Modular numerical semigroups with embedding dimension equal to three

A.M. Robles-Pérez, J.C. Rosales

ICSrt2009
Porto, July 9, 2009

Diophantine inequalities.- General type

Definition

A proportionally modular Diophantine inequality is an expression of the form

$$
a x \bmod b \leq c x
$$

where a (the factor), b (the modulus), and c (the proportion) are positive integer numbers.
(Let m, n be integer numbers such that $n \neq 0$. Then $m \bmod n$ is the remainder of the division of m by n.)

Set of nonnegative integer solutions

$$
S(a, b, c)=\{x \in \mathbb{Z} \mid a x \bmod b \leq c x\}
$$

A simplification

Lemma

Let a, b, c positive integer numbers.
(1) $\mathrm{S}(a, b, c)=\mathrm{S}(a \bmod b, b, c)$.
(2) $\mathrm{S}(a, b, c)=\mathbb{N}$ if $a \leq c$.
$(\mathbb{N}$ is the set of nonnegative integer numbers.)

Not restrictive condition

$$
c<a<b
$$

Diophantine inequalities.- Particular type

Definition

A modular Diophantine inequality is an expression of the form

$$
a x \bmod b \leq x,
$$

where a, b are positive integer numbers (such that $a<b$).

Set of nonnegative integer solutions

$$
\mathrm{S}(a, b)=\mathrm{S}(a, b, 1)=\{x \in \mathbb{Z} \mid a x \bmod b \leq x\}
$$

Diophantine inequalities.- The question

Problem

Let us have $\mathrm{S}(a, b, c)$. Does there exist positive integer numbers a^{*}, b^{*} such that $\mathrm{S}(a, b, c)=\mathrm{S}\left(a^{*}, b^{*}\right)$?

Example

(2) $\mathrm{S}(21,189,3)=\mathrm{S}(7,63)$.
(2) $\mathrm{S}(41,369,5)=\mathrm{S}(8,72)$.
(c) $\mathrm{S}(51,459,6) \neq \mathrm{S}\left(a^{*}, b^{*}\right)$ for all $a^{*}, b^{*} \in \mathbb{N}$.

Tool: numerical semigroups

Definition

A numerical semigroup is a subset S of \mathbb{N} that is closed under addition, contains the zero element, and has finite complement in \mathbb{N}.

Example

(1) $S=\mathrm{S}(a, b, c)=\{x \in \mathbb{Z} \mid a x \bmod b \leq c x\}$ (PM-semigroup).
(2) $S=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq \mathbb{N} \backslash\{0\}$ such that $\operatorname{gcd}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=1$.
- $\langle A\rangle=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n} \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.
(3) $S=\mathrm{S}([\alpha, \beta])$.
- $\alpha, \beta \in \mathbb{Q}$ such that $0<\alpha<\beta ; J=[\alpha, \beta]$.
- $\langle J\rangle=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{1}, \ldots, a_{n} \in J, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\}$.
- $\langle J\rangle \cap \mathbb{N}=\mathrm{S}([\alpha, \beta])$.

Connection

Lemma

(1) Let a, b, c positive integer numbers such that $c<a<b$.

$$
S(a, b, c)=S\left(\left[\frac{b}{a}, \frac{b}{a-c}\right]\right)
$$

(2) Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integer numbers such that $1<\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$.

$$
S\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}\right]\right)=S\left(a_{1} b_{2}, b_{1} b_{2}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

Example

(1) $S(41,369,5)=S\left(\left[\frac{369}{41}, \frac{369}{36}\right]\right)=S\left(\left[\frac{9}{1}, \frac{41}{4}\right]\right)$.
(2) $\mathrm{S}(51,459,6)=\mathrm{S}\left(\left[\frac{459}{51}, \frac{459}{45}\right]\right)=\mathrm{S}\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right)$.

Characterization for PM-semigroups

Lemma

A numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement $n_{1}, n_{2}, \ldots, n_{e}$ of its set of minimal generators that satisfies the following conditions
(1) $\operatorname{gcd}\left\{n_{i}, n_{i+1}\right\}=1$ for all $i \in\{1, \ldots, e-1\}$,
(2) $\left(n_{i-1}+n_{i+1}\right) \equiv 0 \bmod n_{i}$ for all $i \in\{2, \ldots, e-1\}$.

Definition

A sequence of integer numbers $x_{1}, x_{2}, \ldots, x_{q}$ is arranged in a convex form if one of the following conditions is satisfied,$x_{1} \leq x_{2} \leq \ldots \leq x_{q} ;$
(2) $x_{1} \geq x_{2} \geq \ldots \geq x_{q}$;
(3) there exists $h \in\{2, \ldots, q-1\}$ such that $x_{1} \geq \ldots \geq x_{h} \leq \ldots \leq x_{q}$.

Bézout sequences

Example

(0) $\mathrm{S}\left(\left[\frac{9}{1}, \frac{21}{2}\right]\right)$.

$$
\begin{gathered}
\frac{9}{1}<\frac{10}{1}<\frac{21}{2} \\
S(21,189,3)=S\left(\left[\frac{189}{21}, \frac{189}{18}\right]\right)=S\left(\left[\frac{9}{1}, \frac{21}{2}\right]\right)=\langle 9,10,21\rangle .
\end{gathered}
$$

(2) $\mathrm{S}\left(\left[\frac{9}{1}, \frac{41}{4}\right]\right)$.

$$
\begin{gathered}
\frac{9}{1}<\frac{10}{1}<\frac{41}{4} \\
\mathrm{~S}(41,369,5)=\mathrm{S}\left(\left[\frac{369}{41}, \frac{369}{36}\right]\right)=\mathrm{S}\left(\left[\frac{9}{1}, \frac{41}{4}\right]\right)=\langle 9,10,41\rangle .
\end{gathered}
$$

(-) $\mathrm{S}\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right)$.

$$
\begin{gathered}
\frac{9}{1}<\frac{10}{1}<\frac{51}{5} \\
S(51,459,6)=S\left(\left[\frac{459}{51}, \frac{459}{45}\right]\right)=S\left(\left[\frac{9}{1}, \frac{51}{5}\right]\right)=\langle 9,10,51\rangle .
\end{gathered}
$$

(Minor troubles with) Bézout sequences

Example

- $\mathrm{S}\left(\left[\frac{9}{5}, \frac{9}{4}\right]\right)$.

$$
\frac{9}{5}<\frac{2}{1}<\frac{9}{4}
$$

$$
S(9,5,1)=S\left(\left[\frac{9}{5}, \frac{9}{4}\right]\right)=\langle 2,9\rangle .
$$

(2) $\mathrm{S}\left(\left[\frac{9}{1}, \frac{12}{1}\right]\right)$.

$$
\begin{gathered}
\frac{9}{1}<\frac{10}{1}<\frac{11}{1}<\frac{12}{1} \\
\mathrm{~S}(4,36,3)=\mathrm{S}\left(\left[\frac{36}{4}, \frac{36}{3}\right]\right)=\mathrm{S}\left(\left[\frac{9}{1}, \frac{12}{1}\right]\right)=\langle 9,10,11,12\rangle .
\end{gathered}
$$

By generators (via characterization)

Proposition

(1) Let m_{1}, m_{2} be integer numbers such that $m_{1}, m_{2} \geq 3$ and $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$.
Then $S=\left\langle m_{1}, m_{2}, m_{1} m_{2}-m_{1}-m_{2}\right\rangle$ is an M-semigroup with $\mathrm{e}(S)=3$.
(2) Let λ, d, d^{\prime} be integer numbers such that $\lambda, d, d^{\prime} \geq 2$ and $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$.
Then $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$ is an M-semigroup with $\mathrm{e}(S)=3$.
(3) Let m_{1}, m_{2} be positive integer numbers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$.

Let q be a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$ such that
$2 \leq q<\min \left\{m_{1}, m_{2}\right\}$.
Then $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ is an M-semigroup with $\mathrm{e}(S)=3$.

By generators via closed intervals

Proposition

Let $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that $\mathrm{e}(S)=3$.
(1) If $\operatorname{gcd}\{a, b\}=\operatorname{gcd}\{a-1, b\}=1$, then there exist $m_{1}, m_{2} \geq 3$ such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$ and $S=\left\langle m_{1}, m_{2}, m_{1} m_{2}-m_{1}-m_{2}\right\rangle$.
(2) If $\operatorname{gcd}\{a, b\}=d \neq 1$ and $\operatorname{gcd}\{a-1, b\}=d^{\prime} \neq 1$, then there exist $\lambda \geq 2$ such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$ and $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$.
(3) If $\operatorname{gcd}\{a, b\} \neq 1$ and $\operatorname{gcd}\{a-1, b\}=1$, then there exist $m_{1}, m_{2}, q \geq 2$ such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1, q \mid \operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$, $2 \leq q<\min \left\{m_{1}, m_{2}\right\}$, and $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$.

Remark

Because $S\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)=S\left(\left[\frac{b}{b+1-a}, \frac{b}{b-a}\right]\right)$, the case $\operatorname{gcd}\{a, b\}=1$ and $\operatorname{gcd}\{a-1, b\} \neq 1$ is analogous to the third one in the proposition.

Families by generators

Theorem

S is an M-semigroup with $\mathrm{e}(S)=3$ if and only if it is one of the following types.
(T1) $S=\left\langle m_{1}, m_{2}, m_{1} m_{2}-m_{1}-m_{2}\right\rangle$ with $m_{1}, m_{2} \geq 3$ such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$.
(T2) $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$ with $\lambda, d, d^{\prime} \geq 2$ such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$.
(T3) $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ with $m_{1}, m_{2}, q \geq 2$ such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$, $q \mid \operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$, and $2 \leq q<\min \left\{m_{1}, m_{2}\right\}$.

Remark

(1) $m_{1}=m_{1}^{\prime} m_{2}^{\prime}-m_{1}^{\prime}-m_{2}^{\prime}, m_{2}=m_{2}^{\prime}$, and $q=m_{2}^{\prime}-1$ in (T3) \Rightarrow (T1).
(2) There is no relation between (T1) and (T2).
(3) There is no relation between (T2) and (T3).

PM-semigroups with n_{1}, n_{2} fixed

Lemma

Let n_{1}, n_{2}, n_{3} be integer numbers such that $3 \leq n_{1}<n_{2}<n_{3}$, $\operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$, and $n_{3} \notin\left\langle n_{1}, n_{2}\right\rangle$. Then $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ is a PM-semigroup if and only if n_{3} belongs to one of the following sets.
(1) $C_{1}=\left\{k n_{2}-n_{1} \mid k \in A\left(n_{1}\right)\right\}$.
(2) $C_{2}=\left\{t n_{1}-n_{2} \mid t \in A\left(n_{1}, n_{2}\right)\right\}$.

Moreover, $C_{1} \cap C_{2}=\left\{n_{1} n_{2}-n_{1}-n_{2}\right\}$.

Definition

Let n_{1}, n_{2} be integer numbers such that $3 \leq n_{1}<n_{2}$ and $\operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$.

- $A\left(n_{1}\right)=\left\{2, \ldots, n_{1}-1\right\}$.
- $A\left(n_{1}, n_{2}\right)=\left\{\left\lceil\frac{2 n_{2}}{n_{1}}\right\rceil, \ldots, n_{2}-1\right\}$.
- $D(n)=\{k \in \mathbb{N}$ such that $k \mid n\}$.
(If $q \in \mathbb{Q}$, then $\lceil q\rceil=\min \{z \in \mathbb{Z} \mid q \leq z\}$)

M-semigroups with n_{1}, n_{2} fixed

Lemma

(c) $S=\left\langle n_{1}, n_{2}, n_{1} n_{2}-n_{1}-n_{2}\right\rangle$ is (T3).
(2) Let us have $S=\left\langle n_{1}, n_{2}, k n_{2}-n_{1}\right\rangle$ with $k \in A\left(n_{1}\right) \backslash\left\{n_{1}-1\right\}$.
i) S is (T2) if and only if $k \mid n_{1}$.
ii) S is (T3) if and only if $k \mid\left(n_{1}-1\right)$ or $k \mid\left(n_{1}+1\right)$.
(8) Let us have $S=\left\langle n_{1}, n_{2}, t n_{1}-n_{2}\right\rangle$ whit $t \in A\left(n_{1}, n_{2}\right) \backslash\left\{n_{2}-1\right\}$.
i) S is (T2) if and only if $t \mid n_{2}$.
ii) S is $(T 3)$ if and only if $t \mid\left(n_{2}-1\right)$ or $t \mid\left(n_{2}+1\right)$.

M-semigroups with n_{1}, n_{2} fixed

Theorem

Let n_{1}, n_{2}, n_{3} be integer numbers such that $3 \leq n_{1}<n_{2}<n_{3}$, $\operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$, and $n_{3} \notin\left\langle n_{1}, n_{2}\right\rangle$. Then $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ is an M-semigroup if and only if n_{3} belongs to one of the following sets.
(1) $B_{1}=\left\{k n_{2}-n_{1} \mid k \in A\left(n_{1}\right) \cap\left[D\left(n_{1}-1\right) \cup D\left(n_{1}\right) \cup D\left(n_{1}+1\right)\right]\right\}$.
(2) $B_{2}=\left\{t n_{1}-n_{2} \mid t \in A\left(n_{1}, n_{2}\right) \cap\left[D\left(n_{2}-1\right) \cup D\left(n_{2}\right) \cup D\left(n_{2}+1\right)\right]\right\}$.

Moreover, $B_{1} \cap B_{2}=\left\{n_{1} n_{2}-n_{1}-n_{2}\right\}$.

M-semigroups with $n_{1}=9, n_{2}=10$

Example

(1) PM-semigroups

- $\langle 9,10,10 k-9\rangle$ with $k \in\{2,3,4,5,6,7,8\}$
- $\langle 9,10,9 t-10\rangle$ with $t \in\{3,4,5,6,7,8,9\}$
(2) M-semigroups
- $\langle 9,10,10 k-9\rangle$ with $k \in\{2,3,4,5\}$
- $\langle 9,10,9 t-10\rangle$ with $t \in\{3,5\}$
- $\langle 9,10,71\rangle$

M-semigroups with $n_{1}=9, n_{2}=10$

Example

(1) (T2) : $\mathrm{S}(21,189,3)=\langle 9,10,21\rangle=\langle 3 \cdot 3,3+7,3 \cdot 7\rangle$

$$
9 \cdot(3 \cdot 3)-8 \cdot(3+7)=1
$$

$S(21,189,3)=S((9 \cdot 3-8) \cdot 3,3 \cdot 3 \cdot 7)=S(57,63)$
(2) $(T 3): \mathrm{S}(41,369,5)=\langle 9,10,41\rangle=\left\langle 9, \frac{9+41}{5}, 41\right\rangle$

$$
2 \cdot 41-9 \cdot 9=1 \Rightarrow 10 \cdot 41-45 \cdot 9=5
$$

$S(41,369,5)=S\left(\frac{41-1}{5} \cdot 10, \frac{41-1}{5} \cdot 9\right)=S(80,72)=S(8,72)$
(3) $\langle 9,10,51\rangle=\langle 9,10,6 \cdot 10-9\rangle$ and $6 \notin D(8) \cup D(9) \cup D(10)$

References

S. Barucci, D.E. Dobbs and M. Fontana.

Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains.
Memoirs of the Amer. Math. Soc. 598, 1997.
J.C. Rosales.

Symmetric modular Diophantine inequalities.
Proc. Amer. Math. Soc. 134:3417-3421, 2006.
J.C. Rosales and P.A. García-Sánchez.

Finitely generated commutative monoids.
Nova Science Publishers, New York, 1999.
B
J.C. Rosales, P.A. García-Sánchez, J.I. García-García and J.M. Urbano-Blanco.

Proportionally modular Diophantine inequalities.
J. Number Theory, 103:281-294, 2003.
J.C. Rosales, P.A. García-Sánchez and J.M. Urbano-Blanco.

Modular Diophantine inequalities and numerical semigroups.
Pacific J. Math., 218:379-398, 2005.
B
J.C. Rosales, P.A. García-Sánchez, J.M. Urbano-Blanco.

The set of solutions of a proportionally modular Diophantine inequality.
J. Number Theory, 128:453-467, 2008.
B
A.M. Robles-Pérez, J.C. Rosales and P. Vasco.

Modular numerical semigroups with embedding dimension equal to three.
Submitted to Illinois Journal of Mathematics.

