TEOREMA DE ESTRUCTURA DE LOS JORDAN-ISOMORFISMOS DE LAS C*-ALGEBRAS

por

ANGEL RODRIGUEZ PALACIOS

(Publicado en la «Revista Matemática Hispano - Americana», 4.ª Serie - Tomo XXXVII - Núms. 3-4)

MADRID

TABLERES GRAFICOS VEA. DE C. BERMEIO

J. García Morato, 122.-Tel. 233 06 19

1. 9. 7. 7

TEOREMA DE ESTRUCTURA DE LOS JORDAN-ISOMORFISMOS DE LAS C*-ALGEBRAS

por

ANGEL RODRIGUEZ PALACIOS

Departamento de Teoria de Funciones Facultad de Ciencias de la Universidad de Granada

EXTRACTO

En [4] (II-3-U) dábamos una demostración «directa» —en términos de la teoría general de las álgebras de Banach, sin utilizar el cómodo, pero poco elegante, artificio de las *-representaciones y posterior aplicación de los métodos de las álgebras de von Neumann—del conocido teorema de estructura de los isomorfismos de C*-álgebras ([5], 4.3.21), al que creimos dar también un lenguaje definitivo, quedando en la siguiente forma:

«Sean A y B C*-á'gebras, G un isomorfismo de A sobre B. Entonces G se escribe de manera única en la forma $G = G_2 G_1$, donde G_1 es un automorfismo •-positivo de A, y G_2 un *-isomorfismo de A obre B.» (Calificábamos un automorfismo H como •-positivo cuando fuese $(H(a^*))^* = H^{-1}(a)$ para todo a del á'gebra, y su espectro estuviese contenido en el conjunto de los números reales positivos.)

Retocando convenientemente la demostración que hicimos de este teorema y utilizando los resultados de Sinclair sobre Jordan-derivaciones de las álgebras de Banach semisimples, demostraremos (Sección II: Teorema) el análogo teorema de estructura para Jordan-isomorfismos de C*-álgebras, afirmando que un tal Jordan-isomorfismo se descompone de una única manera en producto de un auténtico automorfismo *positivo del álgebra inicial con un Jordan-a-isomorfismo.

I. RESULTADOS PREVIOS

Si A es un áigebra asociativa, se define el producto de Jordan por la fórmula

$$a \perp b = (1/2) (a \ b - b \ a), \quad a, b \in A.$$

Si A tiene elemento unidad (I), el concepto de elemento inversible, así como el de inverso de un tal elemento, se puede caracterízar en términos del producto de Jordan; concretamente:

ab es el inverso de a $(a, b \in A)$ si, y solamente si, $a \perp b = I$ y $a^2 \perp b = a$ ([2], I.11).

De aquí que si A y B son álgebras complejas, y G es un Jordanisomorfismo de A sobre B (biyección lineal verificando G $(a_1 \perp a_2) =$ $= G(a_1) \perp G(a_2)$), si A posee unidad (I) —en cuyo caso obligadamente G (I) es la unidad de B— y si $a \in A$, será, desde luego,

$$sp(G(a)) = sp(a).$$

Caso de no existir unidad en A, se extenderá G, de la única manera posible, en un Jordan-isomorfismo de las respectivas unitizaciones y se razonará de manera análoga, teniéndose en cualquier caso:

1. Si G es un Jordan-isomorfismo de álgebras complejas, será

$$sp(G(a)) = sp(a)$$

para todo a del álgebra inicial.

De los trabajos de Sinclair utilizaremos los siguientes resultados:

- 2. ([7], introducción). Todo Jordan-isomorfismo de álgebras de Banach semisimples es continuo.
- 3. Todo Jordan-automorfismo de un álgebra de Banach compleja semisimple, cuyo espectro esté contenido en el semiplano

$$\{z \in \mathbb{C} \mid \text{Re } (z) > 0\}$$

es un auténtico isomorfismo.

Se consigue este resultado a partir de que, aun sin la hipótesis de semisimplicidad, el tal Jordan-automorfismo es de la forma $e^{\rm p}$ con D Jordan-derivación continua ([7], lema 1), y de que toda Jordan-derivación continua de un álgebra de Banach semisimple es auténtica derivación ([6], teorema 3.3).

De los resultados que obtuvimos en [4] para conseguir el teorema que ahora pretendemos generalizar, nos serán útiles:

4. ([4], II-3- m_1). Sean a y b clementos de una C*-álgebra, el último de ellos normal; z un número complejo. Si z pertenece al espectro de a, entonces se verifica que

$$\parallel b - a \parallel \gg d(z, sp(b)).$$

- 5. ([4],II-3-S). Sea A una C*-àlgebra; la aplicación $D\longrightarrow e^D$ es un homeomorfismo del conjunto de las derivaciones *-antisimétricas de A ((D (a^*))* = D (a), $\forall a \in A$) sobre el conjunto de los automorfismos *-positivos de A.
- 6. ([4], II-3-T). Sea A una C*-álgebra, G un automorfismo *-potivo de A; existe un único automorfismo *-positivo F de A tal, que $F^2 = G$ (F se escribirá $G^{1/2}$ o \sqrt{G}).
- 7. ([4], II-3-1). Sea G un isomorfismo de la C*-álgebra A sobre la C*-álgebra B; se verifica

$$\| G^* G \| = \| G \|^2$$

- (G' designa el isomorfismo $b \longrightarrow (G^{-1}(b^*))^*$ de B sobre A). En los corolarios utilizaremos un resultado de Kadison:
- 8. ([3], teorema 5). Todo Jordan-«-isomorfismo de C*-álgebras es-isométrico.

Nota.—Los resultados 4, 5, 6, 7 y 8, demostrados en los respectivos trabajos originales para C*-álgebras con unidad, siguen siendo válidos para C*-álgebras sin unidad sin más que utilizar convenientemente el recurso de la unitización.

II. DEMOSTRACIÓN DEL TEOREMA

Si A y B son C*-álgebras, y si G es un Jordan-isomorfismo de A sobre B, G^{-1} y G^* $(a \longrightarrow (G(a^*))^*)$ son evidentemente Jordan-isomorfismos de B sobre A y A sobre B, respectivamente, de manera que si definimos $G^* = G^{*-1} (= G^{-1*})$. G^* será también un Jordan-isomorfismo de B sobre A.

Son de comprobación inmediata las siguientes propiedades:

a) $(G_2 G_1)^* = G_1^* G_2^* (G_1 : A \longrightarrow B, G_2 : B \longrightarrow C, G_1 y G_2$ fordan-isomorfismos y A, B, C, C*-álgebras).

b) $\|G^*\| = \|G^{-1}\|$. (Se hace uso implicitamente de que, en vista de la semisimplicidad de las C^* -álgebras, todo Jordan-isomorfismo de C^* -álgebras es automáticamente continuo (I.2).

c) $G^{\prime\prime} = G$.

Un Jordan-automorfismo G de una C*-álgebra A lo llamaremos-simétrico (o *-unitario) cuando sea

lo que equivale también claramente a

$$(G(a^*))^* = G^{-1}(a), \forall a \in A,$$

Según esto, la definición que adelantábamos en el extracto de automorfismo *-positivo es equivalente a la de automorfismo *-simétrico y de espectro contenido en R..

Fijados ya los conceptos imprescindibles, pasemos a la demostración del lema fundamental (es un retoque de [4], II-3-m):

Lema.—Sean A y B, C*-álgebras y G un Jordan-isomorfismo de \ sobre B; entonces G' G es un auténtico automorfismo *-positivo de A.

Demostración.—Sea a un elemento cualquiera de A, y z un número complejo : se verifica

$$\| a \| \| G^* G (a) - z a \| > \| a^* \bot (G^* G (a) - z a) \| = \| \| G^* (G (a)^* \bot G (a) - z G^* (a^* \bot a)) \| >$$

$$\geq \| G \|^{-1} \| G (a)^* \bot G (a) - z G^* (a^* \bot a) \|.$$

(La primera designaldad es inmediata, la igualdad signiente es una identidad de no difícil comprobación a partir de las definiciones de las operaciones * y *, y la última designaldad, consecuencia de ser

$$\parallel F(w) \parallel \gg \parallel F^{-1} \parallel^{-1} \parallel w \parallel$$

para cualquier elemento w de un espacio de Banach y para cualquier biyección lineal continua F de este espacio en otro, y de que

$$\|\hspace{.05cm}[\hspace{.1cm}G'\hspace{.1cm},{}^{-1}\hspace{.1cm}\|\hspace{.1cm}=\hspace{.1cm}\|\hspace{.1cm}G^{-1}\hspace{.1cm},\hspace{.1cm}\|\hspace{.1cm}=\hspace{.1cm}\|\hspace{.1cm}G\hspace{.1cm},\hspace{.1cm}\|\hspace{.1cm}$$

por b).)

Pongamos ahora $s = \frac{a}{a} a^* \perp a \parallel$; se tiene: $s \in sp(a^* \perp a)$, por ser $a^* \perp a$ positivo, y $s \geqslant (1/2) [|a|]^2$ por ser

$$a^* \perp a \geqslant (1/2) \ a^* \ a \geqslant 0$$
;

de la primera afirmación, previo I.1, resulta:

$$z \in sp (z G^{\circ} (a^{\circ} \perp a)),$$

y como G $(a)^* \perp G(a)$ es un elemento normal de B, obtenemos aplicando I.4:

$$\parallel G(a) * \bot G(a) - s G * (a \bot a) \parallel > d(s, sp(G(a) * \bot G(a))).$$

Como G $(a)^* \perp G(a)$ es positivo, su espectro está contenido en \mathbb{R}_+ (conjunto de los números reales no negativos), con lo que

$$\| G(a)^* \perp G(a) - z G^* (a^* \perp a) \| \ge d(z s, \mathbb{R}_+) = s \cdot d(z, \mathbb{R}_+) \ge (1/2) \| a \|^2 d(z, \mathbb{R}_+).$$

(Se ha utilizado, finalmente, que la homotecia $w \longrightarrow sw$ transforma z en sz y \mathbb{R}_+ en \mathbb{R}_+ .) Enlazando con la designaldad de partida, previa división por $\|a\|$ (en el caso a=0, la designaldad que establecemos a continuación es trivial):

$$\| \ G \cdot G \ (a) \longrightarrow z \ a \ \| \ \geqslant (1/2) \ \| \ G \ \|^{-1} \ d \ (z, \ \mathbb{R}_*) \ \| \ a \ \|, \quad \forall \ (z, \ a) \in \mathbb{C} \times A.$$

Fijemos $z \in \mathbb{R}$. (en consecuencia $d(z, \mathbb{R}_+) > 0$); conocidos resultados de la teoría de operadores, nos llevan a concluir, a la vista de la anterior designaldad, que el elemento G' G - z I del álgebra de Banach BL (A), de los operadores lineales continuos en A, es, o inversible, o interior al conjunto de los no inversibles, con lo que, en cualquier caso, z no podrá pertenecer a la frontera de sp (G' G).

Hemos demostrado así que la forntera de sp (G^*G) está contenida en R_+ , lo que, si se tiene en cuenta que sp (G^*G) es acotado y que R_+ no corta el plano complejo, implica claramente que el propio espectro de G^*G está contenido en R_+ .

Siendo G' G entonces un Jordan-automorfismo de A, cuyo espectro está contenido en R_e, y con más razón en

(observese que 0 € sp (G G), por ser G G inversible), será, en vista

de I.3, un auténtico automorfismo, y como por las propiedades a) y c) resulta ser *-simétrico, responde, pues, a la definición de automorfismo *-positivo y el lema queda demostrado.

Podemos ya demostrar el teorema objeto esencial de este trabajo:

Teorema. — Sean A y B C*-álgebras, G un Jordan-isomorfismo de A sobre B. Entonces G se escribe de manera única en la forma $G = G_2 G_1$, donde G_1 es un automorfismo •-positivo de A, y G_2 un Jordan--isomorfismo de A sobre B.

Demostración.—Según nuestro lema previo, G' G es un automorfismo *-positivo de A; si existe una descomposición $G = G_2$ G_1 en las condiciones del enunciado (será, en particular, G_2 *= G_2 => G_2 == G_2^{-1}), se tendría

$$G^* G = G_1^* G_2^* G_2 G_1 = G_1^2$$

con lo que G, no podría ser otro que $\sqrt{G^*G}$ (en el sentido de I.6) y entonces, obligadamente, $G_2 = G G_1^{-1}$; esto prueba la unicidad de la descomposición, caso de existir, y nos pone en la pista para demostrar la existencia.

En efecto, basta poner

$$G_1 = \sqrt{|G|} \overline{G} - y - G_2 = G|G_1^{-1}$$
;

 G_1 es, evidentemente, un automorfismo *-positivo de A y la igualdad $G = G_2$ G_1 es trivial; todo se reduce a comprobar que G_2 es un Jordan-*-isomorfismo; ahora bien, G_2 es un Jordan-isomorfismo (téngase en cuenta que G_1^{-1} , siendo automorfismo, es con más razón Jordan-automorfismo), además, como G_1^{-1} es *-simétrico, por serlo G_1 , se tiene

$$G_{2} \cdot G_{2} = G_{1}^{-1} \cdot G \cdot G \cdot G_{1}^{-1} = G_{2} \cdot G_{2}^{-1} = G_{2}^{-1} \cdot G_{1}^{-1} \cdot G_{2}^{-1} = G_{2}^{-1} \cdot G_{2}^{-1} = G_{2}^{-1} \Rightarrow G_{2}^{-1}$$

con lo que, en efecto, G₂ es un Jordan-s-isomorfismo, y el teorema queda demostrado.

III. COROLARIOS Y CONSECUENCIAS

1. Sean A y B, C*-álgebras y G un isomorfismo (resp.: antiisomorfismo) de A sobre B. Entonces G se escribe de manera única en la forma $G = G_2 G_1$, donde G_1 es un automorfismo *-positivo de A, y G un *-isomorfismo (resp.: *-antiisomorfismo) de A sobre B.

En efecto, siendo los isomorfismos y los antiisomorfismos Jordanisomorfismos, se podrá aplicar el teorema de la sección anterior en el que el factor G_2 (= $G G_1^{-1}$) tendrá igual carácter que G, por ser G_1^{-1} obligadamente automorfismo.

2. Si dos C*-álgebras son Jordan-isomorfas (resp.: isomorfas, antiisomorfas), también son Jordan-*-isomorfas (resp.: *-isomorfas, *-antiisomorfas).

Es claro a partir del teorema de la sección II y del anterior corolario.

3.. Si G es un Jordan-isomorfismos de C*-álgebras, es

$$\|G^*G\| = \|G\|^2$$

(en consecuencia:

$$\|G'\| = \|G^{-1}\| = \|G\|.$$

Demostración.—Sea $G = G_2 G_1$ la descomposición que asegura el teorema de la sección II. Como se vio en la demostración del mismo, es obligadamente $G^*G = G_1^2$, con lo que, aplicando I.7 al automorfismo G_1 , se tendrá

$$\|G, G\| = \|G_i^2\| = \|G_i, G_i\| = \|G_i\|^2$$

(se ha tenido en cuenta que G_t es *-simétrico, por ser *-positivo). Por otra parte, siendo G_z Jordan-*-isomorfismo, es automáticamente isométrico (I.8), con lo que

$$\| |G| \| = i \| |G_2| |G_1| \| = \| |G_1| \|.$$

Comparando las dos igualdades obtenidas resulta

tal como queríamos.

4. El radio espectral de un Jordan-automorfismo «normal» G de una C*-álgebra (G conmuta con G ⇐⇒ G conmuta con G*) es igual a ∥ G ∥.

Demostración.—Aplicando convenientemente el corolario anterior, se tiene

$$\| G \|^2 = \| G, G \| = \sqrt{\| (G, G), G, G \|} = \sqrt{\| G, G G, G \|} = \sqrt{\| (G, G), G^2 \|} = \| G^2 \|.$$

Y por recurrencia,

$$\parallel G^{2^n} \parallel = \parallel G \parallel^{2^n},$$

con lo que

$$r(G) = \lim_{n \to \infty} |G^{2^n}|^{1/2^n} = |G|_{G}^n$$

tal como afirmábamos.

5. Sean A y B C*-álgebras; G un Jordan-isomorfismo de A sobre B, y $G = G_2 G_1$ la descomposición que garantiza el teorema de la sección II. Entonces, G_2 materializa la distancia de G al conjunto de los Jordan-*-isomorfismos de A sobre B (que vale exactamente ||G|| - 1).

Para la demostración necesitamos su verificación en el siguiente caso particular:

Lema,—Si H es un automorfismo *-positivo de una C*-álgebra A, es

Demostración.—Según I.5. H es de la forma e^n , con D derivavación *-antisimétrica; si r es un número real, i r D es una derivación *-simétrica y, en consecuencia, $e^{t r n}$ es un *-automorfismo, con lo que

$$\|e^{trD}\|=1, \forall r \in \mathbb{R}$$

(consecuencia particular de I.8); entonces ([1], 1-10-13) D es un elemento hermitiano del álgebra de Banach BL (A), de donde ([1], I-10-17; el resultado se debe a Sinclair) r(D) = ||D|||. Si se tiene en

cuenta que sp (D) contiene únicamente números reales, así como que sp (D) es simétrico respecto al origen (la aplicación

$$L \longrightarrow L^* : a \longrightarrow (L(a^*))^*$$

es un automorfismo antilineal del álgebra BL (A), con lo que

$$sp(L^*) = \overline{sp(L)};$$

en consecuencia, como es $D^* = -D$ y $s_T^*(D) \subseteq \mathbb{R}$, será

$$sp(D) = -sp(D),$$

concluimos que

$$||D|| \in sp(D).$$

Aplicando el spectral mapping theorem, será

$$e^{-D_{a}} \in sp(e^{D}),$$

de donde fácilmente

$$\|\mathbf{H}\| = \|\mathbf{e}^{\mathbf{D}}\| = \mathbf{e}^{-\mathbf{D}\tau}.$$

Utilizando el desarrollo en serie de la exponencial

$$\parallel \mathbf{H} - \mathbf{I} \parallel = \parallel \epsilon^{\mathbf{D}} - \mathbf{I} \parallel \leqslant \epsilon^{\parallel \mathbf{D}} - \mathbf{I} = \parallel \mathbf{H} \parallel - \mathbf{I};$$

y, como la desigualdad opuesta es evidente, queda demostrado el lema.

Demostración del corolario 5.—Se tiene

$$\parallel G - G_2 \parallel = \parallel G_2 G_1 - G_2 \parallel = \parallel G_2 (G_1 - I) \parallel = \\ = \parallel G_1 - I \parallel = \parallel G_1 \parallel - 1 = \parallel G \parallel - 1$$

(se ha aplicado que G_2 es una isometría —I.8— y el lema anterior). Se tiene así que la distancia de G al Jordan-*-isomorfismo G_2 vale exactamente $\|G\|$ —1; mientras que, obligadamente, para cualquier Jordan-*-isomorfismo F de A sobre B, será

$$\parallel G - F \parallel \geqslant \parallel G \parallel - \parallel F \parallel = \parallel G \parallel - 1.$$

- Sea G un Jordan-automorfismo de una C*-álgebra; las dos afirmaciones siguientes equivalen:
- a) G es un Jordan-*-automorfismo.

b) G es normal y su espectro está contenido en la circunferencia

$$\{z \in \mathbb{C} \mid |z| = 1\}.$$

Demostración.—(a) \Longrightarrow (b). Si G es un Jordan-*-automorfismo es por definición $G^* = G$, con lo que evidentemente G es normal; además, G es una biyección lineal isométrica (I.8), con lo que el resto de la afirmación (b) se obtiene inmediatamente.

(b) \Longrightarrow (a). Si G es normal y sus valores espectrales son de módulo uno, aplicando el corolario 4, será $\|G\| = 1$. Si $G = G_z G_1$ es la descomposición en el sentido del teorema de la sección II, se tendrá

$$||G_1|| = ||G|| = 1$$
,

por ser G_2 isométrico; pero siendo G_1 *-positivo, le podremos aplicar el lema demostrado en la presente sección:

$$||G_1 - I|| = ||G_1|| - 1 = 0 \Longrightarrow G_1 = I \Longrightarrow G = G_2$$

y por tanto G es Jordan-a-automorfismo.

7. Sean A y B, C*-álgebras: el conjunto de los Jordan-isomorfismos de A sobre B es uniformemente cerrado en el espacio de Banach BL (A, B) de las aplicaciones lineales continuas de A en B.

Demostración.—Sea $G = \lim_{n \to \infty} G_n$ ($G \in \operatorname{BL}(A, B)$), donde cada G_n es un Jordan-isomorfismo de A sobre B; dado por demostrado, lo que es elemental, que G es un Jordan-homomorfismo de A en B, todo se reduce a ver que es biyectivo; pero esto queda patente si se tiene en cuenta que la sucesión convergente $\{G_n\}$ es necesariamente acotada, que

$$\|G_n^{-1}\| = \|G_n\|$$

(corolario 3) y por tanto la sucesión $\{G_n^{-1}\}$ es igualmente acotada, lo que, junto con la desigualdad

$$\| || G_n^{-1} - G_n^{-1} || \le \| || G_n^{-1} || || || G_n^{-1} || || || G_n - G_n ||,$$

muestra que, en realidad, la sucesión $\{G_n^{-1}\}$ es de Cauchy y por tanto convergente. Si es F su límite, es claro que $G F = I_n$ y $F G = I_A$, lo que demuestra el carácter biyectivo de G.

Nota.--El conjunto de los isomorfismos de A sobre В (A y В,

C*-álgebras) es claramente un cerrado relativo al conjunto de los Jordan-isomorfismos de A sobre B, con lo que, en vista del anterior corolario, también es cerrado de BL (A, B). Más sorprendente es el hecho de que también el conjunto de los Jordan-isomorfismos de A sobre B, que no son isomorfismos, es cerrado en BL (A, B), consecuencia inmediata del corolario anterior y de que el conjunto de los isomorfismos de A sobre B es también abierto relativo al conjunto de los Jordan-isomorfimos, lo que se pone de manifiesto a continuación:

Si no existen isomorfismos de A sobre B, no hay nada que demostrar; en caso contrario, sea G_0 un tal isomorfismo. La aplicación $F \longrightarrow G_0$ F es un homeomorfismo del conjunto de los Jordan-automorfismos de A sobre el conjunto de los Jordan-isomorfismos de A sobre B, que transforma el conjunto de los automorfismos de A en el conjunto de los isomorfismos de A sobre B; hemos reducido así el problema al caso A = B. Sea entonces F un automorfismo de A y sea H un Jordan-automorfismo de A en la situación

$$\| F - H \| < \| F^{-1} \|^{-1},$$

será

$$||I - F^{-1}H|| < 1$$
,

con lo que

$$\mathit{sp}\;(\mathbf{F}^{-1}\;\mathbf{H}^{'})\subseteq\{s\in\mathbb{C}\;|\;|s-1|<1\}\subseteq\{s\in\mathbb{C}\;|\;\mathrm{Re}\;(s)>0\}:$$

aplicando I.3, F^{-1} H será un automorfismo, lo que obliga a que H lo sea igualmente; así, pues, en el conjunto de los Jordan-automorfismos de A, la bola abierta de centro F y radio $||F^{-1}||^{-1}$ contiene únicamente automorfismos, lo que prueba que, en efecto, el conjunto de los automorfismos de A es un abierto relativo al primer conjunto.

8. Si G es un Jordan-automorfismo *-simétrico de una C*-álgebra, se verifica

$$s_{F}(G) \subseteq \mathbb{R}$$
.

En efecto, basta considerar que sp $(G^2) \subseteq \mathbb{R}_+$, según el lema de la sección II, y que

$$sp(G^2) = \{z^2 \mid z \in sp(G)\}.$$

(spectral mapping theorem).

9. Sean A y B, C*-álgebras y G un Jordan-homomorfismo de A sobre B; G se escribe de manera única en la forma $G = G_2 G_1$, donde G_1 es un Jordan-*-homomorfismo de A sobre B, y G_2 un automorfismo *-positivo de B.

Demostración.—G es automáticamente continuo ([7], introducción; [8], 5.8) y por tanto Ker (G) es un Jordan-ideal cerrado de A. Pero es sabido ([8], teorema 5.3) que todo Jordan-ideal cerrado de una C⁴-álgebra es auténtico ideal, con lo que ([12], 1.8.2) A/Ker (G) es una nueva C^{*}-álgebra. Sea $G = H \cdot F$ la descomposición canónica del Jordan-epimorfismo G, donde F es la sobrevección canónica de A sobre A/Ker (G), que es un auténtico *-epimorfismo, y H el Jerdan-isomorfismo de A/Ker (G) sobre B inducido por G. Si aplicamos a H^{-1} el teorema de la sección H, tendremos una única posible escritura $H = H_2 H_1$, con H_2 Jordan-*-isomorfismo de A/Ker (G) sobre B, y H_2 automorfismo *-positivo de B. Basta entonces poner $G_1 = H_1 \cdot F$ y $G_2 = H_2$, para tener demostrada la existencia de la descomposición propuesta en el enunciado.

En cuanto a la unicidad, sea $G = G'_2 G'_1$ otra posible descomposición en las mismas condiciones del enunciado; evidentemente,

$$Ker(G'_1) = Ker(G)$$
 y $H = G'_2 I_2$

donde L es el Jordan-isomorfismo de A/Ker(G) sobre B inducido por G'_1 ; L es entonces claramente un Jordan-s-isomorfismo y G'_2 es, por hipótesis, un automorfismo *-positivo de B. Como $H = H_2 H_1$ era la única posible descomposición de H en estas condiciones, será

$$G'_2 = H_2 (= G_2)$$

v obligadamente

$$G'_1 = G_1 = G_2'^{-1} G = G_2^{-1} G$$

APÉNDICE

Se habrá podido apreciar, a lo largo de todo el trabajo, la importancia que ha tenido, para el desarrollo del mismo, el resultado I-3, debido a Sinclair. Merece la pena notar que dicho resultado, en el caso de C*-álgebras, se puede establecer con independencia de la aportación de Sinclair, si bien nunca lo hemos visto publicado.

Fara ello, hagamos un análisis de los antecedentes del problema, que nos llevarán a comprobar que la aportación esencial de Sinclair es:

1. ([6], lema 3.2). Toda Jordan-derivación continua de un álgebra de Banach deja invariantes los ideales primitivos, cuya veracidad para C*-á gebras estableceremos de manera elemental, incluso sin la hipótesis de continuidad.

Dichos antecedentes son:

 ([10], teorema 3.1). Toda Jordan-derivación de un álgebra prima es derivación.

Que lleva implicitamente (ver demostración de [6], teorema 3.3):

- 3. Toda Jordan-derivación de un álgebra semisimple, que deje invariantes los ideales primitivos, es derivación.
- 4. (Implicitamente en [9], III.9.4, lema 8 (ii).) Todo automorfismo continuo de un «álgebra no asociativa normada completa» A (es pacio de Banach complejo dotado canónicamente de una aplicación bilineal continua $(a, b) \longrightarrow a \cdot b$ de A × A en A; los conceptos de automorfismo y derivación de una tal álgebra se explican por sí solos) cuyo espectro esté contenido en

$$\{z\in\mathbb{C}-\{0\}\mid |\arg(z)|<2\pi/3\}$$

es de la forma en, con D derivación continua.

Estos antecedentes, junto con el resultado fundamental de Sinclair (1), llevan ya de manera elemental a:

- 5. ([6], teorema 3.3). Toda Jordan-derivación continua de un álgebra de Banach semisimple es derivación ((3) y (1).)
- 6. Todo Jordan-automorfismo, de un álgebra de Banach compleja semisimple cuyo espectro esté contenido en

$$\{s \in \mathbb{C} - \{0\} \mid |\arg(s)| < 2\pi/3\}$$

es automorfismo. (Se aplicará (4) al álgebra de Jordan subyacente y posteriormente (5); I.3 aparece como caso particular.)

Analizado el problema, veamos su tratamiento en el caso de C*-álgebras.

Lema.—Toda Jordan-derivación de una C*-álgebra deja invariantes los ideales biláteros cerrados.

Demostración (idéntica a la hecha para derivaciones en [11], 2, proposición). Sean M y D, respectivamente, el ideal y la Jordan-derivación en cuestión, y sea $m \in M$. Se tiene

$$m = m_1^2 - m_2^2 + i (m_s^2 - m_4^2), \quad \text{con} \quad m_i \in M \ (i = 1, 2, 3, 4),$$

y como es

$$D(m_i^2) = D(m_i \perp m_i) = 2 m_i \perp D(m_i) = m_i D(m_i) + D(m_i) m_i \in M,$$

el lema queda demostrado.

Como todo ideal primitivo es cerrado, (1) se verifica en nuestro caso, aun sin la hipótesis de continuidad; teniendo en cuenta, finalmente, que toda C*-álgebra es semisimple y (3), resulta:

TEOREMA.—Toda Jordan-derivación de una C*-álgebra es derivación.

Bibliografía

- [1] Bonsall, F. F. y Duncan, J.: Complete normed algebras. Springer Verlag, 1973.
- [2] JACOBSON, N.: Structure and representations of Jordan algebras. American Mathematical Society, 1968.
- [3] Kadison, R. V.: Isometries of operator algebras. «Annals of Mathematics», 54, 2, 325-338, 1951.
- [4] PALACIOS, A. R.: Contribución a la teoría de las C*-álgebras con unidad. Tesis. Publicaciones de la Universidad de Granada, 1974.
- [5] SAKAI, S.: C*-algebras and W*-algebras. Springer-Verlag, 1971.
- [6] Sinclair, A. M.: Jordan homomorphisms and derivations on semisimpic Banach algebras. "Proc. Amer. Math, Soc.", 24, 209-214, 1970.
- [7] Jordan automorphisms on a semisimple Banach algebra-"Proc. Amer. Math. Soc.", 25, 526-528, 1970.
- [8] CIVIN, P. y YOOD, B.: Lie and Jordan structures in Banach algebras, "Pacific J. of Math.", 15, 3, 775-797, 1965.
- [9] DIXMIER, J.: Les algebres d'opérateurs dans l'espace hilbertien. Gauthier-Villars, 1969.

- [10] Herstein, I. N.: Jordan derivations of prime rings. «Proc. Amer. Math. Soc.», 8, 1104-1110, 1957.
- [11] Miles, P.: Derivations on B*-algebras, «Pacific J. of Math.», 14, 1359-1366, 1964.
- [12] Dixmier, J.: Les C*-álgebres te leurs representations. Gauthier-Villars, 1969.