The numerical semigroup of the integers which are bounded by a submonoid of \mathbb{N}^{2}

A. M. Robles-Pérez ${ }^{1,3}$ and J. C. Rosales ${ }^{2,3}$
1: Departamento de Matemática Aplicada, Universidad de Granada
2: Departmento de Álgebra, Universidad de Granada
3: Both of the authors are supported by FQM-343 (Junta de Andalucía), MTM2010-15595 (MICINN, Spain), and FEDER funds. The second author is also partially supported by Junta de Andalucía/FEDER Grant Number FQM-5849

Preliminaries

Let \mathbb{N} be the set of nonnegative integers. A submonoid of $(\mathbb{N},+)$ is a subset M of \mathbb{N} that is closed for the addition and that contains the zero element. A numerical semigroup is a submonoid S of $(\mathbb{N},+)$ such that $\mathbb{N} \backslash S$ is finite.

Definition 1 Let S be a numerical semigroup. The Frobenius number of S is $\mathrm{F}(S)=\max (\mathbb{Z} \backslash S)$ and the genus of S is $\mathrm{g}(S)=\sharp(\mathbb{N} \backslash S)$.

Definition 2 A Frobenius variety is a non-empty family \mathcal{V} of numerical semigroups that fulfills the following conditions,

1. if $S, T \in \mathcal{V}$, then $S \cap T \in \mathcal{V}$;
2. if $S \in \mathcal{V}$ and $S \neq \mathbb{N}$, then $S \cup\{\mathrm{~F}(S)\} \in \mathcal{V}$.

Example 3 Let \mathcal{S} be the set formed by all numerical semigroups. Then \mathcal{S} is a Frobenius variety.
Definition $4 A$ graph G is a pair (V, E), where V is a non-empty set and $E \subseteq\{(v, w) \in V \times V \mid$ $v \neq w\}$. The elements of V are called vertices of G and the elements of E are called edges of G. A path (of length n) connecting the vertices x and y of G is a sequence of different edges of the form $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{n-1}, v_{n}\right)$ such that $v_{0}=x$ and $v_{n}=y$.

Definition 5 We say that a graph G is a tree if there exists a vertex v^{*} (the root of G) such that, for every other vertex x of G, there exists a unique path connecting x and v^{*}. If (x, y) is an edge of the tree, then we say that x is a child of y.

Example 6 We can associate to \mathcal{S} a tree in which the vertices are the elements of $\mathcal{S},(T, S)$ is an edge if $S=T \cup\{\mathrm{~F}(T)\}$, and \mathbb{N} is the root. In addition, if S is a numerical semigroup, then the unique path connecting S with \mathbb{N} is given by the set $\mathrm{C}(S)=\left\{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{n}\right\}$, where $S_{0}=S, S_{i+1}=S_{i} \cup\left\{\mathrm{~F}\left(S_{i}\right)\right\}$, for all $i<n$, and $S_{n}=\mathbb{N}$. $\mathrm{C}(S)$ is called the chain of numerical semigroups associated to S

Numerical \mathcal{A}-Semigroups

A submonoid of $\left(\mathbb{N}^{2},+\right)$ is a subset M of \mathbb{N}^{2} that is closed for the addition and such that $(0,0) \in M$.
Definition 7 Let M be a submonoid of $\left(\mathbb{N}^{2},+\right)$. We say that a positive integer n is bounded by M if there exists $(a, b) \in M$ such that $a<n<b$. We denote by $\mathrm{A}(M)=\{n \in \mathbb{N} \mid n$ is bounded by $M\}$.

It is easy to check that, if M is a submonoid of $\left(\mathbb{N}^{2},+\right)$ such that $\mathrm{A}(M)$ is not empty, then $\mathrm{A}(M) \cup\{0\}$ is a numerical semigroup

Definition 8 A numerical semigroup S is a numerical \mathcal{A}-semigroup if there exists M, submonoid of $\left(\mathbb{N}^{2},+\right)$, such that $S=\mathrm{A}(M) \cup\{0\}$.

Theorem 9 A numerical semigroup S is a numerical \mathcal{A}-semigroup if and only if $\{x+y-1, x+y+1\} \subseteq S$, for all $x, y \in S \backslash\{0\}$.

Let M be a submonoid (of $(\mathbb{N},+)$ or $\left(\mathbb{N}^{2},+\right)$) and let X be a subset of M. We say that X is a system of generators of M if $M=\langle X\rangle=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n} \mid n \in \mathbb{N} \backslash\{0\}, x_{1}, \ldots, x_{n} \in X, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\}$. The set X is a minimal system of generators of M (denoted by $\operatorname{msg}(M)$) if no proper subset of X is a system of generators of X. It is well known that the every submonoid of $(\mathbb{N},+$) (in particular, numerical semigroup) has a unique minimal system of generators, which in addition is finite.

Corollary 10 Let S be a numerical semigroup. The following conditions are equivalent.

1. S is a numerical \mathcal{A}-semigroup.
2. $S=\mathrm{A}(M) \cup\{0\}$ for some finitely generated submonoid M of $\left(\mathbb{N}^{2},+\right)$.
3. There exist $a_{1}, b_{1}, \ldots, a_{p}, b_{p} \in \mathbb{N}$ such that $S=\left\{n \in \mathbb{N} \mid a_{1} x_{1}+\cdots+a_{p} x_{p}<n<b_{1} x_{1}+\cdots+\right.$ $b_{p} x_{p}$ for some $\left.x_{1}, \ldots, x_{p} \in \mathbb{N}\right\} \cup\{0\}$.

Let S be a numerical semigroup and let $\left\{n_{1}, \ldots, n_{p}\right\} \subseteq \mathbb{N} \backslash\{0\}$ be a system of generators of S. If $s \in S$, then the order of $\sin S$ is $\operatorname{ord}(s ; S)=\max \left\{a_{1}+\cdots+a_{p} \mid a_{1} n_{1}+\cdots+a_{p} n_{p}=s\right.$, with $\left.a_{1}, \ldots, a_{p} \in \mathbb{N}\right\}$. If no ambiguity is possible, then we write $\operatorname{ord}(s)$.

Proposition 11 Let S be a numerical semigroup with minimal system of generators given by $\left\{n_{1}, \ldots, n_{p}\right\}$. The following conditions are equivalent.

1. S is a numerical \mathcal{A}-semigroup
2. If $i, j \in\{1, \ldots, p\}$, then $\left\{n_{i}+n_{j}-1, n_{i}+n_{j}+1\right\} \subseteq S$
3. If $s \in S \backslash\left\{0, n_{1}, \ldots, n_{p}\right\}$, then $\{s-1, s+1\} \subseteq S$
4. If $s \in S \backslash\{0\}$, then $s+z \in S$ for all $z \in \mathbb{Z}$ such that $|z|<\operatorname{ord}(s)$,

The Frobenius variety of the numerical \mathcal{A}-Semigroups and the associated tree

Proposition $12 \mathcal{A}=\{S \mid S$ is a numerical \mathcal{A}-semigroup $\}$ is a Frobenius variety.
We define the graph $\mathrm{G}(\mathcal{A})$ in which \mathcal{A} is the set of vertices of $\mathrm{G}(\mathcal{A})$ and $\left(S, S^{\prime}\right) \in \mathcal{A} \times \mathcal{A}$ is an edge if $S^{\prime}=S \cup\{\mathrm{~F}(S)\}$.

Theorem $13 \mathrm{G}(\mathcal{A})$ is a tree with root \mathbb{N}. Moreover, $\{S \backslash\{x\} \mid x \in \operatorname{msg}(S), x>\mathrm{F}(S)$, and $S \backslash\{x\} \in \mathcal{A}\}$ is the set of children of a vertex $S \in \mathcal{A}$.
Proposition 14 Let S be a numerical \mathcal{A}-semigroup such that $S \neq \mathbb{N}$, and let $x \in \operatorname{msg}(S)$. Then $S \backslash\{x\}$ is a numerical \mathcal{A}-semigroup if and only if $\{x-1, x+1\} \subseteq\{0\} \cup(\mathbb{N} \backslash S) \cup \operatorname{msg}(S)$.

Corollary 15 Let S be a numerical \mathcal{A}-semigroup such that $S \neq \mathbb{N}$, and let x be a minimal generator of S greater than $\mathrm{F}(S)$. Then $S \backslash\{x\}$ is a numerical \mathcal{A}-semigroup if and only if $\{x-1, x+1\} \subseteq \operatorname{msg}(S) \cup\{\mathrm{F}(S)\}$

Example 16 Let S be the numerical semigroup $S=\langle 4,6,7,9\rangle=\{0,4,6, \rightarrow\}$. Therefore, $\mathrm{F}(S)=5$ and, by Proposition 11, S is a numerical \mathcal{A}-semigroup. By applying Theorem 13 and Corollary 15 , we get that S has a unique child in $G(\mathcal{A})$. Namely, $S \backslash\{6\}=\langle 4,7,9,10\rangle$.

By applying Theorem 13 and Corollary 15, as in Example 16, we can build recursively the tree $\mathrm{G}(\mathcal{A})$

$$
\begin{aligned}
& \langle 1\rangle=\mathbb{N} \\
& \langle 2,3\rangle \\
& \langle 3,4,5\rangle \\
& \langle 4,5,6,7\rangle \quad\langle 3,5,7\rangle \\
& \langle 5,6,7,8,9\rangle\langle 4,6,7,9\rangle\langle 4,5,7\rangle \\
& \langle 4,7,9,10\rangle
\end{aligned}
$$

The smallest numerical \mathcal{A}-semigroup containing a given set of positive integers

Definition 17 Let M be a submonoid of $(\mathbb{N},+)$. We say that M is an \mathcal{A}-monoid if it can be expressed like the intersection of numerical \mathcal{A}-semigroups.

Let X be a subset of \mathbb{N}. Being that the intersection of \mathcal{A}-monoids is an \mathcal{A}-monoid, we can define the \mathcal{A}-monoid generated by X (denoted by $\mathcal{A}(X)$) as the intersection of all \mathcal{A}-monoids containing X. Let us observe that $\mathcal{A}(X)$ is the smallest \mathcal{A}-monoid containing X.

Proposition 18 If $X \subseteq \mathbb{N}$, then $\mathcal{A}(X)$ is the intersection of all numerical \mathcal{A}-semigroups that contain X. Moreover, if $X \neq \emptyset$ and $X \subseteq \mathbb{N} \backslash\{0\}$, then $\mathcal{A}(X)$ is a numerical \mathcal{A}-semigroup.

Theorem $19 \mathcal{A}=\{\mathcal{A}(X) \mid X$ is a non-empty finite subset of $\mathbb{N} \backslash\{0\}\}$.
Theorem 20 If x_{1}, \ldots, x_{t} are positive integers, then the smallest numerical \mathcal{A}-semigroup that contains $\left\{x_{1}, \ldots, x_{t}\right\}$ is $S\left(x_{1}, \ldots, x_{t}\right)=\left\{a_{1} x_{1}+\cdots+a_{t} x_{t}+z \mid a_{1}, \ldots, a_{t} \in \mathbb{N}, z \in \mathbb{Z}\right.$, and $\left.|z|<a_{1}+\cdots+a_{t}\right\} \cup\{0\}$.

Algorithm 21 INPUT: A finite set X of positive integers.
OUTPUT: The minimal system of generators of $\mathcal{A}(X)$.
(1) $Y=\operatorname{msg}(\langle X\rangle)$.

(3) If $\operatorname{msg}(\langle Z\rangle)=Y$, then return Y.
(4) Set $Y=\operatorname{msg}(\langle Z\rangle)$ and go to (2).

Example 22 We are going to compute $\mathcal{A}(\{5,7\})$ by applying Algorithm 21.

- $Y=\{5,7\}$.
- $Z=\{5,7,9,11,13,15\}$.
- $\operatorname{msg}(\langle Z\rangle)=\{5,7,9,11,13\}$
- $Y=\{5,7,9,11,13\}$
- $Z=\{5,7,9,11,13,15,17,19,21,23,25,27\}$.
- $\operatorname{msg}(\langle Z\rangle)=\{5,7,9,11,13\}$
- $\mathcal{A}(\{5,7\})=\langle 5,7,9,11,13\rangle$.

The most complex process in Algorithm 21 is the computation of $\operatorname{msg}(\langle Z\rangle)$, that is, the computation of the minimal system of generators of a numerical semigroup S starting from a system of generators of it. For this purpose, we can use the GAP package called numericalsgps.

References

[1] Bras-Amorós, M., P. A. García-Sánchez and A. Vico-Oton, Nonhomogeneous patterns on numerical semigroups, Int. J. Algebr. Comput. 23 (2013), 1469-1483.
[2] Bras-Amorós, M., and K. Stokes, The semigroup of combinatorial configurations, Semigroup Forum 84 (2012), 91-96.
[3] Delgado, M., P. A. García-Sánchez, and J. Morais. "numericalsgps": a GAP package on numerical semigroups. (http://www.gap-system.org/Packages/numericalsgps.html)
[4] Ramírez Alfonsín, J. L., "The Diophantine Frobenius problem," Oxford Univ. Press, 2005.
[5] Robles-Pérez, A. M., and J. C. Rosales, Numerical semigroups in a problem about transport with benefits, preprint
[6] Rosales, J. C., Families of numerical semigroups closed under finite intersections and for the Frobe nius number, Houston J. Math. 34 (2008), 339-348.
[7] Rosales, J. C., and P. A. García-Sánchez, "Finitely generated commutative monoids," Nova Science Publishers, New York, 1999.
[8] Rosales, J. C., and P. A. García-Sánchez, "Numerical semigroups," Developments in Mathematics 20, Springer, New York, 2009
[9] Stokes, K., and M. Bras-Amorós, Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations, Semigroup Forum 88 (2014), 11-20.

