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Extended Abstract

Let N be the set of nonnegative integer numbers. A numerical semigroup is a subset S of N such that it is closed
under addition, 0 ∈ S and N \ S is finite. If A ⊆N, we denote by 〈A〉 the submonoid of (N,+) generated by A, this
is,

〈A〉 = {λ1a1 + . . .+λn an | n ∈N\ {0}, a1, . . . , an ∈ A and λ1, . . . ,λn ∈N}.

It is well known (see [2]) that 〈A〉 is a numerical semigroup if and only if gcd{A} = 1, where gcd means greatest
common divisor.

Let S be a numerical semigroup and let X be a subset of S. We say that X is a system of generators of S if
S = 〈X 〉. In addition, if no proper subset of X generates S, then we say that X is a minimal system of generators
of S. Every numerical semigroup admits a unique minimal system of generators and, moreover, such system has
finitely many elements (see [1, 2]). The cardinal of this system is known as the embedding dimension of S and it is
denoted by e(S). On the other hand, if X = {n1 < n2 < . . . < ne } is a minimal system of generators of S, then n1,n2

are known as the multiplicity and the ratio of S.
Let m,n be integers such that n 6= 0. We denote by m modn the remainder of the division of m by n. Following

the notation of [3], we say that a proportionally modular Diophantine inequality is an expression of the form

ax modb ≤ cx (1)

where a,b,c are positive integers. We call a,b, and c the factor, the modulus, and the proportion of the inequality,
respectively. Let S(a,b,c) be the set of integer solutions of (1). Then S(a,b,c) is a numerical semigroup (see [3])
that we call proportionally modular numerical semigroup (PM-semigroup).

As a consequence of [5, Theorem 31] (see its proof and [5, Corollary 18]) we have an easy characterization
for PM-semigroups: a numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement
n1,n2, . . . ,ne of its set of minimal generators that satisfies the following conditions

1. gcd{ni ,ni+1} = 1 for all i ∈ {1, . . . ,e −1}.

2. (ni−1 +ni+1) ≡ 0modni for all i ∈ {2, . . . ,e −1}.

A modular Diophantine inequality (see [4]) is an expression of the form

ax modb ≤ x, (2)
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this is, it is a proportionally modular Diophantine inequality with proportion equal to one. A numerical semigroup
is a modular numerical semigroup (M-semigroup) if it is the set of integer solutions of a modular Diophantine
inequality. Therefore, every M-semigroup is a PM-semigroup, but the reciprocal is false. In effect, from [3,
Example 26], we have that the numerical semigroup 〈3,8,10〉 is a PM-semigroup, but is not an M-semigroup.

Let us observe that it is easy to determine whether or not a numerical semigroup is a PM-semigroup via
the previous characterization. However, this question is more complicated for M-semigroups. In [4] there is an
algorithm to give the answer to this problem, but we have not got a good characterization for M-semigroups.

As a first step to give an answer to this question, our aim is to show the explicit descriptions of all M-
semigroups with embedding dimension equal to three. In order to do it, we consider two ideas. First, the relation
between proportionally modular numerical semigroups and numerical semigroups associated with an interval (see
[3]). Secondly, the description of a proportionally modular numerical semigroup with embedding dimension equal
to three when we fix the multiplicity and the ratio.
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