}$ is its minimal \mathcal{A}-system of generators.
Let x_{1}, \ldots, x_{t} be positive integers. We will denote by $S\left(x_{1}, \ldots, x_{t}\right)$ the set $\left\{a_{1} x_{1}+\cdots+a_{t} x_{t}+z \mid a_{1}, \ldots, a_{t} \in \mathbb{N}, z \in \mathbb{Z}\right.$, and $\left.|z|<a_{1}+\cdots+a_{t}\right\} \cup\{0\}$.

Theorem 4. If x_{1}, \ldots, x_{t} are positive integers, then $S\left(x_{1}, \ldots, x_{t}\right)$ is the smallest numerical \mathcal{A}-semigroup that contains the set $\left\{x_{1}, \ldots, x_{t}\right\}$.

Corollary 4. If m is a positive integer, then

$$
\mathcal{A}(\{m\})=\{k m+z \mid k \in \mathbb{N} \backslash\{0\} \text { and } z \in\{-(k-1), \ldots, k-1\}\} \cup\{0\} .
$$

Example 5. The smallest numerical \mathcal{A}-semigroup containing $m=10$ is the set $\mathcal{A}(\{10\})=\{k \cdot 10+z \mid k \in \mathbb{N} \backslash\{0\}$ and $z \in\{-(k-1), \ldots, k-1\}\} \cup\{0\}=$ $\{0,10,19,20,21,28,29,30,31,32,37,38,39,40,41,42,43,46, \rightarrow\}$. By using minimal generators, $\mathcal{A}(\{10\})=\langle 10,19,21,28,32,37,43,46,54,55\rangle$.

Let us observe that, in Theorem 4, are described the elements of the smallest numerical \mathcal{A}-semigroup containing a given set of positive integers. However, in order to compute such a numerical \mathcal{A}-semigroup, we propose the following algorithm that is justified by Proposition 1.

Algorithm 1. INPUT: A finite set X of positive integers.
OUTPUT: The minimal system of generators of $\mathcal{A}(X)$.
(1) $Y=\operatorname{msg}(\langle X\rangle)$.
(2) $Z=Y \cup\left(\bigcup_{a, b \in Y}\{a+b-1, a+b+1\}\right)$.
(3) If $\operatorname{msg}(\langle Z\rangle)=Y$, then return Y.
(4) Set $Y=\operatorname{msg}(\langle Z\rangle)$ and go to (2).

Example 6 . We are going to compute $\mathcal{A}(\{5,7\})$ applying Algorithm 1.

- $Y=\{5,7\}$.
- $Z=\{5,7,9,11,13,15\}$.
- $\operatorname{msg}(\langle Z\rangle)=\{5,7,9,11,13\}$.
- $Y=\{5,7,9,11,13\}$.
- $Z=\{5,7,9,11,13,15,17,19,21,23,25,27\}$.
- $\operatorname{msg}(\langle Z\rangle)=\{5,7,9,11,13\}$.
- $\mathcal{A}(\{5,7\})=\langle 5,7,9,11,13\rangle$.

The most complex process in Algorithm 1 is the computation of $\operatorname{msg}(\langle Z\rangle)$, that is, the computation of the minimal system of generators of a numerical semigroup S starting from a system of generators of it. For this purpose, we can use the GAP package called numericalsgps (see [3]).

References

[1] M. Bras-Amorós, P. A. García-Sánchez and A. Vico-Oton. Nonhomogeneous patterns on numerical semigroups. Int. J. Algebra Comput., 23:1469-1483, 2013.
[2] L. Bryant. Goto numbers of a numerical semigroup ring and the Gorensteiness of associated graded rings. Comm. Algebra, 38:2092-2128, 2010.
[3] M. Delgado, P. A. García-Sánchez, and J. Morais. "numericalsgps": a GAP package on numerical semigroups.
http://www.gap-system.org/Packages/numericalsgps.html.
[4] J. L. Ramírez Alfonsín. The Diophantine Frobenius problem. Oxford Univ. Press, 2005.
[5] A. M. Robles-Pérez and J. C. Rosales. Numerical semigroups in a problem about transport with benefits. Preprint.
[6] J. C. Rosales. Families of numerical semigroups closed under finite intersections and for the Frobenius number. Houston J. Math., 34:339-348, 2008.
[7] J. C. Rosales and P. A. García-Sánchez. Finitely generated commutative monoids. Nova Science Publishers, New York, 1999.
[8] J. C. Rosales and P. A. García-Sánchez. Numerical semigroups. Developments in Mathematics, vol. 20. Springer, New York, 2009.

[^0]: * Supported by FQM-343 (Junta de Andalucía), MTM2010-15595 (MICINN, Spain), and FEDER funds.
 ** Partially supported by Junta de Andalucía/FEDER Grant Number FQM-5849.

