A Saitô-Tomita-Lusin Theorem for JB*-triples and Applications

Leslie J. Bunce, Francisco J. Fernández-Polo, Juan Martínez Moreno and Antonio M. Peralta

Abstract

A Lusin’s theorem is proved in the non-ordered context of JB*-triples. This is applied to obtain versions of a general transitivity theorem and to deduce refinements of facial structure in closed unit balls of JB*-triples and duals.

1 Introduction and Preliminaries

If the open unit ball D of a complex Banach space E is a bounded symmetric domain the holomorphy of D determines the geometry of E and induces a ternary algebraic structure upon it. Banach spaces of this kind are known as JB*-triples [13]. The norm closed subspaces E of C*-algebras for which xx^*x lies in E whenever x does form a large class of examples of JB*-triples that, up to linear isometry, includes all Hilbert spaces, spin factors and many other familiar operator spaces. If \mathbb{O} denotes the complex Cayley numbers then the space of all 1 by 2 matrices over \mathbb{O}, $M_{1,2}(\mathbb{O})$, appropriately normed, is an example of a JB*-triple not of this form. Despite a general lack of order and other constraints the ternary structure in JB*-triples, which generalises the binary structure in C*-algebras, has been shown to be a natural medium in diverse disciplines such as complex holomorphy, convexity and quantum mechanics [6, 8, 13].

Non-commutative versions of Egoroff’s and Lusin’s theorems for C*-algebras [17, 19] are extended in this paper to the non-ordered context of JB*-triples. A transitivity theorem for an arbitrary JB*-triple E, in the sense that the “D - operator” associated with a finite rank tripotent of E^{**}

*Authors Partially supported by D.G.I. project no. BFM2002-01529, and Junta de Andalucía grant FQM 0199
has coincident image upon E and E^{**}, is obtained as one application and consequences for facial structure discussed. In particular, it is deduced that the norm exposed faces of E_1^* associated with finite rank tripotents in E^{**} are weak* exposed whenever E is separable and that, in general, the norm semi-exposed faces of E_1 are intersections of maximal norm closed faces.

We recall [13] that a JB*-triple is a complex Banach space together with a continuous triple product $\{.,.,.\} : E^3 \to E$ which is conjugate linear in the middle variable and symmetric bilinear in the outer variables such that, for the operator $D(a,b)$ given by $D(a,b)x = \{a,b,x\}$, we have

$$D(a,b)D(x,y) - D(x,y)D(a,b) = D(D(a,b)x,y) - D(x,D(b,a)y);$$

and that $D(a,a)$ is an hermitian operator with non-negative spectrum and $\|D(a,a)\| = \|a\|^2$.

Every C*-algebra is a JB*-triple via the triple product given by

$$2\{x,y,z\} = xy^*z + zy^*x,$$

and every JB*-algebra is a JB*-triple under the triple product

$$\{x,y,z\} = (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*.$$

A JBW*-triple is a JB*-triple with (unique) [3] predual. The second dual of a JB*-triple is a JBW*-triple [5]. Elements a, b in a JB*-triple E are orthogonal if $D(a,b) = 0$. With each tripotent u (i.e. $u = \{u,u,u\}$) in E is associated the Peirce decomposition

$$E = E_2(u) \oplus E_1(u) \oplus E_0(u),$$

where for $i = 0, 1, 2$ $E_i(u)$ is the $\frac{i}{2}$ eigenspace of $D(u,u)$. The Peirce rules are that $\{E_i(u), E_j(u), E_k(u)\}$ is contained in $E_{i-j+k}(u)$ if $i-j+k \in \{0, 1, 2\}$ and is zero otherwise. In addition,

$$\{E_2(u), E_0(u), E_1\} = \{E_0(u), E_2(u), E\} = 0.$$

The corresponding Peirce projections, $P_i(u) : E \to E_i(u)$, ($i = 0, 1, 2$) are contractive and satisfy

$$P_2(u) = D(2D - I), \quad P_1(u) = 4D(I - D), \quad \text{and} \quad P_0(u) = (I - D)(I - 2D),$$

where D is the operator $D(u,u)$ (compare [9]).
Let E be a JBW*-triple with tripotent u. The Peirce space $E_2(u)$ is a JBW*-algebra with Jordan product and involution given by $a \circ b = \{a, u, b\}$, $a^t = \{u, a, u\}$. Order amongst tripotents in E arises as follows. Tripotents u and v satisfy $v \leq u$ if and only if v is a projection in the JBW*-algebra $E_2(u)$. See [6], [14, §5] for several characterisations. A development [7] (see also [6], [9]) of triple functional calculus [13] is that if x is norm-one element of E there is a least tripotent $r(x)$ of E such that x belongs to the positive part of $E_2(r(x))$; the tripotent that arises as the greatest projection in $E_2(r(x))_+$ majorised by x is denoted by $u(x)$. In particular, in $E_2(r(x))_+$ we have

\[u(x) \leq x \leq r(x). \]

A non-zero tripotent u in E is said to be minimal if $E_2(u) = Cu$, and is said to have finite rank if it is an orthogonal sum of finitely many minimal tripotents. Given a convex set K we denote by $\partial_e(K)$ its set of extreme points. If E is a JB*-triple, for each $\rho \in \partial_e(E_1^*)$ there is a unique minimal tripotent, $u(\rho)$, of E^{**} such that $\rho(u(\rho)) = 1$, and all minimal tripotents arise in this way [9].

Given a JBW*-triple M, a norm-one element φ of M_* and a norm-one element z in M such that $\varphi(z) = 1$, it follows from [1, Proposition 1.2] that the assignment

\[(x, y) \mapsto \varphi \{x, y, z\}\]

defines a positive sesquilinear form on M, the values of which are independent of choice of z, and induces a prehilbert seminorm on M given by

\[\|x\|_\varphi := \left(\varphi \{x, x, z\}\right)^{\frac{1}{2}}. \]

As φ ranges over the unit sphere of M_* the topology induced by these seminorms is termed the strong*-topology of M. The strong*-topology was introduced in [2], and further developed in [16, 15]. In particular [16], the triple product is jointly strong*-continuous on bounded sets.

2 Saitô-Tomita-Lusin Theorem

The classical Lusin’s theorem states that if μ is a Radon measure on a locally compact Hausdorff space T and if f is a complex-valued measurable function on T such that there exists a Borel set $A \subseteq T$ with $\mu(A) < \infty$ and $f(x) = 0$ for all $x \notin A$, then for each $\varepsilon > 0$ there exists a Borel set $E \subseteq T$ with $\mu(T \setminus E) < \varepsilon$ and a function $g \in C_0(T)$ such that f and g coincide on
A non-commutative analogue of Lusin’s theorem for general C*-algebras was given in [19] and considerably developed subsequently in [17]. The underlying strategy in our approach to non-ordered JB*-triple extensions is to release and exploit local order structures harboured by Peirce 1- spaces and Peirce-2 spaces. Our initial aim is to derive a novel inequality (see Proposition 2.4) involving D-operators and then to employ it as a controlling device thereafter.

The following result is proved in [9, Lemma 1.5] and remark prior to it.

Lemma 2.1. Let \(u \) be a tripotent in a JB*-triple \(E \) and let \(x \in E_1(u) \cup E_2(u) \). Then \(D(x, x)u \) is a positive element in the JB*-algebra \(E_2(u) \).

Lemma 2.2. Let \(e \) be a projection in a JB*-algebra \(E \) and let \(a \in E_1(e) \cup E_2(e) \) where \(a = a^* \). Then \(a^2 \circ e \geq 0 \) and \(\|a\|^2 = \|D(a, a)e\| \).

Proof. We have \(D(a, a)e = a^2 \circ e \). We may suppose without loss that \(E \) has an identity element, 1. If \(a \in E_2(e) \), then \(a^2 = a^2 \circ e \). Let \(a \in E_1(e) \).

By [20], the JB-subalgebra of \(E_{sa} \) generated by \(1, e \) and \(a \) can be realised as a JC-subalgebra of the self-adjoint part of a C*-algebra \(B \) so that, in \(B \), we have \(a = 2D(e, e)a = ea + ae \) and therefore \(a^2 = ea^2 + aea \), giving \(ea^2 = a(1 - e)a = a^2e \). Consequently,

\[
\|ea^2\| = \|(1 - e)a^2(1 - e)\| = \|(1 - e)a^2\| = \|(1 - e)a\|^2
\]

and therefore

\[
\|a\|^2 = \max\{\|ea^2\|, \|(1 - e)a^2\|\} = \|ea^2\| = \|D(a, a)e\|.
\]

Lemma 2.3. Let \(E \) be a type I von Neumann factor or a finite dimensional simple JB*-algebra. Let \(u \) be a tripotent in \(E \). Then there exists a triple embedding \(\pi : E \to E \) such that \(\pi(u) \) is a projection.

Proof. In the first case we may suppose \(E = B(H) \) for some complex Hilbert space \(H \) [18, V.1.28] and that \(u \) is a partial isometry. From [12, Lemma 3.12] it follows that there exists a complete tripotent \(c \in B(H) \) such that \(c \geq u \).

Since \(c \) is complete in \(B(H) \) we have \((1 - cc^*)B(H)(1 - c^*c) = 0 \) and hence \(cc^* = 1 \) or \(c^*c = 1 \). We may assume that \(cc^* = 1 \). Denoting \(q = c^*c \), it follows that \(q \circ H \to H \) is a surjective linear isometry. Thus, the mapping \(\pi : B(H) \to B(H, q(H)) \subseteq B(H) \) defined by \(\pi(x) = c^*x \) is a surjective linear
isometry from $B(H)$ onto $B(H,q(H))$ and hence a triple isomorphism. It is clear that $\pi(c) = q$ is a projection in $B(H)$. Moreover, since π is a triple isomorphism and $c \geq u$ we have $\pi(u) \leq \pi(c) = q$, and hence $\pi(u)$ is a projection in $B(H)$.

The second case follows from [14, Corollary 5.12].

Proposition 2.4. Let u be a tripotent in a JB*-triple E and let $x \in E_1(u) \cup E_2(u)$. Then $\|x\|^2 \leq 4 \|D(x,x)u\|$.

Proof. By [10, Corollary 1] we may suppose that E is a JB*-subtriple of an ℓ_∞-sum, $M \oplus N$, where M is a type I von Neumann factor and N is an ℓ_∞-sum of finite dimensional simple JB*-algebras. Letting F denote the JB*-algebra $M \oplus N$, it follows from Lemma 2.3 that there is a triple embedding, $\pi : F \rightarrow F$, such that $\pi(u)$ is a projection. Thus, since $E_i(u) \subseteq F_i(u)$ for $i = 1, 2$ and π preserves the triple product we may assume without loss that E is a JB*-algebra and that u is a projection in E.

In which case, we have $x = a + ib$ where a and b are self-adjoint elements of E. Let $x \in E_1(u)$. Then a, b and x^* lie in $E_1(u)$. Via the equalities $2u \circ x = x$ and $2u \circ x^* = x^*$ and Lemma 2.2 we have

$$D(x,x)u = (x \circ x^*) \circ u = (a^2 + b^2) \circ u \geq a^2 \circ u, b^2 \circ u \geq 0$$

so that

$$4 \|D(x,x)u\| \geq 4 \max\{\|a\|^2, \|b\|^2\} \geq (\|a\| + \|b\|)^2 \geq \|x\|^2.$$

If x lies in $E_2(u)$ the assertion is verified by a similar (easier) argument.

The following observations illustrate the geometric nature of the inequality in Proposition 2.4. Given a tripotent u in a JB*-triple E the weak*-closed face of E_1^*,

$$F_u = \{\varphi \in E_1^* : \varphi(u) = \|\varphi\| = 1\}$$

identifies with the state space of the JB*-algebra $E_2(u)$. Let $x \in E_1(u)$. Since $D(x,x)u \in (E_2(u))_+$ we therefore have that

$$\|D(x,x)u\| = \sup\{\varphi(D(x,x)u) : \varphi \in F_u\}.$$

Thus, letting $\|x\|_u$ denote $\|D(x,x)u\|^\frac{1}{2}$ we have that

$$\|x\|_u = \sup\{\|x\|_{\varphi} : \varphi \in F_u\},$$

5
the seminorms $\|x\|_\varphi$ being as defined in the introduction. Further, $\|x\|_u = 0$ implies $x = 0$. Thus, $\|\cdot\|_u$ is a norm on $E_1(u)$ satisfying

$$\|\cdot\|_u \leq \|\cdot\| \leq 2\|\cdot\|_u,$$

the second inequality being given by Proposition 2.4. In particular, we record the following.

Corollary 2.5. If u is a tripotent in a JB*-triple E then $\|\cdot\|_u$ and $\|\cdot\|$ are equivalent norms on $E_1(u)$.

Lemma 2.6. Let u be a tripotent in a JB*-triple E, let $x \in E$ and let $x_j = P_j(u)(x)$ for $j = 1, 2$. Then $P_2(u)D(x,x)u \geq 0$ in $E_2(u)$ and

$$\|D(x_j,x_j)u\| \leq \|P_2(u)D(x,x)u\| \quad \text{for } j = 1, 2.$$

Proof. Using the Peirce rules calculation gives

$$D(x_1,x_1)u + D(x_2,x_2)u = P_2(u)D(x,x)u.$$

Thus, by Lemma 2.1, in $E_2(u)$ we have

$$0 \leq D(x_j,x_j)u \leq P_2(u)D(x,x)u \quad \text{for } j = 1, 2,$$

from which the assertion follows.

For subsequent purposes we remark that for tripotents u,v in a JB*-triple with $v \leq u$ we have

$$P_i(u)P_j(v) = P_j(v)P_i(u) \quad \text{for } i,j = 1, 2;$$

$$P_1(v)P_0(u) = P_2(v)P_1(u) = 0 \quad \text{and } P_2(v)P_2(u) = P_2(v).$$

In particular,

$$P_i(v) (P_2(u) + P_1(u)) = P_i(v) \quad \text{for } i = 1, 2.$$

In addition,

$$P_2(u) + P_1(u) = 3D(u,u) - 2D(u,u)^2 \quad \text{and } 2P_2(u) + P_1(u) = 2D(u,u).$$

We employ the geometric inequality obtained in Proposition 2.4 as a key tool in arguments below that culminate with a non-ordered Lusin’s theorem for JB*-triples. The general process owes much to the scheme and ideas of Saitô [17]. We begin with a Saitô-Egoroff theorem for JB*-triples.
Theorem 2.7. Let x belong to the strong*-closure of a bounded subset X of E^{**}, where E is a JB*-triple. Let u be a tripotent in E^{**}, let $\varphi \in E^*$ and let $\varepsilon > 0$. Then there exist a sequence (x_n) in X and a tripotent v in E^{**} such that $v \leq u$, $|\varphi(u - v)| < \varepsilon$, and $\|S(x_n - x)\| \to 0$, for $S = P_2(v), P_1(v)$ and $D(v, v)$.

Proof. Choose a net (x_λ) in X with strong*-limit x. We may suppose that X lies in the closed unit ball of E^{**}, that $\|\varphi\| = 1$ and (by translation) that $x = 0$.

For each λ let y_λ denote $P_2(u)D(x_\lambda, x_\lambda)u$. By the joint strong*-continuity of the triple product on bounded sets (y_λ) is strong*-null. By Lemma 2.6 each y_λ is a positive element of the JBW*-algebra $E^{**}_2(u)$, and $\|y_\lambda\| \leq 1$. In particular, for each λ, the JBW*-subtriple of E^{**} generated by y_λ and u is an abelian W*-subalgebra of the JBW*-algebra $E^{**}_2(u)$. For each λ, let u_λ denote $\chi(y_\lambda)$, where χ is the characteristic function of the interval $(-2^{-4}, 2^{-4})$. Then u_λ is a projection in $E^{**}_2(u)$ satisfying

$$2^4 y_\lambda \geq u - u_\lambda \geq 0,$$

for all λ. Since (y_λ) is strong*-null and hence weak*-null, $u - u_\lambda$ must be weak*-null in (the JBW*-algebra) $E^{**}_2(u)$ and thus weak*-null in E^{**}.

Choose λ_1 such that $|\varphi(u - u_{\lambda_1})| < 2^{-1}\varepsilon$. Denote $u_{\lambda_1}, x_{\lambda_1}$ and y_{λ_1} by u_1, x_1 and y_1, respectively. Using Proposition 2.4 in the second inequality below and Lemma 2.6 in the third, we have

$$\|P_2(u_1)x_1 + P_1(u_1)x_1\|^2 \leq 2(\|P_2(u_1)x_1\|^2 + \|P_1(u_1)x_1\|^2)$$

$$\leq 2^3(\|D(P_2(u_1)x_1, P_2(u_1)x_1)u_1\| + \|D(P_1(u_1)x_1, P_1(u_1)x_1)u_1\|)$$

$$\leq 2^4\|P_2(u_1)D(x_1, x_1)u_1\| \leq 1.$$
The sequence \((u_n)\) decreases in the weak*-topology to a projection \(v\) of \(E_2^{**}(u)\) giving \(u - v = \sum_{i=1}^{+\infty}(u_{n-1} - u_n)\) and so \(|\varphi(u - v)| \leq \varepsilon\). Further, for each \(n\),
\[
\|P_i(v)(x_n)\| = \|P_i(v) (P_2(u_n)x_n + P_1(u_n)x_n)\| \leq n^{-1},
\]
for \(i = 1, 2\). The remaining assertions follow.

Corollary 2.8. Let \(u\) be a tripotent in \(E^{**}\), where \(E\) is a JB*-triple. Let \(x \in E^{**}\) and \(\varphi \in E^*\). Let \(\varepsilon > 0\) and \(\delta > 0\). Then there exists \(y \in E\) and a tripotent \(v\) in \(E^{**}\) such that \(v \leq u\), \(|\varphi(u - v)| \leq \varepsilon\), \(\|P_i(v)(x - y)\| \leq \delta\) for \(i = 1, 2\) and \(|\varphi| \leq \|P_2(u) + P_1(u)\|\).

Proof. Since, by \([2, \text{Corollary 3.3}]\), the closed unit ball \(E_1\) of \(E\) is strong*-dense in the closed unit ball of \(E^{**}\), the assertions follow from replacing \(x\) and \(X\) in Theorem 2.7 with \((P_2(u) + P_1(u))(x)\) and \(|(P_2(u) + P_1(u))(x)\| E_1\), respectively.

A Lusin’s theorem for JB*-triples is proved next.

Theorem 2.9. Let \(E\) be a JB*-triple, let \(\varphi \in E^*\) and let \(x \in E^{**}\). Let \(u\) be a tripotent in \(E^{**}\) and let \(\varepsilon > 0\) and \(\delta > 0\). Then there exists \(y \in E\) and a tripotent \(v \in E^{**}\) such that \(v \leq u\), \(|\varphi(u - v)| \leq \varepsilon\), \(S(x - y) = 0\) for \(S = P_2(v), P_1(v)\) and \(D(v, v)\), and \(|\varphi| \leq \|P_2(u) + P_1(u)\|\).

Proof. We may assume without loss that \(|(P_2(u) + P_1(u))(x)\| = 1\). By Corollary 2.8, there is an element \(y_1\) in \(E\) and a tripotent \(u_1\) \(\leq u\) in \(E^{**}\) satisfying
\[
|\varphi(u - v)| < 2^{-1} \varepsilon, \quad \|P_i(u_1)(x - y_1)\| < 2^{-2} \delta \quad \text{for} \quad i = 1, 2
\]
and \(\|y_1\| \leq \|P_2(u) + P_1(u)\| = 1\).

Replacing \(u\) with \(u_1\) and \(x\) with \((P_2(u_1) + P_1(u_1))(x - y_1)\) in Corollary 2.8 now gives an element \(y_2\) in \(E\) and a tripotent \(u_2\) in \(E^{**}\) such that \(u_2 \leq u_1\) satisfying
\[
|\varphi(u_1 - u_2)| < 2^{-2} \varepsilon, \quad \|P_i(u_2)(x - y_1 - y_2)\| = \|P_i(u_2)(P_2(u_1) + P_1(u_1))(x - y_1 - y_2)\| < 2^{-3} \delta \quad \text{for} \quad i = 1, 2
\]
and \(\|y_2\| \leq \|P_2(u_1) + P_1(u_1)\|(x - y_1)\| < 2^{-1} \delta\).
Proceeding in this way gives rise to a sequence \((y_n)\) in \(E\) and a decreasing sequence \((u_n)\) of tripotents in \(E_2^{**}(\mathcal{U})\), which, for \(u_0 = u\), and all \(n \geq 1\) satisfies
\[
|\varphi(u_{n-1} - u_n)| < 2^{-n} \varepsilon, \quad \|P_i(u_n)(x - \sum_{k=1}^{n} y_k)\| < 2^{-(n+1)} \delta \quad \text{for } i = 1, 2
\]
and \(\|y_{n+1}\| \leq \|(P_2(u_n) + P_1(u_n))(x - \sum_{k=1}^{n} y_k)\| < 2^{-n} \delta.\)

Letting \(v\) denote the weak*-limit of \((u_n)\) in \(E_2^{**}(\mathcal{U})\), and \(y = \sum_{n=1}^{+\infty} y_n\), we have that \(v\) is a tripotent in \(E^{**}\) with \(v \leq u\) and \(y \in E\) such that \(|\varphi(u - v)| < \varepsilon\) and \(\|y\| \leq 1 + \delta.\)

Finally, for \(i = 1, 2\)
\[
\|P_i(v)(x - \sum_{k=1}^{n} y_k)\| = \|P_i(v)(P_2(u_n) + P_1(u_n))(x - \sum_{k=1}^{n} y_k)\| < 2^{-n} \delta
\]
for all \(n \geq 1\), so that \(P_i(v)(x - y) = 0.\) In turn, this implies
\[
D(v, v)(x - y) = 0.
\]

\[\square\]

3 Applications

In [6] Edwards and Rüttimann investigated facial structure of unit balls of a JBW*-triple and predual giving a complete description, and made significant inroads into corresponding general JB*-triple theory in the subsequent treatise [7]. In this section we exploit Theorem 2.9 to obtain versions of Kadison transitivity for JB*-triples (c.f. [18, II.4.18]) and use it to contribute observations on facial structure.

Let \(x \in E\) where \(E\) is a JB*-triple. Let \(E_x\) and \(E(x)\), respectively denote the JB*-subtriple and norm closed inner ideal of \(E\) generated by \(x\). We have \(E(x)^{**} = E_2^{**}(\mathcal{R}(x))\) and, when the latter is realised as a JBW*-algebra, \(E(x)\) is a JB*-algebra with \(x \in E(x)_+\) and \(E_x\) is the abelian C*-algebra (i.e. associative JB*-algebra) of \(E(x)\) generated by \(x\), with corresponding spectrum \(\sigma(x)\). To avoid possible confusion below, given a continuous real-valued function \(f\) on \(\sigma(x) \cup \{0\}\) vanishing at 0, \(f(x)\) shall have its usual meaning when \(E_x\) is regarded as an abelian C*-algebra and \(f_t(x)\) shall denote...
the same element of E_x when the latter is regarded as a JB*-subtriple of E. Thus, for any real odd polynomial, $P(\lambda) = \sum_{k=0}^{n} \alpha_k \lambda^{2k+1}$, we have $P_t(x) = \sum_{k=0}^{n} \alpha_k D(x, x)^k(x)$.

We remark that if $\|x\| = 1$, then the tripotents $u(x)$ and $r(x)$ in E^{**} are projections in the abelian von Neumann algebra $(E_x)^{**}$, $r(x)$ being the identity element.

Lemma 3.1. Let $x \in E$ and $u \in E^{**}$ where E is a JB*-triple and u is a tripotent such that $D(u, u)x = u$. Then there is an element $a \in E_x$ such that $\|a\| = 1$ and $D(u, u)a = u$. Moreover, $D(u, u)u(a) = D(u, u)r(a) = u$ and $u \leq u(a) \leq a \leq r(a)$ (in $E_x^{**}(r(a))$).

Proof. We may suppose that u is non-zero and therefore that $\|x\| \geq 1$. Since $P_0(u)(x - u) = 0$, u and $x - u$ are orthogonal which implies

$$D(u, x) = D(u, u) = D(x, u).$$

By Peirce arithmetic $D(x, x)$ and $D(u, u)$ commute and, by induction, we have

$$D(u, u)D(x, x)^nx = u,$$

for all $n \geq 0$. Thus,

$$D(u, u)P_t(x) = P(1)u,$$

for all real odd polynomials P. If f is a continuous real valued function on $[0, \|x\|]$ vanishing at 0 it follows that

$$D(u, u)f_t(x) = f(1)u.$$

Putting $a = f_t(x)$, where $f(\lambda) = \min\{\lambda, 1\}$, we have that $D(u, u)a = u$ and $\|a\| = 1$.

Further, since $(f_n)_{t}(a) \to r(a)$ and $(g_n)_{t}(a) \to u(a)$ in the weak*-topology, where $f_n(\lambda) = \lambda^{2n+1}$ and $g_n(\lambda) = \lambda^{2n+1}$ ($0 \leq \lambda \leq 1$) we have

$$D(u, u)r(a) = u = D(u, u)u(a).$$

The final assertion follows from this and the above remarks. \qed

Lemma 3.2. Let u be a tripotent in E^{**} where E is a JB*-triple. The sets

$\{x \in E_1 : D(u, u)x = u\}$, $(u + E_0^{**}(u)) \cap E_1$ and $\{x \in E : u \leq x \leq r(x)\}$ coincide.
Proof. The coincidence of the first two sets is evident from the fact that, for $x \in E^{**}$, $D(u,u)x = u$ if and only if $x - u \in \ker D(u,u) = E_0^{**}(u)$. The first set is contained in the third by Lemma 3.1. Conversely, given $x \in E$ with $u \leq x \leq r(x)$ we have, since $r(x) - x \geq 0$ in $E_2^{**}(r(x))$ and u is a projection there satisfying $\{u, r(x) - x, u\} = 0$, that u and $r(x) - x$ must be orthogonal so that

$$0 = D(u,u)(r(x) - x) = u - D(u,u)x.$$

\[\square\]

We shall now prove a transitivity theorem for JB*-triples.

Theorem 3.3. Let E be a JB*-triple and let u_1, \ldots, u_n be orthogonal minimal tripotents in E^{**} with sum u. Then

(a) $D(u,u)E = D(u,u)E^{**}$ and $P_j(u)E = P_j(u)E^{**}$ for $j = 1, 2$.

(b) There exists a in E such that $\|a\| = 1$ and $D(u,u)a = u$.

(c) There exist orthogonal elements, a_1, \ldots, a_n in E such that $D(u_i, u_i)a_i = u_i$ and $\|a_i\| = 1$ for $i = 1, \ldots, n$.

Proof. (a) The JBW*-algebra $E_2^{**}(u)$ is an ℓ_∞-sum of JBW*-algebras M_1, \ldots, M_k where each M_i is a type I_{n_i} factor with $n_i < \infty$. For each i, let ψ_i be the (unique) faithful tracial state on M_i, and let φ denote $\psi P_2(u)$ where ψ is the faithful tracial state on $E_2^{**}(u)$ given by $k^{-1} \sum_{i=1}^k \psi_i$. By construction, as v ranges over all tripotents in E^{**} such that $v \leq u$ and $v \neq u$, the values of $\varphi(v)$ form a finite set of rational numbers with supremum $\alpha < \varphi(u) = 1$.

Let $x \in E^{**}$. By Theorem 2.9 there exists an element $a \in E$ and a tripotent $v \in E^{**}$ with $v \leq u$ such that $D(v, v)(x - a) = 0$ and $1 - \varphi(v) < 1 - \alpha$. Since $\varphi(v) > \alpha$, we must have $v = u$ and hence $D(u,u)E = D(u,u)E^{**}$. The remaining equalities are immediate from the identities $2P_j(u)D(u,u) = JP_j(u)$ for $j = 1, 2$.

(b) By the arguments of the previous paragraph, and Lemma 3.1, there is a norm-one element $a \in E$ such that $u - D(u,u)a = D(u,u)(u - a) = 0$.

(c) Let a be as in (b) and let $\rho_i \in \partial_\varphi(E_i^*)$ such that $\rho_i(u_i) = 1$ for each i [9, Proposition 4]. By restriction, the ρ_i are pure states of the JB*-algebra $E(a)$ with support projections u_i in $E(a)^{**}$. Hence, by [11, Proposition 2.3], there exist orthogonal norm-one elements $b_1, \ldots, b_n \in E(a)_+$ with $\rho_i(b_i) = 1$ for $i = 1, \ldots, n$. Since each u_i is now a minimal tripotent of $E(b_i)^{**}$ we can
apply (b) to find a norm-one element $a_i \in E(b_i)$ such that $D(u_i, u_i) a_i = u_i$. Since the inner ideals $E(b_1), \ldots, E(b_n)$ are mutually orthogonal, so are the elements a_1, \ldots, a_n.

Let E be a JB*-triple. In the terminology introduced in [7] the tripotents of E^{**} of the form $u(a)$ where $a \in E$ with $\|a\| = 1$, are referred to as compact G_δ’s relative to E and each tripotent of E^{**} that is the weak* limit of a decreasing net of compact G_δ’s relative to E is called compact relative to E. Let $x \in E^{**}$ with $\|x\| = 1$. The norm-exposed face of E_1^*

$$F_x = \{ \varphi \in E_1^* : \varphi(x) = 1 \}$$

satisfies $F_x = F_{u(x)}$ [7, Lemma 3.3]. The face F_x is weak*-exposed if $x \in E$. By [7, Corollary 4.4] (c.f. [6, Lemma 3.2, Theorem 4.6]) the assignments

$$u \mapsto F_u \quad \text{and} \quad u \mapsto (u + E_0^{**}(u)) \cap E_1$$

are respectively an order isomorphism, and an anti-order isomorphism, from the non-zero compact tripotents relative to E onto the proper weak*-semi-exposed faces of E_1^*, and onto the proper norm-semi-exposed faces of E_1.

Theorem 3.4. Let E be a JB*-triple and let u be a finite rank tripotent of E^{**}. Then

(a) u is compact relative to E;

(b) F_u is a weak*-semi-exposed face of E_1^*.

Moreover, if E is separable, then

(c) u is a compact G_δ relative to E;

(d) F_u is a weak*-exposed face of E_1^*;

(e) $\{ \rho \}$ is weak*-exposed for all $\rho \in \partial_c(E_1^*)$.

Proof. (a) Let u be the sum of orthogonal minimal tripotents u_1, \ldots, u_n in E^{**}. Via Theorem 3.3 (c), choose orthogonal norm-one elements a_1, \ldots, a_n in E such that

$$u_i \leq a_i \leq r(a_i) \quad \text{for } i = 1, \ldots, n.$$

Each u_i is a minimal projection of $E(a_i)^{**} = E_2^{**}(r(a_i))$. Thus $r(a_1) - a_1, \ldots, r(a_n) - a_n$ are, respectively, weak* limits of increasing nets
Let \(x \) be the sum of \(a_1, \ldots, a_n \). Via mutual orthogonality of the \(a_i \) we have
\[
 u \leq x \leq r(x) = \sum_{i=1}^{n} r(a_i),
\]
and \(r(x) - \sum_{i=1}^{n} (x_i)_{\lambda} \) is a decreasing net in \(A(x)^{**} \) with weak* limit \(u \). Thus,
\[
\left\{ x, r(x) - \sum_{i=1}^{n} (x_i)_{\lambda}, x \right\}
\]
is a decreasing net in \(E(x) \) with weak*-limit \(\{ x, u, x \} = u \). It follows that \(u \) is compact relative to \(E \).

(b) This is immediate from (a) and [7, Corollary 4.4].

Suppose now that \(E \) is separable.

(c) Let the minimal tripotents \(u_1, \ldots, u_n \) be as in (a) and let \(\rho_1, \ldots, \rho_n \) in \(\partial_e(E_1^*) \) such that \(\{ \rho_i \} = F_{u_i} \) for each \(i \) [6, Proposition 4]. As in part (a) we can choose \(x \) in \(E \) such that \(u \leq x \leq r(x) \). Passing to the separable JB*-algebra \(E(x) \), it follows from [11, Propositions 2.3 and 3.1] that there exist orthogonal norm-one elements \(a_1, \ldots, a_n \) in \(E(x)_+ \) such that for each \(i \),
\[
\{ \rho_i \} = F_{a_i} = F_{u(a_i)};
\]
the second equality coming from [6, Lemma 3.3], so that \(u_i = u(a_i) \) by [6, Theorem 4.4]. Thus, letting \(a = \sum_{i=1}^{n} a_i \), in the JB*-algebra \(E(x) \) we have that
\[
a^{2n+1} = \sum_{i=1}^{n} a_i^{2n+1}
\]
is a decreasing sequence with weak* limit \(\sum_{i=1}^{n} u_i = u \) in \(E(x)^{**} \). Therefore, \(u = u(a) \).

(d) With \(a \) in \(E \) as in the proof of (c), we have \(F_u = F_a \), as required.

(e) This is contained in the proof of (c). \(\square \)

We conclude with an observation on the facial structure of the closed unit ball \(E_1 \) of a JB*-triple \(E \). If \(G \) is a norm-semi-exposed face of \(E_1 \) then (see [7])
\[
G' = \{ \rho \in E_1^* : \rho(x) = 1 \text{ for all } x \in G \}
\]
is a weak*-semi-exposed face of \(E_1^* \) and

\[
G = \{ x \in E_1 : \rho(x) = 1 \text{ for all } \rho \in G' \}.
\]

Let \(u(a) \) be a compact \(G_\delta \) in \(E^{**} \) relative to \(E \) (where \(a \) lies in \(E \) with \(\| a \| = 1 \)) and let \(\rho \in \partial_c(F_a) \). Then \(u(a) \) majorises the support tripotent \(v \) of \(\rho \) in \(E^{**} \), and we note that \(v \) is a minimal tripotent since \(\rho \in \partial_c(E_1^*) \). It follows by definition that each element in the set, \(S \), of all non-zero compact tripotents in \(E^{**} \) relative to \(E \), majorises a minimal tripotent in \(E^{**} \). Since, by Theorem 3.4 \(a \), all minimal tripotents of \(E^{**} \) are compact relative to \(E \) we deduce that the minimal elements of the set \(S \) (see [7, Theorem 4.5]) are, precisely, the minimal tripotents of \(E^{**} \). By Theorem 3.3 \(b \) each \(\rho \in \partial_c(E_1^*) \) attains its norm on \(E_1 \) so that

\[
E_\rho = \{ x \in E_1 : \rho(x) = 1 \}
\]

is a non-empty (norm-exposed) face of \(E_1 \).

Corollary 3.5. Let \(E \) be a \(JB^* \)-triple.

\(a \) The \(E_\rho \) are the maximal proper norm-closed faces of \(E_1 \) as \(\rho \) ranges over \(\partial_c(E_1^*) \).

\(b \) Each norm semi-exposed face of \(E_1 \) is an intersection of maximal norm closed faces of \(E_1 \).

Proof. \(a \) Each maximal proper norm closed face of \(E_1 \) is norm exposed by [7, Lemma 2.1]. Given \(\rho \in \partial_c(E_1^*) \) with minimal support tripotent \(u \) in \(E^{**} \) we clearly have that \(E_\rho \) contains \((u + E_0^{**}(u)) \cap E_1 \). By the above remarks together with [7, Corollary 4.4 \(ii \)] the assertion now follows.

\(b \) Let \(G \) be a norm semi-exposed face of \(E_1 \). By the Krein-Milman theorem

\[
G = \{ x \in E_1 : \rho(x) = 1 \text{ for all } \rho \in \partial_c(G') \}.
\]

Further, \(\partial_c(G') = \partial_c(E_1^*) \cap G' \), since \(G' \) is a face. Hence,

\[
G = \bigcap \{ E_\rho : \rho \in \partial_c(E_1^*) \cap G' \}.
\]
References

University of Reading
Reading RG6 2AX, Great Britain.

Departamento de Análisis Matemático, Facultad de Ciencias,
Universidad de Granada, 18071 Granada, Spain.

e-mails: L.J.Bunce@reading.ac.uk, pacopolo@ugr.es, jnmadrigal@ugr.es, and
aperalta@ugr.es