The numerical semigroup of the integers which are bounded by a submonoid of \mathbb{N}^2

A. M. Robles-Pérez^{1,3} and J. C. Rosales^{2,3}

- 1: Departamento de Matemática Aplicada, Universidad de Granada
- 2: Departmento de Álgebra, Universidad de Granada
- 3: Both of the authors are supported by FQM-343 (Junta de Andalucía), MTM2010-15595 (MICINN, Spain), and FEDER funds.
- The second author is also partially supported by Junta de Andalucía/FEDER Grant Number FQM-5849.

Universidad de Granada

Preliminaries

Let \mathbb{N} be the set of nonnegative integers. A *submonoid* of $(\mathbb{N}, +)$ is a subset M of \mathbb{N} that is closed for the addition and that contains the zero element. A *numerical semigroup* is a submonoid S of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite.

Definition 1 Let *S* be a numerical semigroup. The Frobenius number of *S* is $F(S) = max(\mathbb{Z} \setminus S)$ and the genus of S is $g(S) = \sharp(\mathbb{N} \setminus S)$.

Definition 2 A Frobenius variety is a non-empty family V of numerical semigroups that fulfills the following conditions,

1. if S, $T \in \mathcal{V}$, then $S \cap T \in \mathcal{V}$;

2. *if* $S \in \mathcal{V}$ and $S \neq \mathbb{N}$, then $S \cup \{F(S)\} \in \mathcal{V}$.

Example 3 Let S be the set formed by all numerical semigroups. Then S is a Frobenius variety.

Definition 4 A graph G is a pair (V, E), where V is a non-empty set and $E \subseteq \{(v, w) \in V \times V \mid e \in V \}$ $v \neq w$. The elements of V are called vertices of G and the elements of E are called edges of G. A path (of length n) connecting the vertices x and y of G is a sequence of different edges of the form $(v_0, v_1), (v_1, v_2), \dots, (v_{n-1}, v_n)$ such that $v_0 = x$ and $v_n = y$.

Corollary 15 Let S be a numerical \mathcal{A} -semigroup such that $S \neq \mathbb{N}$, and let x be a minimal generator of S greater than F(S). Then $S \setminus \{x\}$ is a numerical \mathcal{A} -semigroup if and only if $\{x-1, x+1\} \subseteq msg(S) \cup \{F(S)\}$.

Example 16 Let S be the numerical semigroup $S = \langle 4, 6, 7, 9 \rangle = \{0, 4, 6, \rightarrow\}$. Therefore, F(S) = 5 and, by Proposition 11, S is a numerical \mathcal{A} -semigroup. By applying Theorem 13 and Corollary 15, we get that S has a unique child in G(\mathcal{A}). Namely, $S \setminus \{6\} = \langle 4, 7, 9, 10 \rangle$.

By applying Theorem 13 and Corollary 15, as in Example 16, we can build recursively the tree $G(\mathcal{A})$.

The smallest numerical *A*-semigroup containing a given set

Definition 5 We say that a graph G is a tree if there exists a vertex v^* (the root of G) such that, for every other vertex x of G, there exists a unique path connecting x and v^* . If (x, y) is an edge of the tree, then we say that x is a child of y.

Example 6 We can associate to S a tree in which the vertices are the elements of S, (T, S) is an edge if $S = T \cup \{F(T)\}$, and \mathbb{N} is the root. In addition, if S is a numerical semigroup, then the unique path connecting *S* with \mathbb{N} is given by the set $C(S) = \{S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_n\}$, where $S_0 = S$, $S_{i+1} = S_i \cup \{F(S_i)\}$, for all i < n, and $S_n = \mathbb{N}$. C(S) is called the *chain of numerical semigroups associated to S*.

Numerical *A*-Semigroups

A submonoid of $(\mathbb{N}^2, +)$ is a subset *M* of \mathbb{N}^2 that is closed for the addition and such that $(0, 0) \in M$.

Definition 7 Let M be a submonoid of $(\mathbb{N}^2, +)$. We say that a positive integer n is bounded by M if there exists $(a, b) \in M$ such that a < n < b. We denote by $A(M) = \{n \in \mathbb{N} \mid n \text{ is bounded by } M\}$.

It is easy to check that, if *M* is a submonoid of $(\mathbb{N}^2, +)$ such that A(M) is not empty, then $A(M) \cup \{0\}$ is a numerical semigroup.

Definition 8 A numerical semigroup S is a numerical A-semigroup if there exists M, submonoid of $(\mathbb{N}^2, +)$, such that $S = A(M) \cup \{0\}$.

Theorem 9 A numerical semigroup S is a numerical \mathcal{A} -semigroup if and only if $\{x+y-1, x+y+1\} \subseteq S$, for all $x, y \in S \setminus \{0\}$.

Let *M* be a submonoid (of $(\mathbb{N}, +)$ or $(\mathbb{N}^2, +)$) and let *X* be a subset of *M*. We say that *X* is a system of generators of M if $M = \langle X \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in X, \lambda_1, \dots, \lambda_n \in \mathbb{N}\}$. The set X is a minimal system of generators of M (denoted by msg(M)) if no proper subset of X is a system of generators of X. It is well known that the every submonoid of $(\mathbb{N}, +)$ (in particular, numerical semigroup) has a unique minimal system of generators, which in addition is finite.

Corollary 10 Let S be a numerical semigroup. The following conditions are equivalent.

- 1. *S* is a numerical *A*-semigroup.
- 2. $S = A(M) \cup \{0\}$ for some finitely generated submonoid M of $(\mathbb{N}^2, +)$.

3. There exist $a_1, b_1, ..., a_p, b_p \in \mathbb{N}$ such that $S = \{n \in \mathbb{N} \mid a_1x_1 + \cdots + a_px_p < n < b_1x_1 + \cdots + a_px_p$ $b_p x_p$ for some $x_1, \ldots, x_p \in \mathbb{N} \} \cup \{0\}.$

Let *S* be a numerical semigroup and let $\{n_1, \ldots, n_p\} \subseteq \mathbb{N} \setminus \{0\}$ be a system of generators of *S*. If $s \in S$, then the order of s in S is $\operatorname{ord}(s; S) = \max\{a_1 + \cdots + a_p \mid a_1n_1 + \cdots + a_pn_p = s, \text{ with } a_1, \ldots, a_p \in \mathbb{N}\}.$ If no ambiguity is possible, then we write ord(*s*).

of positive integers

Definition 17 Let M be a submonoid of $(\mathbb{N}, +)$. We say that M is an \mathcal{A} -monoid if it can be expressed like the intersection of numerical A-semigroups.

Let X be a subset of \mathbb{N} . Being that the intersection of \mathcal{A} -monoids is an \mathcal{A} -monoid, we can define the *A-monoid generated by X* (denoted by $\mathcal{A}(X)$) as the intersection of all \mathcal{A} -monoids containing X. Let us observe that $\mathcal{A}(X)$ is the smallest \mathcal{A} -monoid containing X.

Proposition 18 If $X \subseteq \mathbb{N}$, then $\mathcal{A}(X)$ is the intersection of all numerical \mathcal{A} -semigroups that contain X. *Moreover, if* $X \neq \emptyset$ *and* $X \subseteq \mathbb{N} \setminus \{0\}$ *, then* $\mathcal{A}(X)$ *is a numerical* \mathcal{A} *-semigroup.*

Theorem 19 $\mathcal{A} = \{\mathcal{A}(X) \mid X \text{ is a non-empty finite subset of } \mathbb{N} \setminus \{0\}\}.$

Theorem 20 If x_1, \ldots, x_t are positive integers, then the smallest numerical \mathcal{A} -semigroup that contains $\{x_1, \ldots, x_t\}$ is $S(x_1, \ldots, x_t) = \{a_1x_1 + \cdots + a_tx_t + z \mid a_1, \ldots, a_t \in \mathbb{N}, z \in \mathbb{Z}, and |z| < a_1 + \cdots + a_t\} \cup \{0\}.$

Algorithm 21 INPUT: A finite set X of positive integers.

OUTPUT: The minimal system of generators of $\mathcal{A}(X)$.

(1) $Y = msg(\langle X \rangle)$.

(2) $Z = Y \cup \left(\bigcup_{a,b \in Y} \{a+b-1, a+b+1\} \right).$

(3) If $msg(\langle Z \rangle) = Y$, then return *Y*.

(4) Set $Y = msg(\langle Z \rangle)$ and go to (2).

Example 22 We are going to compute $\mathcal{A}(\{5,7\})$ by applying Algorithm 21.

- $Y = \{5, 7\}.$ • $Z = \{5, 7, 9, 11, 13, 15\}.$ • $msg(\langle Z \rangle) = \{5, 7, 9, 11, 13\}.$ • $Y = \{5, 7, 9, 11, 13\}.$ • $Z = \{5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27\}.$ • $msg(\langle Z \rangle) = \{5, 7, 9, 11, 13\}.$
- $\mathcal{A}(\{5,7\}) = \langle 5,7,9,11,13 \rangle.$

The most complex process in Algorithm 21 is the computation of $msg(\langle Z \rangle)$, that is, the computation of the minimal system of generators of a numerical semigroup S starting from a system of generators of it. For this purpose, we can use the GAP package called numericalsgps.

Proposition 11 Let S be a numerical semigroup with minimal system of generators given by $\{n_1, \ldots, n_p\}$. The following conditions are equivalent.

1. S is a numerical A-semigroup.

2. If $i, j \in \{1, ..., p\}$, then $\{n_i + n_j - 1, n_i + n_j + 1\} \subseteq S$. 3. If $s \in S \setminus \{0, n_1, \dots, n_p\}$, then $\{s - 1, s + 1\} \subseteq S$. 4. If $s \in S \setminus \{0\}$, then $s + z \in S$ for all $z \in \mathbb{Z}$ such that $|z| < \operatorname{ord}(s)$.

The Frobenius variety of the numerical *A*-Semigroups and the associated tree

Proposition 12 $\mathcal{A} = \{S \mid S \text{ is a numerical } \mathcal{A}\text{-semigroup}\}$ is a Frobenius variety.

We define the graph $G(\mathcal{A})$ in which \mathcal{A} is the set of vertices of $G(\mathcal{A})$ and $(S, S') \in \mathcal{A} \times \mathcal{A}$ is an edge if $S' = S \cup \{F(S)\}.$

Theorem 13 G(\mathcal{A}) is a tree with root \mathbb{N} . Moreover, $\{S \setminus \{x\} \mid x \in msg(S), x > F(S), and S \setminus \{x\} \in \mathcal{A}\}$ is the set of children of a vertex $S \in \mathcal{A}$.

Proposition 14 Let S be a numerical \mathcal{A} -semigroup such that $S \neq \mathbb{N}$, and let $x \in msg(S)$. Then $S \setminus \{x\}$ *is a numerical* \mathcal{A} *-semigroup if and only if* $\{x - 1, x + 1\} \subseteq \{0\} \cup (\mathbb{N} \setminus S) \cup \operatorname{msg}(S)$.

References

- [1] Bras-Amorós, M., P. A. García-Sánchez and A. Vico-Oton, Nonhomogeneous patterns on numerical semigroups, Int. J. Algebr. Comput. 23 (2013), 1469-1483.
- [2] Bras-Amorós, M., and K. Stokes, The semigroup of combinatorial configurations, Semigroup Forum **84** (2012), 91–96.
- [3] Delgado, M., P. A. García-Sánchez, and J. Morais. "numericalsgps": a GAP package on numerical semigroups. (http://www.gap-system.org/Packages/numericalsgps.html).
- [4] Ramírez Alfonsín, J. L., "The Diophantine Frobenius problem," Oxford Univ. Press, 2005.
- [5] Robles-Pérez, A. M., and J. C. Rosales, Numerical semigroups in a problem about transport with benefits, preprint.
- [6] Rosales, J. C., Families of numerical semigroups closed under finite intersections and for the Frobenius number, Houston J. Math. 34 (2008), 339–348.
- [7] Rosales, J. C., and P. A. García-Sánchez, "Finitely generated commutative monoids," Nova Science Publishers, New York, 1999.
- [8] Rosales, J. C., and P. A. García-Sánchez, "Numerical semigroups," Developments in Mathematics **20**, Springer, New York, 2009.
- [9] Stokes, K., and M. Bras-Amorós, Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations, Semigroup Forum **88** (2014), 11–20.