Modular numerical semigroups with embedding dimension equal to three

A.M. Robles-Pérez, J.C. Rosales

ICSrt2009 Porto, July 9, 2009

A.M. Robles-Pérez, J.C. Rosales M-semigroups with embedding dimension equal to three

A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

Diophantine inequalities.- General type

Definition

A proportionally modular Diophantine inequality is an expression of the form

 $ax \mod b \le cx$

where a (the factor), b (the modulus), and c (the proportion) are positive integer numbers.

(Let m, n be integer numbers such that $n \neq 0$. Then $m \mod n$ is the remainder of the division of m by n.)

Set of nonnegative integer solutions

 $S(a,b,c) = \{x \in \mathbb{Z} \mid ax \mod b \le cx\}$

Introduction

A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

A simplification

Lemma

Let a, b, c positive integer numbers.

$$S(a,b,c) = S(a \mod b,b,c).$$

3
$$S(a,b,c) = \mathbb{N}$$
 if $a \leq c$.

(N is the set of nonnegative integer numbers.)

Not restrictive condition

c < a < b

< 口 > < 同

A 3 b

< ∃ ►

Introduction Introduction A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

Diophantine inequalities.- Particular type

Definition

A modular Diophantine inequality is an expression of the form

 $ax \mod b \le x$,

where a, b are positive integer numbers (such that a < b).

Set of nonnegative integer solutions

 $S(a,b) = S(a,b,1) = \{x \in \mathbb{Z} \mid ax \mod b \le x\}$

Image: A matrix

Introduction M-semigroups A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

Diophantine inequalities.- The question

Problem

Let us have S(a,b,c). Does there exist positive integer numbers a^*, b^* such that $S(a,b,c) = S(a^*,b^*)$?

Example

- S(21, 189, 3) = S(7, 63).
- (3) S(41, 369, 5) = S(8, 72).
- **③** S(51,459,6) ≠ S(a^* , b^*) for all a^* , $b^* \in \mathbb{N}$.

A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

Tool: numerical semigroups

Definition

A **numerical semigroup** is a subset *S* of \mathbb{N} that is closed under addition, contains the zero element, and has finite complement in \mathbb{N} .

Example

• $S = S(a, b, c) = \{x \in \mathbb{Z} \mid ax \mod b \le cx\}$ (PM-semigroup).

②
$$S = \langle a_1, a_2, ..., a_n \rangle$$
.
● $A = \{a_1, a_2, ..., a_n\} \subseteq \mathbb{N} \setminus \{0\}$ such that $gcd\{a_1, a_2, ..., a_n\} =$

• $\langle A \rangle = \{\lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1, \ldots, \lambda_n \in \mathbb{N}\} = \langle a_1, a_2, \ldots, a_n \rangle.$

$S = S([\alpha,\beta]).$ • $\alpha,\beta \in \mathbb{Q}$ such that $0 < \alpha < \beta; J = [\alpha,\beta].$ • $\langle J \rangle = \{\lambda_1 a_1 + \ldots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, a_1, \ldots, a_n \in J, \lambda_1, \ldots, \lambda_n \in \mathbb{N}\}.$ • $\langle J \rangle \cap \mathbb{N} = S([\alpha,\beta]).$

A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

Connection

Lemma

• Let a, b, c positive integer numbers such that c < a < b.

$$S(a,b,c) = S\left(\left[\frac{b}{a},\frac{b}{a-c}\right]\right)$$

2 Let a_1, a_2, b_1, b_2 be positive integer numbers such that $1 < \frac{b_1}{a_1} < \frac{b_2}{a_2}$.

$$S\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right) = S(a_1b_2, b_1b_2, a_1b_2 - a_2b_1).$$

Example

S(41,369,5) = S(
$$\left[\frac{369}{41},\frac{369}{36}\right]$$
) = S($\left[\frac{9}{1},\frac{41}{4}\right]$).

S(51,459,6) = S(
$$\left[\frac{459}{51},\frac{459}{45}\right]$$
) = S($\left[\frac{9}{1},\frac{51}{5}\right]$).

イロト イポト イヨト イヨト

э

Characterization for PM-semigroups

Lemma

A numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement $n_1, n_2, ..., n_e$ of its set of minimal generators that satisfies the following conditions

● gcd{
$$n_i$$
, n_{i+1} } = 1 for all $i \in \{1, ..., e-1\}$,

②
$$(n_{i-1} + n_{i+1}) \equiv 0 \mod n_i$$
 for all $i \in \{2, ..., e-1\}$.

Definition

A sequence of integer numbers $x_1, x_2, ..., x_q$ is arranged in a convex form if one of the following conditions is satisfied,

Introduction

A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

Bézout sequences

Example

• $S\left(\left[\frac{9}{1}, \frac{21}{2}\right]\right).$ $\frac{9}{1} < \frac{10}{1} < \frac{21}{2}$ $S(21, 189, 3) = S\left(\left[\frac{189}{21}, \frac{189}{18}\right]\right) = S\left(\left[\frac{9}{1}, \frac{21}{2}\right]\right) = \langle 9, 10, 21 \rangle.$ **2** $S(|\frac{9}{1},\frac{41}{4}|).$ $\frac{9}{1} < \frac{10}{1} < \frac{41}{4}$ $S(41,369,5) = S\left(\left[\frac{369}{41},\frac{369}{36}\right]\right) = S\left(\left[\frac{9}{1},\frac{41}{4}\right]\right) = \langle 9,10,41 \rangle.$ **3** $S\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right).$ $\frac{9}{1} < \frac{10}{1} < \frac{51}{5}$ $S(51, 459, 6) = S\left(\left[\frac{459}{51}, \frac{459}{45}\right]\right) = S\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right) = \langle 9, 10, 51 \rangle.$

э

Introduction

A simple question about Diophantine inequalities Numerical semigroups Diophantine inequalities and numerical semigroups

(Minor troubles with) Bézout sequences

Example $S\left(\left[\frac{9}{5}, \frac{9}{4}\right]\right).$ $\frac{9}{5} < \frac{2}{1} < \frac{9}{4}$ $S(9, 5, 1) = S\left(\left[\frac{9}{5}, \frac{9}{4}\right]\right) = \langle 2, 9 \rangle.$ $S\left(\left[\frac{9}{1}, \frac{12}{1}\right]\right).$ $\frac{9}{1} < \frac{10}{1} < \frac{11}{1} < \frac{12}{1}$ $S(4, 36, 3) = S\left(\left[\frac{36}{4}, \frac{36}{3}\right]\right) = S\left(\left[\frac{9}{1}, \frac{12}{1}\right]\right) = \langle 9, 10, 11, 12 \rangle.$

イロト イポト イヨト イヨト

э

By generators (via characterization)

Proposition

- Let m_1, m_2 be integer numbers such that $m_1, m_2 \ge 3$ and $gcd\{m_1, m_2\} = 1$. Then $S = \langle m_1, m_2, m_1m_2 - m_1 - m_2 \rangle$ is an M-semigroup with e(S) = 3.
- Let λ, d, d' be integer numbers such that λ, d, d' ≥ 2 and gcd{d, d'} = gcd{λ, d + d'} = 1. Then S = ⟨λd, d + d', λd'⟩ is an M-semigroup with e(S) = 3.
- Let m_1, m_2 be positive integer numbers such that $gcd\{m_1, m_2\} = 1$. Let q be a divisor of $gcd\{m_2 - 1, m_1 + m_2\}$ such that $2 \le q < \min\{m_1, m_2\}$. Then $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$ is an M-semigroup with e(S) = 3.

By generators via closed intervals

Proposition

Let
$$S = S\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$$
 be a numerical semigroup such that $e(S) = 3$.

- If $gcd\{a, b\} = gcd\{a 1, b\} = 1$, then there exist $m_1, m_2 \ge 3$ such that $gcd\{m_1, m_2\} = 1$ and $S = \langle m_1, m_2, m_1 m_2 m_1 m_2 \rangle$.
- If $gcd\{a,b\} = d \neq 1$ and $gcd\{a-1,b\} = d' \neq 1$, then there exist $\lambda \ge 2$ such that $gcd\{d,d'\} = gcd\{\lambda,d+d'\} = 1$ and $S = \langle \lambda d, d+d', \lambda d' \rangle$.
- 3 If $gcd{a,b} ≠ 1$ and $gcd{a-1,b} = 1$, then there exist $m_1, m_2, q \ge 2$ such that $gcd{m_1, m_2} = 1$, $q|gcd{m_2 - 1, m_1 + m_2}$, $2 \le q < min{m_1, m_2}$, and $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$.

Remark

Because $S\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right) = S\left(\left[\frac{b}{b+1-a}, \frac{b}{b-a}\right]\right)$, the case $gcd\{a, b\} = 1$ and $gcd\{a-1, b\} \neq 1$ is analogous to the third one in the proposition.

э

Families by generators

Theorem

S is an M-semigroup with e(S) = 3 if and only if it is one of the following types.

- (T1) $S = \langle m_1, m_2, m_1 m_2 m_1 m_2 \rangle$ with $m_1, m_2 \ge 3$ such that $gcd\{m_1, m_2\} = 1$.
- (T2) $S = \langle \lambda d, d + d', \lambda d' \rangle$ with $\lambda, d, d' \ge 2$ such that $gcd\{d, d'\} = gcd\{\lambda, d + d'\} = 1$.
- (T3) $S = \langle m_1, \frac{m_1 + m_2}{q}, m_2 \rangle$ with $m_1, m_2, q \ge 2$ such that $gcd\{m_1, m_2\} = 1$, $q|gcd\{m_2 1, m_1 + m_2\}$, and $2 \le q < min\{m_1, m_2\}$.

Remark

$$m_1 = m'_1 m'_2 - m'_1 - m'_2$$
, $m_2 = m'_2$, and $q = m'_2 - 1$ in (T3) \Rightarrow (T1).

- There is no relation between (T1) and (T2).
- There is no relation between (T2) and (T3).

PM-semigroups with n_1, n_2 fixed

Lemma

Let n_1, n_2, n_3 be integer numbers such that $3 \le n_1 < n_2 < n_3$, gcd{ n_1, n_2 } = 1, and $n_3 \notin \langle n_1, n_2 \rangle$. Then $\langle n_1, n_2, n_3 \rangle$ is a PM-semigroup if and only if n_3 belongs to one of the following sets.

●
$$C_1 = \{kn_2 - n_1 \mid k \in A(n_1)\}.$$

②
$$C_2 = \{tn_1 - n_2 \mid t \in A(n_1, n_2)\}.$$

Moreover, $C_1 \cap C_2 = \{n_1 n_2 - n_1 - n_2\}.$

Definition

Let n_1, n_2 be integer numbers such that $3 \le n_1 < n_2$ and $gcd\{n_1, n_2\} = 1$.

•
$$A(n_1) = \{2, ..., n_1 - 1\}.$$

•
$$A(n_1, n_2) = \left\{ \left[\frac{2n_2}{n_1} \right], \dots, n_2 - 1 \right\}.$$

•
$$D(n) = \{k \in \mathbb{N} \text{ such that } k \mid n\}.$$

(If $q \in \mathbb{Q}$, then $\lceil q \rceil = \min\{z \in \mathbb{Z} \mid q \le z\}$)

M-semigroups with n_1, n_2 fixed

Lemma S = $\langle n_1, n_2, n_1 n_2 - n_1 - n_2 \rangle$ is (T3). Let us have S = $\langle n_1, n_2, kn_2 - n_1 \rangle$ with $k \in A(n_1) \setminus \{n_1 - 1\}$. i) S is (T2) if and only if $k \mid n_1$. ii) S is (T3) if and only if $k \mid (n_1 - 1)$ or $k \mid (n_1 + 1)$. Let us have S = $\langle n_1, n_2, tn_1 - n_2 \rangle$ whit $t \in A(n_1, n_2) \setminus \{n_2 - 1\}$. i) S is (T2) if and only if $t \mid n_2$. ii) S is (T3) if and only if $t \mid n_2$.

M-semigroups with n_1, n_2 fixed

Theorem

Let n_1, n_2, n_3 be integer numbers such that $3 \le n_1 < n_2 < n_3$, gcd{ n_1, n_2 } = 1, and $n_3 \notin \langle n_1, n_2 \rangle$. Then $\langle n_1, n_2, n_3 \rangle$ is an M-semigroup if and only if n_3 belongs to one of the following sets. **a** $B_1 = \{kn_2 - n_1 \mid k \in A(n_1) \cap [D(n_1 - 1) \cup D(n_1) \cup D(n_1 + 1)]\}$. **b** $B_2 = \{tn_1 - n_2 \mid t \in A(n_1, n_2) \cap [D(n_2 - 1) \cup D(n_2) \cup D(n_2 + 1)]\}$. Moreover, $B_1 \cap B_2 = \{n_1n_2 - n_1 - n_2\}$.

Three families of M-semigroups by generators All M-semigroups with embedding dimension equal to three Multiplicity and ratio fixed

M-semigroups with $n_1 = 9$, $n_2 = 10$

Example

PM-semigroups

- $\langle 9, 10, 10k 9 \rangle$ with $k \in \{2, 3, 4, 5, 6, 7, 8\}$
- $\langle 9, 10, 9t 10 \rangle$ with $t \in \{3, 4, 5, 6, 7, 8, 9\}$

M-semigroups

- $\langle 9, 10, 10k 9 \rangle$ with $k \in \{2, 3, 4, 5\}$
- (9, 10, 9t 10) with $t \in \{3, 5\}$
- <9,10,71>

э

M-semigroups with $n_1 = 9$, $n_2 = 10$

Example

(T2): $S(21, 189, 3) = \langle 9, 10, 21 \rangle = \langle 3 \cdot 3, 3 + 7, 3 \cdot 7 \rangle$ $9 \cdot (3 \cdot 3) - 8 \cdot (3 + 7) = 1$ $S(21, 189, 3) = S((9 \cdot 3 - 8) \cdot 3, 3 \cdot 3 \cdot 7) = S(57, 63)$ **2** (*T*3) : S(41,369,5) = $\langle 9, 10, 41 \rangle = \langle 9, \frac{9+41}{5}, 41 \rangle$ $2 \cdot 41 - 9 \cdot 9 = 1 \implies 10 \cdot 41 - 45 \cdot 9 = 5$ $S(41, 369, 5) = S(\frac{41-1}{5} \cdot 10, \frac{41-1}{5} \cdot 9) = S(80, 72) = S(8, 72)$ (9,10,51) = $(9,10,6\cdot10-9)$ and $6 \notin D(8) \cup D(9) \cup D(10)$

References

V. Barucci, D.E. Dobbs and M. Fontana.

Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains.

Memoirs of the Amer. Math. Soc. 598, 1997.

J.C. Rosales.

Symmetric modular Diophantine inequalities. Proc. Amer. Math. Soc. 134:3417–3421, 2006.

J.C. Rosales and P.A. García-Sánchez. *Finitely generated commutative monoids.* Nova Science Publishers, New York, 1999.

J.C. Rosales, P.A. García-Sánchez, J.I. García-García and J.M. Urbano-Blanco. Proportionally modular Diophantine inequalities. J. Number Theory. 103:281–294, 2003.

J.C. Rosales, P.A. García-Sánchez and J.M. Urbano-Blanco. Modular Diophantine inequalities and numerical semigroups. *Pacific J. Math.*, 218:379-398, 2005.

J.C. Rosales, P.A. García-Sánchez, J.M. Urbano-Blanco. The set of solutions of a proportionally modular Diophantine inequality. *J. Number Theory*, 128:453-467, 2008.

A.M. Robles-Pérez, J.C. Rosales and P. Vasco. Modular numerical semigroups with embedding dimension equal to three. *Submitted to Illinois Journal of Mathematics.*