
UNITARY BANACH ALGEBRAS

JULIO BECERRA GUERRERO, SIMON COWELL, ÁNGEL RODRÍGUEZ
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1. Introduction

By a norm-unital normed algebra we mean a normed (associative)
algebra having a unit 1 such that ‖1‖ = 1. Unitary elements of a norm-
unital normed algebra A are defined as those invertible elements u of A
satisfying ‖u‖ = ‖u−1‖ = 1. By a unitary normed algebra we mean a
norm-unital normed algebra (say A) such that the convex hull of the set
of its unitary elements is norm-dense in the closed unit ball of A. Rele-
vant examples of unitary Banach algebras are all unital C∗-algebras and
the group algebras `1(G) for every group G. Unitary Banach algebras were
first considered in her Ph. D. Thesis [17] by E. R. Cowie, but most of her
results were not published elsewhere. Indeed, in Cowie’s paper [18] we only
find some incidental references to unitary Banach algebras. More recently,
unitary Banach algebras have been reconsidered by M. L. Hansen and R. V.
Kadison [31]. One of the main goals in both [17] and [31] is to obtain char-
acterizations of unital C∗-algebras among unitary Banach algebras by some
extra conditions. An example in this line is the remark, in both Cowie’s and
Hansen-Kadison works, that unitary closed subalgebras of C∗-algebras are
in fact C∗-algebras. For a review of some of the more important results in
[17], [18], and [31] the reader is referred to [47]. A Banach ∗-algebra that
is unitary is an example of a U∗-algebra as defined by T. W. Palmer in
[41], Section 10.3. This is a ∗-algebra which is the linear span of the ‘uni-
tary’elements (uu∗ = u∗u = 1). In a U∗-algebra A a seminorm is defined
by

ν(x) = inf{
∞∑

j=1

|λj | : x =
∞∑

j=1

λjuj ;λj ∈ C, uj unitary , ‖uj‖ = 1}

and so A is unitary if ν is equal to the norm.
In the present paper we try to study unitary Banach algebras by them-

selves. In Section 2 we prove several stability conditions for the class of
unitary Banach algebras. After observing that quotients of unitary Banach
algebras are unitary Banach algebras (Proposition 2.1), our main result in
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this line states that every unitary Banach algebra is a quotient of `1(G) for
a suitable group G (Theorem 2.3). We also prove that both the complete
projective tensor product and the `∞-sum of two unitary Banach algebras
is a unitary Banach algebra (Propositions 2.4 and 2.8).

In Section 3, we extend to unitary Banach algebras some results previously
known in the case of unital C∗-algebras (see Remark 3.9.c and the comment
before Corollary 3.13), and prove some other results for unitary Banach
algebras, which could be new even in the C∗-algebra case. The main theorem
in the section (Theorem 3.8) asserts that, in most cases, each one of the
facts asserted in those results actually characterizes unitary Banach algebras
among norm-unital Banach algebras. As an example, a norm-unital Banach
algebra A is unitary if and only if the numerical range of each continuous
linear operator F on A is the closed convex hull of the union of the numerical
ranges relative to A of the elements of the form F (u−1)u, where u runs over
the set of all unitary elements of A. We prove Theorem 3.8 through a general
discussion in the setting of Banach spaces, involving “big points” and “strong
subdifferentiability of the norm”, notions which have been introduced in [5]
and [28], respectively. Motivation comes from the facts that, if A is a norm-
unital Banach algebra, then the norm of A is strongly subdifferentiable at
its unit, and that, if in addition A is unitary, then the unit of A is a big
point of A. Among the consequences of such a discussion we emphasize that
the normed space numerical index of every unitary Banach algebra coincides
with that of its dual space (Corollary 3.13).

In Section 4 we study dentability of closed balls in unitary Banach alge-
bras. Concerning this topic, the situation is very different in the two funda-
mental classes of examples. Indeed, closed unit balls of group algebras al-
ways have denting points in abundance, whereas closed unit balls of infinite-
dimensional C∗-algebras have no denting point, nor even are dentable [4].
Our main result in this line asserts that the closed unit ball BA of a unitary
Banach algebra A is dentable (if and) only if the unit of A is a denting point
of BA, and moreover, if this is the case, then denting points of BA, unitary
elements of A, and big points of the Banach space of A coincide (Theorem
4.5).

In the concluding section of the paper (Section 5) we invoke some re-
sults in [3] and [34] on infinite-dimensional holomorphy to obtain several
new characterizations of unital C∗-algebras among unitary Banach algebras
(Theorem 5.2). One of them (namely, that unital C∗-algebras are precisely
those unitary complex Banach algebras which satisfy the von Neumann in-
equality) is implicitly contained in [3] (see Remark 5.3.a). Among the essen-
tially new results collected in Theorem 5.2, we emphasize the one asserting
that unital C∗-algebras are precisely those unitary complex Banach algebras
A such that the distance from the unit of A to the “symmetric part” of the
Banach space of A is less than one.
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2. Stability

From now on, K will denote the field of real or complex numbers. All
normed spaces will be over K unless otherwise stated. We denote by SX

and BX the closed unit sphere and the closed unit ball, respectively, of X,
and, for a norm-unital normed algebra A, we denote by UA the group of all
unitary elements of A.

Some stability conditions for the class of unitary normed algebras are
almost trivial. Thus, for example, the completion of every unitary normed
algebra is a unitary normed algebra. We will give our results mostly in
terms of Banach algebras rather than normed algebras. Another stability
condition is the following.

Proposition 2.1. Let A be a unitary Banach algebra, and let I be a proper
closed (two-sided) ideal of A. Then the Banach algebra A/I is unitary.

Proof. Let π : A 7→ A/I be the natural quotient homomorphism. It is
obvious that π(u) is a unitary element ofA/I whenever u is a unitary element
ofA. Let z be in int(BA/I), and let ε > 0. Then there exists a ∈ int(BA) with
π(a) = z, and α1, ..., αn ∈ R+

0 and u1, ..., un ∈ UA satisfying
∑n

i=1 αi = 1
and ‖a −

∑n
i=1 αiui‖ < ε. Therefore we have ‖z −

∑n
i=1 αiπ(ui)‖ < ε with

π(u1), ..., π(un) ∈ UA/I .

Given a set Γ, we denote by `1(Γ) the Banach space of all functions
ψ : Γ 7→ K such that ‖ψ‖ :=

∑
γ∈Γ |ψ(γ)| < ∞, and, for µ in Γ, we denote

by δµ the element of `1(Γ) defined by δµ(γ) = 1 if γ = µ, and δµ(γ) = 0
otherwise. Now, let X and Y be normed spaces. By a metric surjection
from X to Y we mean a continuous linear mapping (say Ψ) from X onto Y
such that the induced bijection X/ ker(Ψ) 7→ Y is an isometry. It is easy to
see that a linear mapping Ψ : X 7→ Y is a metric surjection if and only if
Ψ(int(BX)) = int(BY ). The next lemma is of folklore type.

Lemma 2.2. Let X be a Banach space, and let Γ be a subset of BX such
that co (Γ) = BX . Then, for ψ in `1(Γ), the family {ψ(γ)γ}γ∈Γ is summa-
ble in X, and the mapping ψ 7→

∑
γ∈Γ ψ(γ)γ becomes a metric surjection

from `1(Γ) to X. As a consequence, given x ∈ X and ε > 0, there are
sequences {λn}n∈N in K and {γn}n∈N in Γ satisfying

∑∞
n=1 |λn| < ‖x‖ + ε

and
∑∞

n=1 λnγn = x.

Proof. For ψ in `1(Γ) we have
∑

γ∈Γ ‖ψ(γ)γ‖ ≤
∑

γ∈Γ |ψ(γ)| < ∞, and
therefore, since X is a Banach space, the family {ψ(γ)γ}γ∈Γ is summable in
X [16, Proposition VII.9.18].

Now let Ψ denote the mapping from `1(Γ) to X defined by Ψ(ψ) :=∑
γ∈Γ ψ(γ)γ, which is clearly a linear contraction. For µ in Γ we have

Ψ(δµ) = µ, and hence Γ ⊆ Ψ(B`1(Γ)). Since co (Γ) = BX , we have in fact
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BX ⊆ Ψ(B`1(Γ)). Now, from the main tool in the proof of Banach’s open
mapping theorem (see for example [11, Lemma 48.3]) we deduce int(BX) ⊆
Ψ(B`1(Γ)). Since Ψ is a linear contraction, the above shows that Ψ is in fact
a metric surjection.

Let G be a group. Then the group algebra `1(G) is a norm-unital
Banach algebra for the convolution product ? defined by

(ψ ? ϕ)(t) :=
∑
s∈G

ψ(s−1t)ϕ(s)

for every t ∈ G. Then `1(G) is clearly a unitary Banach algebra. [18, p. 9].
Now that we know that quotients of unitary Banach algebras are unitary

Banach algebras (Proposition 2.1), and that, for every group G, `1(G) is a
unitary Banach algebra, we prove that every unitary Banach algebra is a
quotient of `1(G) for a suitable group G.

Theorem 2.3. Let A be a unitary Banach algebra. Then there exists a
closed ideal I of `1(UA) such that A is isometrically algebra-isomorphic to
`1(UA)/I.

Proof. According to Lemma 2.2, the mapping Ψ : ψ 7→
∑

u∈UA
ψ(u)u, from

`1(UA) to A, is a metric surjection. On the other hand, it is easy to check
that Ψ is an algebra homomorphism. Therefore I := ker(Ψ) is a closed ideal
of `1(UA), and the induced mapping `1(UA)/I 7→ A is an isometric algebra
isomorphism.

Let A and B be algebras. The vector space A ⊗ B becomes naturally
an algebra under the product determined on elementary tensors by (a1 ⊗
b1)(a2 ⊗ b2) = (a1a2) ⊗ (b1b2). If A and B are Banach algebras, then the
algebra A ⊗ B is a normed algebra under the projective tensor norm ‖ · ‖π

[11, Proposition 43.18]. The Banach algebra obtained by completing A⊗πB
is called the projective tensor product of A and B, and is denoted by
A⊗̂πB.

Proposition 2.4. Let A and B be unitary Banach algebras. Then A⊗̂πB
is a unitary Banach algebra.

Proof. The proof is straightforward.

Note that any real Banach algebra A can be complexified by taking the
projective tensor product C ⊗π A. (see [15, Proposition 13.3].] The next
corollary follows from Proposition 2.4.

Corollary 2.5. Let A be unitary real Banach algebra. Then the complexi-
fication of A is a unitary complex Banach algebra.
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By an involution on an algebra A over R (respectively, C) we mean
a linear (respectively, conjugate-linear) involutive anti-automorphism of A.
If G is a group, then `1(G) has a natural involution, namely ∗ defined by
ψ∗(s) := ψ(s−1) for all ψ ∈ `1(G) and s ∈ G. Such an involution is isometric,
and sends each unitary element to its inverse. The same occurs for the
natural involution of every unital C∗-algebra.

Corollary 2.6. Let A be a finite-dimensional unitary Banach algebra over
K. Then there exists a (unique) isometric involution ∗ on A satisfying
u∗ = u−1 for every unitary element u of A. Moreover, if K = C, then
(A, ∗) is ∗-isomorphic to a C∗-algebra.

Proof. In view of Corollary 2.5, we can assume that K = C. Then, by
Theorem 2.3, we have A = `1(G)/M for some group G and some closed
ideal M of `1(G). Let π : `1(G) 7→ `1(G)/M = A be the natural quotient
homomorphism. We have always π(U`1(G)) ⊆ UA, but, looking at the proof
of Theorem 2.3, we can choose the couple (G,M) in such a way that actually
the equality π(U`1(G)) = UA holds.

On the other hand, since M is of finite codimension in `1(G), it follows
from [20, Corollary 3.3.27] that M is invariant under the natural involution ∗
of `1(G), and that A = `1(G)/M (endowed with the quotient involution, also
denoted by ∗) is ∗-isomorphic to a C∗-algebra. Now, clearly, the involution
∗ on A is isometric, and π becomes a ∗-homomorphism. If u is in UA, then
there exists v in U`1(G) such that π(v) = u, and hence u∗ = (π(v))∗ =
π(v∗) = π(v−1) = (π(v))−1 = u−1.

In relation to Corollary 2.6, it is worth mentioning that a finite-dimen-
sional unitary complex Banach algebra need not be isometrically isomorphic
to a C∗-algebra. This is the case, for example, of the algebra `1(G), for every
finite group G not reduced to its unit. Nevertheless, an elegant isometric
characterization of finite-dimensional C∗-algebras among finite-dimensional
unitary complex Banach algebras is obtained in [31]. This characterization
is rediscovered in Corollary 2.7 immediately below. Following [31, p. 536],
we say that a Banach algebra A is maximal unitary if A is unitary and
UA is a maximal bounded subgroup of the group of all invertible elements
of A. Unital C∗-algebras are maximal unitary [31, Proposition 3].

Corollary 2.7. ([31, Theorem 6]) Let A be a finite-dimensional maximal
unitary complex Banach algebra. Then A is isometrically isomorphic to a
C∗-algebra.

Proof. By Corollary 2.6, there exists a norm |||·||| on A, and an involution ∗ on
A such that (A, |||·|||, ∗) becomes a C∗-algebra, and the inclusion UA ⊆ U(A,|||·|||)
holds. Since ||| · ||| and ‖ · ‖ are equivalent, U(A,|||·|||) is a bounded subgroup of
the group of all invertible elements of A. Since A is maximal unitary, we
deduce UA = U(A,|||·|||). Since both A and (A, ||| · |||) are unitary, the above
equality implies ||| · ||| = ‖ · ‖.
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Let A and B be algebras. The vector space A × B becomes an algebra
over K under the product defined coordinate-wise. If A and B are actually
normed algebras, then the algebra A × B is a normed algebra under the
norm ‖(a, b)‖ := max{‖a‖, ‖b‖}. Such a normed algebra will be denoted by
A⊕∞ B.

Proposition 2.8. Let A and B be unitary normed algebras. Then A⊕∞B
is unitary.

Proof. Let f be a norm-one continuous linear functional on A⊕∞ B. Then
there are continuous linear functionals g and h on A and B, respectively,
satisfying ‖g‖ + ‖h‖ = 1 and f(a, b) = g(a) + h(b) for every (a, b) in
A ⊕∞ B. Since (u, v) belongs to UA⊕∞B whenever u and v are in UA and
UB, respectively, and A and B are unitary, we have

1 ≥ sup{<e(f(w)) : w ∈ UA⊕∞B} ≥ sup{<e(f(u, v)) : (u, v) ∈ UA × UB}

= sup{<e(g(u)) : u ∈ UA}+ sup{<e(h(v)) : v ∈ UB} = ‖g‖+ ‖h‖ = 1.

Therefore we obtain sup{<e(f(w)) : w ∈ UA⊕∞B} = 1 for every norm-one
continuous linear functional f on A⊕∞B, and the result follows by applying
the Hahn-Banach separation theorem.

Remark 2.9. a) Defining real C∗-algebras as real closed ∗-invariant subal-
gebras of (complex) C∗-algebras, it follows from the proof of Corollary 2.6
that every finite-dimensional unitary real Banach algebra is isomorphic to a
real C∗-algebra. Moreover, finite-dimensional maximal unitary real Banach
algebras are isometrically isomorphic to real C∗-algebras. This follows from
the above by realizing that finite-dimensional real C∗-algebras are unitary
(as we do immediately below), and then arguing as in the proof of Corollary
2.7.

Let A be a finite-dimensional real C∗-algebra. By Wedderburn theory, A
has a unit 1, and we have A = ⊕n

i=1Ai for some n ∈ N and some ∗-invariant
simple ideals A1, ..., An of A. Let u be an extreme point of BA. By [32,
Lemma 3.2], we have (1 − uu∗)A(1 − u∗u) = 0. Writing u =

∑n
i=1 ui with

ui ∈ Ai for every i, we deduce (1i − uiu
∗
i )Ai(1i − u∗iui) = 0 for every i,

where 1i denotes the unit of Ai. Since, for each i, Ai is finite-dimensional
and prime, we obtain uiu

∗
i = u∗iui = 1i, and hence u belongs to UA. Since

u is an arbitrary extreme point of BA, and BA is convex and compact, it
follows from the above and the Krein-Milman theorem that BA = coUA.

b) In general, a unitary Banach algebra need not have a continuous invo-
lution sending each unitary element to its inverse. To realize this, keep in
mind that, as a consequence of [45, Theorem 7.7.1], there exists a closed ideal
(say M) of `C1 (Z) that is not a ∗-ideal. Then, putting A := `C1 (Z)/M , A be-
comes a unitary commutative complex Banach algebra (by Proposition 2.1).
Assume that there is a continuous involution ∗ on A satisfying u∗ = u−1 for
every u ∈ UA. Choose ψ ∈ M with ψ∗ /∈ M , and denote by π the natural
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quotient homomorphism `C1 (Z) 7→ `C1 (Z)/M . Since ψ =
∑

n∈Z ψ(n)δn, and
π(δn) belongs to UA for every n ∈ Z, we have

π(ψ∗) =
∑
n∈Z

ψ(n)π(δ∗n) =
∑
n∈Z

ψ(n)π(δ−1
n ) =

∑
n∈Z

ψ(n)(π(δn))−1

=
∑
n∈Z

ψ(n)(π(δn))∗ = [
∑
n∈Z

ψ(n)π(δn)]∗ = [π(ψ)]∗ = 0.

Therefore ψ∗ belongs to M , a contradiction.
c) If a unitary normed algebra A has a continuous involution ∗ satisfying

u∗ = u−1 for every u ∈ UA, then such an involution is isometric. Indeed,
the set {a ∈ A : ‖a∗‖ ≤ 1} is closed and convex, and contains UA.

d) In general, maximal unitary complex Banach algebras need not be
C∗-algebras. A large list of examples confirming the above assertion can be
derived from [18]. In that paper uniquely maximal Banach algebras
are defined as those norm-unital Banach algebras A satisfying:

(1) UA is a maximal bounded subgroup of the group of all invertible
elements of A, and

(2) ||| · ||| = ‖ · ‖ whenever ||| · ||| is any equivalent norm on A such that
(A, ||| · |||) is a norm-unital normed algebra with U(A,|||·|||) = UA.

Uniquely maximal Banach algebras are maximal unitary [18, Theorem 1].
Moreover, given a group G (with unit denoted by e), the Banach algebra
`1(G) is uniquely maximal if and only if, for every s ∈ G \ {e}, the set
{tst−1 : t ∈ G} is infinite [18, Theorem 5].

e) Examples of unitary complex Banach algebras which are neither C∗-
algebras nor group algebras can be found in [31] and [41] Section 10.3. Other
examples of the same kind can be derived from Propositions 2.4 and 2.8,
and the part b) of the present remark.

3. Characterizations

Let X be a normed space. We denote by X∗ the (topological) dual space
of X. Up to the canonical injection, X will be seen as a subspace of its
bidual X∗∗. B(X) will denote the normed algebra of all bounded linear
operators on X, and IX will stand for the identity operator on X. Each
continuous bilinear mapping from X ×X to X will be called a product on
X. Each product f on X has a natural norm ‖f‖ given by

‖f‖ := sup{‖f(x, y)‖ : x, y ∈ BX}.

We denote by P(X) the normed space of all products on X.
Now, let e be a “distinguished” norm-one element in the normed space X.

The set of states of X relative to e, D(X, e), is defined as the non empty,
convex, and weak∗-compact subset of X∗ given by

D(X, e) := {φ ∈ BX∗ : φ(e) = 1}.
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For x in X, the numerical range of x relative to e, V (X, e, x), is given by

V (X, e, x) := {φ(x) : φ ∈ D(X, e)}.
Numerical ranges are preserved (respectively, contracted) under isomet-
ric (respectively, contractive) linear mappings preserving distinguished el-
ements. We say that e is a vertex of BX if the conditions x ∈ X and
φ(x) = 0 for all φ in D(X, e) imply x = 0. It is well-known and easy to see
that the vertex property for e implies that e is an extreme point of BX . For
x in X, we define the numerical radius of x relative to e, v(X, e, x), by

v(X, e, x) := max{|ρ| : ρ ∈ V (X, e, x)}.
The numerical index of X relative to e, n(X, e), is the number given by

n(X, e) := max{r ≥ 0 : r‖x‖ ≤ v(X, e, x) for all x in X}.
We note that 0 ≤ n(X, e) ≤ 1 and that the condition n(X, e) > 0 implies
that e is a vertex of BX . Note also that, if Y is a subspace of X containing
e, then n(Y, e) ≥ n(X, e).

Given a set Γ and a normed space X, we denote by `∞(Γ, X) the normed
space of all functions ψ : Γ 7→ X such that ‖ψ‖ := sup{‖ψ(γ)‖ : γ ∈ Γ} <∞.
When X is in fact a normed algebra, `∞(Γ, X) becomes a normed algebra
under the product defined point-wise. Given a normed algebra A, we denote
by pA the natural product of A. Note that ‖pA‖ = 1 whenever A is norm-
unital.

Proposition 3.1. Let A be a unitary Banach algebra. Then, for every p in
P(A), we have

V (P(A), pA, p) = co [
⋃

(u,v)∈UA×UA
V (A,1, u−1p(u, v)v−1)].

Proof. For p in P(A), let p̂ stand for the element of `∞(UA×UA, A) defined
by p̂(u, v) := u−1p(u, v)v−1 for every (u, v) ∈ UA × UA. Then the mapping
p 7→ p̂ from P(A) to `∞(UA×UA, A) is linear, sends pA to the unit 1̃ of the
Banach algebra `∞(UA × UA, A) (namely, the constant function equal to 1
on UA × UA), and is an isometry (since coUA = BA). Therefore

V (P(A), pA, p) = V (`∞(UA × UA, A), 1̃, p̂)

for every p ∈ P(A). Since, for p in P(A), we have

V (`∞(UA × UA, A), 1̃, p̂) = co [
⋃

(u,v)∈UA×UA
V (A,1, p̂(u, v))]

(see [43, Proposition 3]), the result follows.

In the main result of this section (see Theorem 3.8 below) we will show
that the property of unitary Banach algebras proved in Proposition 3.1 ac-
tually characterizes them among norm-unital Banach algebras. This will
be achieved through a general discussion in the setting of Banach spaces,
involving “big points” [5] and “strong subdifferentiability of the norm” [28].
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Such a discussion is motivated by the facts that, if A is a norm-unital Ba-
nach algebra, then the norm of A is strongly subdifferentiable at its unit,
and that, if A is a unitary Banach algebra, then the unit of A is a big point
of A. In fact, as we show in Remark 3.2 which follows, strong subdiffer-
entiability of the norm has been already implicitly applied in the proof of
Proposition 3.1.

Let X be a normed space, and e a norm-one element in X. For x in
X, the number limα→0+

‖e+αx‖−1
α (which always exists because the mapping

α→ ‖e+ αx‖ from R to R is convex) is usually denoted by τ(e, x). We say
that the norm of X is strongly subdifferentiable at e if

lim
α→0+

‖e+ αx‖ − 1
α

= τ(e, x) uniformly forx ∈ BX .

Remark 3.2. In the proof of Proposition 3.1 we have applied the result in
[43, Proposition 3] that V (`∞(Γ, A), 1̃, φ) = co [

⋃
γ∈Γ V (A,1, φ(γ))] when-

ever Γ is any set, A is any norm-unital Banach algebra, and φ is any element
of `∞(Γ, A). It is worth mentioning that the result just quoted need not re-
main true if the couple (A,1) above is replaced with (X, e) for an arbitrary
Banach space X and an element e in SX . Actually, denoting by ẽ the con-
stant function equal to e on Γ, the couples (X, e) as above which satisfy
V (`∞(Γ, X), ẽ, φ) = co [

⋃
γ∈Γ V (X, e, φ(γ))] for every set Γ and every φ in

`∞(Γ, X) are characterized as those such that the norm of X is strongly sub-
differentiable at e (see [1, Theorem 2.7] or [44, Corollary 2]). According to
[28, Corollary 4.4], the strong subdifferentiability of a Banach space X at an
element e in SX is also equivalent to the upper semicontinuity (n−n) of the
duality mapping of X at e, previously introduced in [26]. Semicontinuity
(n − n) of the duality mapping of X at e means that for every ε > 0
there is δ > 0 such that D(X,x) ⊆ D(X, e) + εBX∗ whenever x lies in SX

and ‖x− e‖ < δ. For more information about the concepts just introduced
the reader is referred to [25].

As a first consequence of Remark 3.2, we obtain the following corollary.

Corollary 3.3. Let A be a unitary Banach algebra. Then the norm of P(A)
is strongly subdifferentiable at pA.

Proof. In the proof of Proposition 3.1 we have seen that P(A) can be identi-
fied with a subspace of `∞(UA×UA, A) in such a way that pA converts into
1̃. On the other hand, since `∞(UA×UA, A) is a norm-unital Banach algebra
whose unit is 1̃, the norm of `∞(UA × UA, A) is strongly subdifferentiable
at 1̃ (see Remark 3.2). Now the result follows from the obvious hereditary
character of the strong subdifferentiability of the norm.

Let X be a normed space. We denote by GX the group of all surjective
isometries from X to X. Given e in X and a subgroup G of GX , we say that
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e is a G-big point of X if co (G(e)) = BX . GX -big points of X will be called
simply big points of X. We note that, if e is a G-big point of X for some
G as above, then e is a big point of X, and e lies in SX (unless X = 0). A
subset M of a vector space over K is said to be circled if SKM ⊆M .

Lemma 3.4. Let X be a normed space over K, let e be in SX , and let G be
a circled subgroup of GX . Then the following assertions are equivalent:

(1) e is a G-big point of X.
(2) For every lower semicontinuous norm |||·||| on X satisfying i) |||e||| ≤ 1,

ii) ‖ · ‖ ≤ ||| · |||, and iii) G ⊆ G(X,|||.|||), we have ||| · ||| = ‖ · ‖.
(3) For every continuous norm |||·||| on X satisfying i), ii), and iii) above,

we have ||| · ||| = ‖ · ‖.

Proof. 1 ⇒ 2.- Let ||| · ||| be a lower semicontinuous norm on X satisfying
i), ii), and iii) in the statement. By i) and iii), we have G(e) ⊆ B(X,|||·|||),
and from the lower semicontinuity of ||| · ||| we deduce that B(X,|||·|||) is ‖ · ‖-
closed in X. Therefore, by the assumption 1, we have BX ⊆ B(X,|||·|||), that
is ‖ · ‖ ≥ ||| · |||. It follows from ii) that ||| · ||| = ‖ · ‖.

2 ⇒ 3.- This is clear.
3 ⇒ 1.- Let 0 < ε ≤ 1. Then co [(εBX)∪ G(e)] is a G-invariant absolutely

convex subset of X contained in BX and containing εBX . Therefore the
Minkowski functional of co [(εBX)∪G(e)] (say |||·|||ε) is a norm onX satisfying
ε||| · |||ε ≤ ‖ · ‖ ≤ ||| · |||ε,
(3.1) {x ∈ X : |||x|||ε < 1} ⊆ co [(εBX) ∪ G(e)] ⊆ {x ∈ X : |||x|||ε ≤ 1} ,
and G ⊆ G(X,|||.|||). Now |||·|||ε fulfills all requirements made for |||·||| in Assertion
3. Therefore, by the assumption 3, we have ||| · |||ε = ‖ · ‖. Let x be in X
with ‖x‖ < 1. If follows from the left inclusion in (3.1) that x belongs to
co [(εBX) ∪ G(e)]. Since co [(εBX) ∪ G(e)] is contained in εBX + co (G(e)),
there exists y in co (G(e)) such that ‖x − y‖ ≤ ε. The arbitrariness of
ε ∈]0, 1] and x ∈ int(BX), yields int(BX) ⊆ co (G(e)). Therefore we have
coG(e) = BX , that is e is a G-big point of X.

Proposition 3.5. For a Banach space X over K, an element e in SX , and
a circled subgroup G of GX , consider the following assertions:

(1) e is a G-big point of X, and the norm of X is strongly subdifferen-
tiable at e.

(2) The set {T ∗(f) : (T, f) ∈ G ×D(X, e)} is norm-dense in SX∗.
(3) For every G in B(X∗), the equality

V (B(X∗), IX∗ , G) = co [
⋃

T∈G V (X∗∗, e, (T ∗∗ ◦G∗ ◦ T−1)(e))]
holds.

(4) For every F in B(X), the equality

V (B(X), IX , F ) = co [
⋃

T∈G V (X, e, (T ◦ F ◦ T−1)(e))]
holds.
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(5) For every equivalent norm ||| · ||| on X satisfying
i) |||e||| = 1,
ii) V (X, e, x) ⊆ V ((X, ||| · |||), e, x) ∀x ∈ X, and
iii) G ⊆ G(X,|||.|||),
we have ||| · ||| = ‖ · ‖.

(6) e is a G-big point of X.
Then 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6.

Proof. 1 ⇒ 2.- This is proved in [8, Lemma 3] in the particular case that
G = GX , but the argument in such a proof works without changes in our
more general situation.

2 ⇒ 3.- For every normed space Y , let us put

Π(Y ) := {(y, g) : y ∈ SY , g ∈ D(Y, y)}.

Now let Γ be the subset of Π(X∗) defined by

Γ := {(T ∗(f), T−1(e)) : (T, f) ∈ G ×D(X, e)}.

By the assumption 2, the first coordinate projection Γ 7→ SX∗ is dense in
SX∗ . It follows from [13, Theorem 9.3] that, for each G ∈ B(X∗), we have

V (B(X∗), IX∗ , G) = co {(T−1(e))(G(T ∗(f))) : T ∈ G, f ∈ D(X, e)}.

Since
{(T−1(e))(G(T ∗(f))) : T ∈ G, f ∈ D(X, e)}

= {((T ∗∗ ◦G∗ ◦ T−1)(e))(f) : T ∈ G, f ∈ D(X, e)}
⊆ {f((T ∗∗ ◦G∗ ◦ T−1)(e)) : T ∈ G, f ∈ D(X∗∗, e)}

=
⋃

T∈G V (X∗∗, e, (T ∗∗ ◦G∗ ◦ T−1)(e)),
we deduce the inclusion

V (B(X∗), IX∗ , G) ⊆ co [
⋃

T∈G V (X∗∗, e, (T ∗∗ ◦G∗ ◦ T−1)(e))].

But the converse inclusion is trivial. Indeed, for T in G, the mapping
G 7→ (T ∗∗ ◦G∗ ◦ T−1)(e) from B(X∗) to X∗∗ is a linear contraction sending
IX∗ to e.

3 ⇒ 4.- The mapping F 7→ F ∗ from B(X) to B(X∗) is a linear isometry,
and consequently we have

V (B(X), IX , F ) = V (B(X∗), IX∗ , F ∗)

for every F in B(X). By applying the assumption 3, we obtain

V (B(X), IX , F ) = co [
⋃

T∈G V (X∗∗, e, (T ∗∗ ◦ F ∗∗ ◦ T−1)(e))]

for every F in B(X). Finally, note that, for x in X and G in B(X), we have
V (X∗∗, e, x) = V (X, e, x) (because the inclusion of X into X∗∗ is a linear
isometry) and G∗∗(x) = G(x).
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4 ⇒ 5.- Let ||| · ||| be an equivalent norm on X satisfying i), ii), and iii)
in 5. By the assumption 4 and the requirements on ||| · |||, for F in B(X) we
have

V (B(X), IX , F ) = co [
⋃

T∈G V (X, e, (T ◦ F ◦ T−1)(e))]

⊆ co [
⋃

T∈G(X,|||·|||)
V ((X, ||| · |||), e, (T ◦ F ◦ T−1)(e))] .

But, for T in G(X,|||·|||), the mapping F 7→ (T ◦ F ◦ T−1)(e) from B(X, ||| · |||)
to (X, ||| · |||) is a linear contraction sending IX to e, and hence

V ((X, ||| · |||), e, (T ◦ F ◦ T−1)(e)) ⊆ V (B(X, ||| · |||), IX , F ) .

It follows that, for F in B(X), we have

V (B(X), IX , F ) ⊆ V (B(X, ||| · |||), IX , F ) ,

and consequently

v(B(X), IX , F ) ≤ v(B(X, ||| · |||), IX , F ) .

By [40, Theorem 3], there exists a positive number k such that |||·||| = k‖·‖ on
X. But, in fact we have k = 1 because, by i), |||e||| = ‖e‖ = 1. (Actually, in
the proof of [40, Theorem 3] the equality v(B(X), IX , ·) = v(B(X, |||·|||), IX , ·)
is assumed, but really only the inequality v(B(X), IX , ·) ≤ v(B(X, |||·|||), IX , ·)
is used.)

5 ⇒ 6.- In view of Lemma 3.4, it is enough to show that, for every
continuous norm ||| · ||| on X satisfying a) |||e||| ≤ 1, b) ‖ · ‖ ≤ ||| · |||, and
c) G ⊆ G(X,|||.|||), we have ||| · ||| = ‖ · ‖. Let ||| · ||| be such a norm. The
continuity of ||| · ||| and b) imply that ||| · ||| and ‖ · ‖ are equivalent. Moreover,
from a) and b) we deduce that |||e||| = 1. On the other hand, by b), the
mapping IX : (X, ||| · |||) 7→ X is a linear contraction, and hence we have
V (X, e, ·) ⊆ V ((X, |||·|||), e, ·). It follows from the assumption 5 that |||·||| = ‖·‖.

Corollary 3.6. Let X be a Banach space over K and e in SX be such
that the norm of X is strongly subdifferentiable at e, and let G be a circled
subgroup of GX . Then Assertions 2 to 6 in Proposition 3.5 are equivalent.

Remark 3.7. a) It is easy to see that Assertions 1 to 6 in Proposition 3.5,
for an arbitrary circled subgroup G of GX , are respectively stronger than
Assertions 1 to 6 in that proposition in the case that G = GX

b) The implication 1 ⇒ 2 in Proposition 3.5 is not reversible. To see
this recall that a normed space X is said to be transitive if for every
(equivalently, some) e in SX we have GX(e) = SX . Now let X be a transitive
Banach space, let e be an arbitrary element of SX , and take G = GX . Then
Assertion 2 is true for the triple (X, e,G) because, in this case, the set
{T ∗(f) : T ∈ G, f ∈ D(X, e)} is nothing but the set of all norm-one norm
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attaining functionals on X, and the Bishop-Phelps theorem applies. On the
other hand, if Assertion 1 were true for (X, e,G), then, by the arbitrariness
of e ∈ SX , and [25, Theorem 5.1], X would be an Asplund space. But,
certainly, there exist non Asplund transitive Banach spaces. Indeed, every
Banach space can be isometrically embedded into a transitive Banach space
[9, Corollary 2.21].

c) The implication 2 ⇒ 4 in Proposition 3.5 is also not reversible. To see
this recall that a normed space X is said to be almost transitive if, for
every (equivalently, some) e in SX , GX(e) is dense in SX . Now let X be a
Banach space, let e be in SX , and take G = GX . If X is almost transitive,
then an easy application of [13, Theorem 9.3] shows that Assertion 4 is true
for (X, e,G). On the other hand, if X is smooth at e, and if Assertion 2
is true for (X, e,G), then, for f equal to the unique element in D(X, e), we
have that GX∗(f) is dense in SX∗ , and hence X∗ is almost transitive. Finally
note that L1([0, 1]) is an almost transitive Banach space [9, Example 2.13]
which is smooth at “many” points of its unit sphere (by separability) and
whose dual is not almost transitive [9, Example 2.32].

Let A be a normed algebra. If X is a normed A-bimodule, then X∗ is
canonically a normed A-bimodule under the module operations defined by
(af)(x) := f(xa) and (fa)(x) := f(ax) for all f ∈ X∗, a ∈ A, and x ∈ X.
In this way A∗ and A∗∗ become normed A-bimodules.

Theorem 3.8. For a norm-unital Banach algebra A, the following asser-
tions are equivalent:

i) For every p in P(A), the equality

V (P(A), pA, p) = co [
⋃

(u,v)∈UA×UA
V (A,1, u−1p(u, v)v−1)]

holds.

ii) The set UAD(A,1) is norm-dense in SA∗.
iii) For every G in B(A∗), the equality

V (B(A∗), IA∗ , G) = co [
⋃

u∈UA
V (A∗∗,1, G∗(u−1)u)]

holds.

iv) For every F in B(A), the equality

V (B(A), IA, F ) = co [
⋃

u∈UA
V (A,1, F (u−1)u)]

holds.

v) For every equivalent norm ||| · ||| on A satisfying
a) (A, ||| · |||) is a norm-unital normed algebra,
b) V (A,1, a) ⊆ V ((A, ||| · |||),1, a) ∀a ∈ A, and
c) UA ⊆ U(A,|||·|||),

we have ||| · ||| = ‖ · ‖.
vi) A is unitary.
vii) For every continuous norm ||| · ||| on A satisfying a) and c) in v), and
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b’) ‖ · ‖ ≤ ||| · |||,
we have ||| · ||| = ‖ · ‖.

Moreover, if K = C, then the above assertions are also equivalent to
viii) The same as v) with “continuous” instead of “equivalent”.

Proof. Let X, e, and G stand for the Banach space of A, the unit 1 of A,
and the circled subgroup of GA given by

G := {a 7→ au : u ∈ UA},
respectively. Then Assertions ii), iii), iv), and vi) in the theorem are noth-
ing but reformulations of Assertions 2, 3, 4, and 6, respectively, in Propo-
sition 3.5, and Assertion 5 in Proposition 3.5 implies Assertion v) in the
theorem. Since the norm of A is strongly subdifferentiable at 1 (by Remark
3.2), it follows from Corollary 3.6 that ii) ⇐⇒ iii) ⇐⇒ iv) ⇐⇒ vi) ⇒ v).
v) ⇒ vii).- Let ||| · ||| be a continuous norm on A satisfying a), b′), and c).

The continuity of ||| · ||| and b′) imply that ||| · ||| and ‖ ·‖ are equivalent. On the
other hand, by b′), the mapping IA : (A, ||| · |||) 7→ A is a linear contraction,
and hence b) follows. Therefore, by the assumption v), we have ||| · ||| = ‖ · ‖.
vii) ⇒ vi).- Let 0 < ε ≤ 1. Since co [(εBA) ∪ UA] is an absolutely convex

subset of A contained in BA and containing εBA, the Minkowski functional
of co [(εBA)∪UA] (say ||| · |||ε) is a norm on A satisfying ε||| · |||ε ≤ ‖ · ‖ ≤ ||| · |||ε,
and we have

(3.2) {a ∈ A : |||a|||ε < 1} ⊆ co [(εBA) ∪ UA] ⊆ {a ∈ A : |||a|||ε ≤ 1} .
On the other hand, since (εBA) ∪ UA is a subsemigroup of A, and the
convex hull of a subsemigroup is a subsemigroup, we deduce that ||| · |||ε
actually becomes an algebra norm on A [15, Proposition 1.9], and hence the
inequality 1 ≤ |||1|||ε holds. Now, if u is in UA, then, by the right inclusion
in (3.2), we have

1 ≤ |||1|||ε = |||uu−1|||ε ≤ |||u|||ε|||u−1|||ε ≤ 1.1 = 1 ,

and hence |||1|||ε = |||u|||ε = |||u−1|||ε = 1. Therefore the normed algebra
(A, ||| · |||ε) is norm-unital, and the inclusion UA ⊆ U(A,|||·|||) holds. Now
||| · |||ε satisfies all requirements for ||| · ||| in Assertion vii). Therefore, by
the assumption vii), we have ||| · |||ε = ‖ · ‖. Let a be in A with ‖a‖ < 1.
If follows from the left inclusion in (3.2) that a belongs to co [(εBA) ∪ UA].
Since co [(εBA)∪UA] is contained in εBA + co (UA), there exists b in co (UA)
such that ‖a− b‖ ≤ ε. The arbitrariness of ε ∈]0, 1] and a ∈ int(BA), yields
int(BA) ⊆ co (UA). Therefore we have coUA = BA, that is A is unitary.
vi) ⇒ i).- By Proposition 3.1.
i) ⇒ iv).- For F ∈ B(A), let pF ∈ P(A) be defined by pF (x, y) := F (x)y.

Then F 7→ pF is a linear isometry sending IA to pA. Therefore we have

V (P(A), pA, pF ) = V (B(A), IA, F ) ∀F ∈ B(A) .

By applying the assumption i), Assertion iv) follows.
viii) ⇒ v).- This is obvious (in both real and complex cases).
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v) ⇒ viii) (in the complex case).- Let ||| · ||| be a continuous norm on
A satisfying a), b), and c). By b) and the Bohnenblust-Karlin theorem
[13, Theorem 4.1], we have

‖ · ‖ ≤ e v(A,1, ·) ≤ e v((A, ||| · |||),1, ·) ≤ e||| · ||| .

It follows from the continuity of ||| · ||| that ||| · ||| and ‖ · ‖ are equivalent. Now
apply the assumption v).

Remark 3.9. a) A direct proof of the implication vi) ⇒ ii) in Theorem 3.8
is the one which follows. This proof is inspired by that of Lemma 4.2 of
[7], where some misprints arise. Let h be in SA∗ , and let 0 < ε < 2. By
the assumption vi), there exists v in UA such that |1 − h(v)| < ε2

16 . By the
Bishop-Phelps-Bollobás theorem [14, Theorem 16.1], there are a ∈ SA and
g ∈ D(A, a) satisfying ‖a − v‖ < ε

2 and ‖g − h‖ < ε
2 . Put u := v−1 and

f := ag. Then u and f belong to UA and D(A,1), respectively, and we have

‖h− uf‖ = ‖h− uag‖ ≤ ‖h− uah‖+ ‖uah− uag‖
≤ ‖1− ua‖‖h‖+ ‖ua‖‖h− g‖
= ‖v − a‖+ ‖ua‖‖h− g‖
≤ ‖v − a‖+ ‖h− g‖ < ε.

b) Let A be a norm-unital normed algebra. If u is in UA, then we have
D(A, u) = u−1D(A,1). Therefore Assertion ii) in Theorem 3.8 can be
reformulated as

ii’)
⋃

u∈UA
D(A, u) is norm-dense in SA∗ .

c) Assertions i), ii), and iv) in Theorem 3.8 are known to be true in the
case that A is a unital C∗-algebra (see [34, Corollary 1.2], [7, Lemma 4.2],
and [43, Theorem 5], respectively).

LetX be a normed space. The normed space numerical index, N(X),
of X is defined by N(X) := n(B(X), IX). We always have N(X) ≥ N(X∗),
because the mapping F 7→ F ∗ from B(X) to B(X∗) is a linear isometry.
The converse inequality has been claimed in [23]. However, the proof of
this claim has never appeared and whether N(X) = N(X∗) for arbitrary X
remains an open problem.

Corollary 3.10. Let X be a Banach space, and let e be a big point of X
such that the norm of X is strongly subdifferentiable at e. Then we have
N(X) ≥ N(X∗) ≥ n(X, e).

Proof. In fact the desired conclusion N(X∗) ≥ n(X, e) is true if the require-
ments made on e are replaced with the strictly weaker ones that e lies in SX

and that, for every G in B(X∗), the equality

(3.3) V (B(X∗), IX∗ , G) = co [
⋃

T∈GX

V (X∗∗, e, (T ∗∗ ◦G∗ ◦ T−1)(e))]
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holds (see Proposition 3.5 and Remark 3.7.b). Indeed, by Proposition 3.5,
these new requirements imply that e is a big point of X, and hence, by
Goldstein’s theorem, co(GX(e)) is w∗-dense in BX∗∗ . Since, for G in B(X∗),
the set

{x ∈ X∗∗ : ‖G∗(x)‖ ≤ sup{‖G∗(T (e))‖ : T ∈ GX}}
is w∗-closed and convex, and contains GX(e), we deduce

(3.4) ‖G‖ = sup{‖G∗(T (e))‖ : e ∈ GX}
for every G in B(X∗). On the other hand, (3.3) implies

v(B(X∗), IX∗ , G) = sup{v(X∗∗, e, (T ∗∗ ◦G∗ ◦ T−1)(e)) : T ∈ GX}
≥ n(X∗∗, e) sup{‖(T ∗∗ ◦G∗ ◦ T−1)(e)‖ : T ∈ GX}
= n(X∗∗, e) sup{‖G∗(T−1(e))‖ : T ∈ GX}

for every G ∈ B(X∗). Since, by [39, Lemma 4.8], the equality n(X∗∗, e) =
n(X, e) holds, it follows from (3.4) that

v(B(X∗), IX∗ , G) ≥ n(X, e)‖G‖
for every G ∈ B(X∗). Therefore we have n(X∗) = n(B(X∗), IX∗) ≥ n(X, e),
as desired.

Corollary 3.11. Let X be a Banach space. Assume that there exists a big
point e of X such that n(X, e) = 1. Then N(X) = N(X∗) = 1.

Proof. The condition n(X, e) = 1, for e in SX , implies that the norm of X is
strongly subdifferentiable at e [1, Corollary 5.9]. Now apply Corollary 3.10.

We note that the couples (X, e), where X is a real normed space and e is a
norm-one element in X satisfying n(X, e) = 1, are nothing but the so-called
“unit order spaces” (see for example [30, Section 1.2]). We also note that,
if (X, e) is a complete unit order space, and if there exists a big point b of
X such that ‖e− b‖ < 2, then e is big point of X [9, Proposition 5.23].

Lemma 3.12. Let Γ be a set, let X be a Banach space, and let e be in SX

such that the norm of X is strongly subdifferentiable at e. Then n(X, e) =
n(`∞(Γ, X), ẽ).

Proof. The mapping x 7→ x̃ from X to `∞(Γ, X) (where, for x in X, x̃ means
the constant function equal to x on Γ) is a linear isometry, and hence we have
n(X, e) ≥ n(`∞(Γ, X), ẽ). On the other hand, by Remark 3.2, the equality
V (`∞(Γ, X), ẽ, φ) = co [

⋃
γ∈Γ V (X, e, φ(γ))] holds for every φ in `∞(Γ, X).

Therefore, for φ in `∞(Γ, X), we have

v(`∞(Γ, X), ẽ, φ) = sup{v(X, e, φ(γ)) : γ ∈ Γ}
≥ n(X, e) sup{‖φ(γ)‖ : γ ∈ Γ} = n(X, e)‖φ‖ .

Since φ is arbitrary in `∞(Γ, X), we deduce n(X, e) ≤ n(`∞(Γ, X), ẽ).
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The following corollary is known in the case of unital C∗-algebras [34].

Corollary 3.13. Let A be a real or complex norm-unital Banach algebra
over K. Then

n(A,1) ≥ N(A) ≥ n(P(A), pA).
If in addition A is unitary, then we actually have

n(A,1) = N(A) = N(A∗) = n(P(A), pA).

As a consequence, if K = C and if A is unitary, then n(P(A), pA) ≥ 1
e .

Proof. The mapping a 7→ La from A to B(A) (where, for a in A, La means
the operator of left multiplication by a on A) is a linear isometry sending 1 to
IA, and hence we have n(A,1) ≥ n(B(A), IA) = N(A). Moreover, we know
from the proof of i) ⇒ iv) in Theorem 3.8 that there is a linear isometry from
B(A) to P(A) sending IA to pA, so that the inequality N(A) ≥ n(P(A), pA)
follows.

Suppose that A is unitary. Then there exists a linear isometry from
P(A) to `∞(UA×UA, A) sending pA to 1̃ (see the proof of Proposition 3.1).
Therefore n(P(A), pA) ≥ n(`∞(UA × UA, A), 1̃). Keeping in mind Remark
3.2 and Lemma 3.12, the above inequality reads as n(P(A), pA) ≥ n(A,1).
Since the norm of A is strongly subdifferentiable at 1, and 1 is a big point of
A (see the beginning of the proof of Theorem 3.8), the equalities n(A,1) =
N(A) = N(A∗) follow from Corollary 3.10 and the first assertion in the
present corollary. If in addition K = C, then, by the Bohnenblust-Karlin
theorem [13, Theorem 4.1], we have n(P(A), pA) ≥ n(A,1) ≥ 1

e .

If A is a unital C∗-algebra, then n(A,1) is equal to 1 or 1
2 depending on

whether or not A is commutative [19]. If A = `1(G) for some group G, then
it is easily checked that n(A,1) = 1. If A is either the real algebra underlying
C or the algebra of Hamilton’s quaternions, then we have n(A,1) = 0 (since
in this case A is a real Hilbert space different from R). We do not know
other values of n(A,1) when A is a unitary Banach algebra.

4. Dentability of balls

Lemma 4.1. Let X be a normed space, and let G be a subgroup of GX .
Then the set of all G-big points of X is closed in X.

Proof. Let y be in the closure of the set of all G-big points of X, let x
be in SX , and let ε > 0. Then there exists a G-big point e of X with
‖e − y‖ < ε

2 , and α1, ..., αn ∈ R+
0 and T1, ..., Tn ∈ G satisfying

∑n
i=1 αi = 1

and ‖x −
∑n

i=1 αiTi(e)‖ < ε
2 . Putting z :=

∑n
i=1 αiTi(y), we have z ∈

co(G(y)) and ‖x− z‖ < ε. Thus x ∈ co(G(y)), so y is a G-big point.

Let X be a normed space, and e an element in X. We say that e is
a denting (respectively, quasi-denting) point of BX if e belongs to BX
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and, for every ε > 0, e does not belong to co (BX \ (e+ εBX)) (respectively,
co (BX \ (e+ εBX)) is not equal to BX). Denting points of BX do exist in
abundance if X is a Banach space with the Radon-Nikodym property (in
particular, if X is reflexive).

In Remark 3.9.a we noted that, if A is a unitary Banach algebra, and if h
is in SA∗ , then 1 belongs to the closure of h(UA) in K. This is nothing but
a very particular case of the following lemma.

Lemma 4.2. Let X and Y be normed spaces, and C be a subset of X
whose closed convex hull is BX , let e be a quasi-denting point of BY , and let
F : X 7→ Y be a metric surjection. Then e belongs to the closure of F (C)
in Y .

Proof. Assume that e does not belong to F (C). Then there exists ε > 0
satisfying F (C) ⊆ Y \ (e + εBY ). Since F is contractive and BX = co (C),
we have in fact F (BX) ⊆ co (BY \ (e + εBY )). But, since F is actually
a metric surjection, the equality int(BY ) = F (int(BX)) holds. It follows
BY = co (BY \ (e+ εBY )), which is not possible because e is a quasi-denting
point of BY .

Let X be a normed space. A slice in X is a set of the form

{x ∈ BX : <e(f(x)) > α}

for some f in SX∗ and α < 1. We say that BX is dentable if for every
ε > 0 there exists a slice in X with diameter less than ε. We note that, if
there exists some quasi-denting point e of BX , then BX is dentable. Indeed,
given ε > 0, there exists z ∈ BX \ [co (BX \ (e + ε

3BX))], so that, by the
Hahn-Banach theorem, there exists f ∈ SX∗ such that

α := sup{<e(f(x)) : x ∈ BX \ (e+
ε

3
BX)} < <e(f(z)) ≤ 1 ,

and therefore the slice {x ∈ BX : <e(f(x)) > α} is contained in e + ε
3BX ,

and hence has diameter less than ε. We denote by dX , qX , and bX the set
of denting points of BX , quasi-denting points of BX , and big points of X,
respectively. Moreover, given a subgroup G of GX , we denote by G−bX the
set of all G-big points of X, and we remark that G−bX is G-invariant.

Let G be a group acting on a set E. We say that G acts transitively on
E if, for every e ∈ E, we have G(e) = E. When E is in fact a topological
space, we say that G acts almost transitively on E if, for every e ∈ E, G(e)
is dense in E.

Proposition 4.3. Let X be a normed space such that bX is nonempty. Then
the following assertions are equivalent:

(1) dX is nonempty.
(2) qX is nonempty.
(3) BX is dentable.
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Moreover, if BX is dentable and G is a subgroup of GX such that G−bX is
nonempty, then

dX = qX = G−bX = bX ,

and G acts almost transitively on bX .

Proof. Let G be a subgroup of GX such that G−bX is nonempty. Let us fix
a G-big point e of X. Then we have

dX ⊆ qX ⊆ G(e) ⊆ G−bX ⊆ bX .

Indeed, the first and last inclusions are clear, the second follows from Lemma
4.2, and the third holds because G−bX is closed in X (by Lemma 4.1) and G-
invariant. Moreover, we know that BX is dentable whenever qX is nonempty.
Thus, to conclude the proof it is enough to show that, if BX is dentable,
then the inclusion bX ⊆ dX holds.

Suppose that BX is dentable. Let b be a big point of X, and let ε > 0.
Then there is a slice S in X with diameter less than ε. Since BX \ S is
a convex, closed, and proper subset of BX , and co (GX(b)) = BX , there
must exist T in GX such that T (b) belongs to S. Then S′ := T−1(S) is a
slice in X containing b and whose diameter is less than ε. Now we have
b ∈ S′ ⊆ b + εBX , and hence b /∈ BX \ S′ ⊇ co [BX \ (b + εBX)] because
BX \ S′ is closed and convex. From the arbitrariness of ε we deduce that b
is in dX .

The following corollary becomes a partial converse to Corollary 3.11.

Corollary 4.4. Let X be a Banach space satisfying N(X) = 1 and such that
BX is dentable, and let e be a big point of X. Then
n(X, e) = 1.

Proof. By Proposition 4.3, e is a denting point of BX . Since N(X) = 1, it
follows from [38, Lemma 1] that |f(e)| = 1 for every extreme point of BX∗ .
Now let x be an arbitrary element of SX . Since D(X,x) is a w∗-closed face
of BX∗ , there exists an extreme point g of BX∗ which lies in D(X,x). By
the above, there is α in SK such that αg belongs to D(X, e). It follows that

1 = g(x) = |αg(x)| ≤ v(X, e, x).

Let A be a norm-unital normed algebra, and let G denote the subgroup
of GA given by G := {a 7→ au : u ∈ UA}. Then UA is G-invariant, and
G acts transitively on UA (indeed, for v, w in UA we have w = vu with
u := v−1w ∈ UA). It follows that, if UA is GA-invariant, then GA acts
transitively on UA. Now note that UA is closed whenever A is complete, and
that, since UA = G(1), A is unitary if and only if 1 is a G-big point of A.
Keeping in mind these comments, the next theorem follows straightforwardly
from Proposition 4.3.
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Theorem 4.5. Let A be a unitary Banach algebra. Then the following
assertions are equivalent:

(1) 1 is a denting point of BA.
(2) dA is nonempty.
(3) qA is nonempty.
(4) BA is dentable.

Moreover, if BA is dentable, then

dA = qA = UA = bA,

and GA acts transitively on UA.

Let X be a Banach space. We say that X∗ has Mazur’s w∗-intersection
property if every bounded w∗-closed convex subset of X∗ can be expressed
as an intersection of closed balls in X∗. It is well-known that X∗ has Mazur’s
w∗-intersection property whenever the norm of X∗ is Fréchet differentiable
at every point of SX∗ .

The converse is no longer true. Indeed, X is reflexive when the norm ofX∗

is Fréchet differentiable at every point of SX∗ [22, Corollary 1, p.34], whereas,
for arbitrary X, there exists a Banach space Y containing X isometrically
an such that Y ∗ has Mazur’s w∗-intersection property [33, Proposition 2.9].

We denote by H the real algebra of Hamilton’s quaternions, with norm
equal to its usual module function.

Corollary 4.6. Let A be a unitary Banach algebra over K. Then the fol-
lowing assertions are equivalent:

(1) The norm of A∗ is Fréchet differentiable at every point of SX∗.
(2) A∗ has Mazur’s w∗-intersection property.
(3) A = C (respectively, A = R,C, or H) if K = C (respectively, if

K = R).

Proof. In view of the above comment and the triviality of 3 ⇒ 1, it is enough
to prove that 2 implies 3. Assume that A satisfies 2. By [27, Theorem 3.1],
the set of all denting points of BA is dense in SA. Then, by Theorem 4.5, we
have UA = SA. This implies that A is a division algebra and that ‖a‖ = r(a)
for every a in A, where r(a) := limn7→∞{‖an‖

1
n } is the spectral radius. In

view of these properties and [15, Theorems 14.2 and 14.7], there exists an
isometric algebra isomorphism from A onto A, where A = C if K = C,
A = R,C, or H if K = R, and in any case the norm of A is its usual modulus
function.

Remark 4.7. a) In general, for a Banach spaceX, quasi-denting points of BX

need not be denting points of BX . In fact, for an arbitrary Banach space
Y , all elements of SY can be converted into quasi-denting points of BX ,
for a suitable isometric enlargement X of Y . This follows from references
[33, Proposition 2.9] and [27, Theorem 3.1], and the easy fact that the set
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of all quasi-denting points of the closed unit ball of every normed space is
closed in the space. Now choose the Banach space Y in such a way that
there exists an element e in SY which is not a denting point of BY , and
let X be an isometric enlargement of Y with the property quoted above.
Then e is a quasi-denting point of BX , but is not a denting point of BX

(since the denting point property is inherited by subspaces). Choosing Y
two-dimensional, and looking at the arguments in [33], we realize that the
Banach space X above can be chosen 3-dimensional.

b) Let A be a unitary Banach algebra. According to Theorem 4.5, BA

is dentable if and only if the unit of A is a denting point of BA. In the
case A = `1(G) for some group G it is easy to see that BA is dentable, but
in general BA need not be dentable. For example, this is the case where
A = B(H) for an arbitrary infinite-dimensional complex Hilbert space [29].
More generally, the closed unit ball of every infinite-dimensional C∗-algebra
is not dentable [4]. When BA is dentable, Theorem 4.5 provides us with
three geometric characterizations of unitary elements of A.

c) Let A be a norm-unital complex Banach algebra. Then every uni-
tary element of A is a vertex of BA. Indeed, 1 is vertex of BA (by the
Bohnenblust-Karlin theorem), and UA is contained in the orbit of 1 under
GA (by the comment preceding Theorem 4.5). It is a tempting conjecture
that, when A is actually unitary, vertices of BA and unitary elements of
A coincide. The conjecture is right in the case where A is either a unital
C∗-algebra [12, Example 4.1] or of the form `C1 (G) for some group G.

d) In general, for a unitary Banach algebra A, one cannot expect GA to
act transitively (nor even almost transitively) on bA. To see this, first note
that every norm-unital Banach algebra different from R,C, and H fails to
be almost transitive as a Banach space (see the comments after [6, Corol-
lary 2.6]). Now recall that a normed space X is called convex-transitive if
SX = bX . It follows that GA does not act almost transitively on bA whenever
A is a convex-transitive (in the sense of Banach spaces) infinite-dimensional
norm-unital Banach algebra. Possible choices of unitary Banach algebras A
in such a situation are A = CC(K) forK equal to either SC or the Cantor set,
A = LC

∞([0, 1]) [9, Example 2.32], and the Calkin algebra A = B(H)/K(H),
for H equal to the infinite-dimensional separable complex Hilbert space
[7, Corollary 4.6]. Now note that, for every unital C∗-algebra A, UA is
GA-invariant (because UA coincides with the set of vertices of BA), so GA

acts transitively on UA (by the comment preceding Theorem 4.5), and so
we have GA(1) = UA = GA(1). But, if A is equal to B(H) for H as above,
then there exist big points of A which are not unitary (a consequence of
[7, Theorem 4.5]), and hence, since 1 is a big point of A, GA does not act
almost transitively on bA.

e) An alternative proof of Corollary 4.6 is the following. Let A be a unitary
Banach algebra satisfying Condition 2 in Corollary 4.6. Keeping in mind
that A has big points, Theorem 6.8 of [9] applies, giving that the Banach
space of A is almost transitive and superreflexive. Then, by [21, Corollary
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IV.5.7], the Banach space of A is uniformly smooth. In particular, the
Banach space of A is smooth at the unit of A, and Condition 3 in Corollary
4.6 follows by applying [46].

f) It would be interesting to find an example of a (necessarily non uni-
tary) norm-unital Banach algebra A failing Condition 3 in Corollary 4.6 but
satisfying Condition 1 (or at least Condition 2) in that Corollary.

5. Holomorphy

Let X be a complex Banach space. A holomorphic vector field on
int(BX) is nothing but a holomorphic mapping from int(BX) to X. A
holomorphic vector field Λ on int(BX) is said to be complete if, for each x
in int(BX), there exists a differentiable function ϕ : R → int(BX) satisfying

ϕ(0) = x and
d

dt
ϕ(t) = Λ(ϕ(t))

for every t in R. Let Xs denote the set of values at zero of all complete
holomorphic vector fields on int(BX). According to [2, Theorem 3.6], Xs is
a closed subspace of X. Such a subspace is usually called the symmetric
part of X. By [2, Main Lemma 4.2], the orbit of zero under the group of all
biholomorphic automorphisms of the open unit ball of X coincides with the
open unit ball of Xs. The possibility X = Xs has been deeply studied by
many authors since the fundamental work of W. Kaup (see [36] and [37]),
who proves that such an equality is equivalent to the fact that X is (linearly
isometric to) a JB∗-triple. We recall that the complex Banach space X is
said to be a JB∗-triple if it is endowed with a continuous triple product
{...} : X×X×X → X which is linear and symmetric in the outer variables,
and conjugate-linear in the middle variable, and satisfies:

(1) For all x in X, the mapping y 7→ {xxy} from X to X is a hermitian
operator on X and has nonnegative spectrum;

(2) The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in X;
(3) ‖ {xxx} ‖=‖ x ‖3 for every x in X.

Concerning Condition 1 above, we also recall that a bounded linear operator
F on X is said to be hermitian if V (B(X), IX , F ) ⊆ R (equivalently, if
‖ exp(irF )‖ = 1 for every r in R [15, Corollary 10.13]).

Now let A be a norm-unital complex Banach algebra. We say that A
satisfies the von Neumann inequality if, for every a in BA and every
complex polynomial P , we have

‖P (a)‖ ≤ max{|P (z)| : z ∈ BC}.

The following proposition is a summary of essentially known facts.
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Proposition 5.1. For a norm-unital complex Banach algebra A, consider
the following assertions:

(1) A is a C∗-algebra (for some involution ∗).
(2) A satisfies the von Neumann inequality.
(3) The holomorphic vector field a 7→ 1− a2 on int(BX) is complete.
(4) ‖(a + λ1)(1 + λa)−1‖ < 1 for every λ ∈ int(BC) and every a ∈

int(BA).
(5) There exists µ ∈ int(BC) \ {0} such that ‖(a ± µ1)(1 ± µa)−1‖ < 1

for every a ∈ int(BA).
(6) 1 belongs to the symmetric part As of A.
(7) ‖1 +As‖ < 1.

Then 1 ⇒ 2 ⇐⇒ 3 ⇐⇒ 4 ⇒ 5 ⇒ 6 ⇒ 7.

Proof. The implications 4 ⇒ 5 and 6 ⇒ 7 are clear.
1 ⇒ 2.- This is a celebrated theorem of von Neumann (see for example

[42, Section 153]).
2 ⇐⇒ 3 ⇐⇒ 4.- This is the main result in [3].
5 ⇒ 6.- For λ in int(BC), consider the holomorphic mapping

gλ : int(BA) 7→ A defined by gλ(a) := (a + λ1)(1 + λa)−1 for every a in
int(BA). If for some a ∈ int(BA) and some λ ∈ int(BC) we have ‖gλ(a)‖ < 1,
then one easily checks that the equality g−λ(gλ(a)) = a holds. It follows that,
if Assertion 5 is true for A, then gµ becomes a biholomorphic automorphism
of int(BA) satisfying gµ(0) = µ1. Since µ 6= 0, we deduce that 1 lies in As.

The implication 1 ⇒ 2 in Proposition 5.1 is not reversible. Indeed, the
disc algebra satisfies the von Neumann identity and cannot be a C∗ algebra
for any involution. On the other hand, it is worth mentioning that the
reversibility of the implication 3 ⇒ 6 in Proposition 5.1 is raised as an open
problem in [3].

Theorem 5.2. Let A be a norm-unital complex Banach algebra. Then A is
a C∗-algebra if and only if A is unitary and one of the assertions 2 to 7 in
Proposition 5.1 is true for A.

Proof. In view of Proposition 5.1, it is enough to show that, if A is unitary,
and if ‖1+As‖ < 1, then A is a C∗-algebra. Put ρ := ‖1+As‖. Then, since
As is GA-invariant [3, Proposition 1.2], and right multiplications by unitary
elements of A are elements of GA, we have ‖u+As‖ = ρ for every u in UA.

Suppose that A is unitary. Then, since coUA = BA, and the set {x ∈
A : ‖x + As‖ ≤ ρ} is closed and convex, it follows from the above that
‖a + As‖ ≤ ρ for every a in BA. Assume additionally that ρ < 1. Then,
by Riesz’s lemma, we have As = A. Therefore As is linearly isometric to a
JB∗-triple, and hence, by [35, Corollary 3.4], A is a C∗-algebra.
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Remark 5.3. a) According to Theorem 5.2, a norm-unital complex Banach
algebra is a C∗-algebra if (and only if) it is unitary and satisfies the von
Neumann inequality. It is worth mentioning that this part of Theorem 5.2
is implicitly contained in [3]. Indeed, If A is a norm-unital complex Banach
algebra satisfying the von Neumann inequality, then, by [3, Theorem 2.6],
As is a C∗-algebra for the restrictions of the norm and the product of A,
and contains the unit of A. But, if in addition A is unitary, then one easily
sees that As = A (since As is GA-invariant [3, Proposition 1.2], and right
multiplications by unitary elements of A are elements of GA).

b) The condition As 6= 0 on a unitary complex Banach algebra A does
not imply that A is a C∗-algebra. Indeed, taking A := `C1 (Z2)⊕∞ C, A is a
unitary complex Banach algebra (by Proposition 2.8), is not a C∗-algebra,
and As ⊇ {0} × C (since int(B`C

1 (Z2)⊕∞C) = int(B`C
1 (Z2))× int(BC)).

c) For a norm-unital complex Banach algebra A, consider the assertions:
i) A is unitary.
ii) A satisfies the von Neumann inequality.

We know that i) + ii) is equivalent to the fact that A is a C∗-algebra,
and that neither i) nor ii) implies that A is a C∗-algebra. In the case
that A = B(X) for some complex Banach space X, Assertion ii) alone
is equivalent to the fact that A is a C∗-algebra [24], whereas the same
conclusion, with i) instead of ii), remains an open problem. Some partial
answers to such a problem can be found in [10].
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[7] J. BECERRA and A. RODRÍGUEZ, Transistivity of the norm on Banach spaces
having a Jordan structure, Manuscripta Math. 102 (2000), 111-127.



UNITARY BANACH ALGEBRAS 25
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[38] G. LÓPEZ, M. MARTÍN, and R. PAYÁ, Real Banach spaces with numerical
index 1, Bull. London Math. Soc. 31 (1999), 207-212.

[39] J. MARTINEZ, J. F. MENA, R. PAYA, and A. RODRIGUEZ, An approach
to numerical ranges without Banach algebra theory, Illinois J. Math. 29 (1985),
609-625.

[40] C. M. McGREGOR, Operator norms determined by their numerical ranges, Proc.
Edinburgh Math. Soc. 17 (1971), 249-255.

[41] T. W. PALMER, Banach Algberas and the General Theory of ∗-Algebras II,
Cambridge University Press, Cambridge, 2001.
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