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We prove that the norm of a JB∗-triple X is strongly subdifferentiable
at a norm-one element x if and only if 1 is an isolated point of the triple
spectrum of x, if and only if the support of x in the bidual of X lies in
X. Moreover we show that the JB∗-triples whose norms are strongly sub-
differentiable at every point of their unit spheres are precisely the weakly
compact JB∗-triples. Characterizations of those norm-one elements of a
JB∗- or JBW ∗-triple where the norm is Fréchet differentiable are also ob-
tained.

1. Introduction

The norm of a Banach space X is said to be strongly subdifferentiable
at an element x ∈ X when the limit

lim
t→0+

‖x + ty‖ − ‖x‖
t

(which always exists) is uniform for y in the closed unit ball of X. Since this
condition is trivially satisfied for x = 0, and holds for ρx (ρ > 0) whenever
it holds for x, we will only consider strong subdifferentiability of the norm
at norm-one elements of the space. The notion of strong subdifferentiability
of the norm of a Banach space was introduced by D. A. Gregory in [17],
who proved that such a notion is equivalent to that of upper semicontinuity
(n−n) of the duality mapping, previously considered by J. R. Giles, Gregory
himself, and B. Sims in [16]. Both notions become natural succedanea of
that of Fréchet differentiability of the norm when smoothness is not required.
Thus, the norm of a Banach space X is Fréchet differentiable at a norm-
one element x if and only if it is strongly subdifferentiable at x, and X is
smooth at x. Strong subdifferentiability of the norm was rediscovered in [1]
in relation to some questions on numerical ranges (see also [25]), and has
been fully investigated in the paper of C. Franchetti and R. Payá [14].
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The most direct forerunner of the present paper is the work of M. Con-
treras, R. Payá, and W. Werner [9], where the strong subdifferentiability of
the norm on C∗-algebras is studied in detail. The authors of [9] precisely de-
termine those norm-one elements x, of a C∗-algebra X, such that the norm
of X is strongly subdifferentiable at x, as well as those C∗-algebras X such
that the norm of X is strongly subdifferentiable at every point of their unit
spheres. In the present paper we deal with the strong subdifferentiability
of the norm in the more general setting of JB∗-triples. It turns out that,
sometimes, the new setting becomes more confortable than the original one,
allowing us not only to generalize the results of [9], but even to improve some
of them in its original context. Thus, for example, we prove in Theorem 2.7
that the norm of a JB∗-triple X is strongly subdifferentiable at a point if
(and only if) the duality mapping of X is upper semicontinuous (n− w) at
such a point, a fact that has been not noticed in [9] in the particular case
that X is a C∗-algebra. Actually, the result just quoted follows from the
one, proved in Theorem 2.5, that the norm of a JBW ∗-triple X is strongly
subdifferentiable at a norm-one element x if (and only if) D(X, x) ∩ X∗ is
w∗-dense in D(X, x). Here D(X, · ) means the duality mapping of X, and
X∗ stands for the predual of X. The specialization of this last result to the
particular case that X is a von Neumann algebra seems to be previously
unknown.

Theorem 2.7 (which has been partially reviewed above) also contains
precise determinations of those norm-one elements x, of a JB∗-triple X, such
that the norm of X is strongly subdifferentiable at x. Such a determination
can be made in terms of either the triple spectrum of x or the support
of x in the bidual of X. Our concluding main result (see Theorem 2.12
and Remark 2.13) shows that the JB∗-triples whose norms are strongly
subdifferentiable at every point of their unit spheres are precisely the weakly
compact JB∗-triples. We note that weakly compact JB∗-triples are well-
understood thanks to the work of L. J. Bunce and C. H. Chu [7].

Among the consequences of Theorem 2.7, we emphasize the following:

(1) The norm of a JBW ∗-triple X is Fréchet differentiable at a norm-
one element x if (and only if) X is smooth at x (Corollary 2.10).

(2) The norm of a JB∗-triple X is Fréchet differentiable at a norm-one
element x if and only if the support of x in the bidual of X lies in
X and is a minimal tripotent of X (Corollary 2.11).

We note that Result (1) above was previously known in the particular case
that X is a von Neumann algebra [26], and that it proof relies on such a
previous fact.

Let us finally comment on a result in [9] which has been not previously
reviewed in this introduction. In fact, the paper [9] concludes with a purely
algebraic characterization of those C∗-algebras whose norms are strongly
subdifferentiable at every point of a dense subset of their unit spheres. In-
deed, such C∗-algebras are precisely the ones with the property that every
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nonzero left ideal contains a nonzero idempotent. Keeping in mind [19,
Theorem 6], this last property is equivalent to the one that every nonzero
left ideal contains a nonzero self-adjoint idempotent. This suggests that
JB∗-triples whose norms are strongly subdifferentiable at every point of a
dense subset of their unit spheres could be characterized by the property
that every nonzero inner ideal contains a nonzero tripotent. We have tried
to prove such a characterization but, for the moment, we have not succeeded
in this goal.

2. The results

Let X be a Banach space. We denote by SX , BX , and X∗ the unit
sphere, the closed unit ball, and the (topological) dual, respectively, of X.
Let us fix u in BX . We define the set D(X, u) of all states of X relative to
u by

D(X, u) := {f ∈ BX∗ : f(u) = 1}.
Note that D(X, u) is nonempty if and only if u actually belongs to SX , a
fact that will be assumed along the remaining part of the present paragraph.
Thus D(X, u) is a non-empty σ(X∗, X)-closed face of BX∗ . For x in X, the
mapping α → ‖u + αx‖ from R to R is convex, and hence, putting

τ(u, x) := inf{‖u + αx‖ − 1
α

: α > 0},

we have

τ(u, x) = lim
α→0+

‖u + αx‖ − 1
α

.

It is well-known that, for x in X, the equality

τ(u, x) = max{<e(f(x)) : f ∈ D(X, u)}
holds (see for instance [11, Theorem V.9.5]). Following [17], we say that
the norm of X is strongly subdifferentiable at u if

lim
α→0+

‖u + αx‖ − 1
α

= τ(u, x) uniformly for x ∈ BX .

The reader is referred to [17], [1], and [14] for a comprehensive view of
the usefulness of the strong subdifferentiability of the norm in the theory of
Banach spaces. Now, recall that X is said to be smooth at u whenever
D(X, u) is reduced to a singleton, and Fréchet-smooth at u whenever
there exists limα→0

‖u+αx‖−1
α uniformly for x ∈ BX . It follows that X is

Fréchet-smooth at u if and only if the norm of X is strongly subdifferentiable
at u and X is smooth at u.

We recall that a JB∗-triple is a complex Banach space X with a contin-
uous triple product {· · ·} : X×X×X → X which is linear and symmetric in
the outer variables, and conjugate-linear in the middle variable, and satisfies:

(1) For all x in X, the mapping y → {xxy} from X to X is a hermitian
operator on X and has nonnegative spectrum.
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(2) The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in X.
(3) ‖ {xxx} ‖=‖ x ‖3 for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear opera-
tor T on a complex Banach space X is said to be hermitian if the equality
‖ exp(irT ) ‖= 1 holds for every r in R. Every C∗-algebra becomes a JB∗-
triple under the triple product {xyz} := 1

2(xy∗z + zy∗x). The main interest
of JB∗-triples relies on the fact that, up to biholomorphic equivalence, there
are no bounded symmetric domains in complex Banach spaces others than
the open unit balls of JB∗-triples (see [22] and [23]).

An element u of a JB∗-triple is said to be a tripotent if {uuu} = u.
If X is a JB∗-triple, and if u is a tripotent of X, then the operator P2(u) :
X → X, defined by P2(u)(x) := {u{uxu}u} for all x ∈ X, is a contractive
projection on X. Our approach to the subdifferentiability of the norm in
the setting of JB∗-triples starts with the following lemma taken from [15]
(see [15, Proposition 1.(a)]).

Lemma 2.1. Let X be a JB∗-triple, let u be a nonzero tripotentent in X,
and let f be in SX∗ such that ‖P2(u)∗(f)‖ = 1. Then we have P2(u)∗(f) = f .

To get an added value from Lemma 2.1 above, we invoke some notions
and results from the theory of (Banach) ultraproducts [20]. Let U be an
ultrafilter on a nonempty set I, and let {Xi}i∈I be a family of Banach spaces.
We can consider the Banach space ⊕`∞

i∈IXi, together with its closed subspace

NU := {{xi}i∈I ∈ ⊕`∞
i∈IXi : lim

U
‖xi‖ = 0}.

The quotient space (⊕`∞
i∈IXi)/NU is called the ultraproduct of the family

{Xi}i∈I relative to the ultrafilter U , and is denoted by (Xi)U . Let (xi) stand
for the element of (Xi)U containing a given family {xi} ∈ ⊕`∞

i∈IXi. It is easy
to check that ‖(xi)‖ = limU ‖xi‖. Moreover, the ultraproduct (X∗

i )U can
be seen as a subspace of ((Xi)U )∗ by identifying each element (fi) ∈ (X∗

i )U
with the (well-defined) functional on (Xi)U given by (xi) → limU (fi(xi)).
On the other hand, as noticed in [10], if Xi is a JB∗-triple for every i ∈ I,
then (Xi)U is a JB∗-triple in a natural way.

Lemma 2.2. Given ε > 0, there exists δ > 0 such that, for every
JB∗-triple X, every nonzero tripotent u in X, and every f in BX∗ with
‖P2(u)∗(f)‖ > 1− δ, we have ‖P2(u)∗(f)− f‖ < ε.

Proof. Assume that the result is not true. Then there exists ε0 > 0
such that, for every n ∈ N, we can find a JB∗-triple Xn, a nonzero tripotent
un ∈ Xn, and an element fn ∈ BX∗n satisfying ‖P2(un)∗(fn)‖ > 1 − 1

n and
‖P2(un)∗(fn)− fn‖ ≥ ε0. Take a nontrivial ultrafilter U in N, and consider
the JB∗-triple X := (Xn)U . It follows that u := (un) is a nonzero tripotent
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in X, that f := (fn) is an element of SX∗ , and that, since P2(u)∗(f) =
(P2(un)∗(fn)), we have ‖P2(u)∗(f)‖ = 1 and ‖P2(u)∗(f) − f‖ ≥ ε0. This
contradicts Lemma 2.1.

Proposition 2.3. Given ε > 0, there exists δ > 0 such that, for every
JB∗-triple X, every nonzero tripotent u in X, and every x in BX , we have

‖u + αx‖ − 1
α

− τ(u, x) < ε

whenever 0 < α < δ.

Proof. Let ε > 0, let X be a JB∗-triple, and let u be a nonzero
tripotent of X. It is well known that P2(u)(X), endowed with the prod-
uct x � y := {xuy}, becomes a norm-unital complete normed (possibly non
associative) algebra whose unit is precisely u. Therefore, by the Bishop-
Phelps-Bollobás theorem [4, Theorem 15.1] and the proof of [24, Proposition
4.5], there exists δ1 > 0 (depending only on ε) such that

(a) d(h, D(P2(u)(X), u)) < ε
2 whenever h is in B(P2(u)(X))∗ with

|h(u)− 1| < δ1.
On the other hand, by Lemma 2.2, there exists δ2 > 0 (depending only on
ε) such that

(b) ‖P2(u)∗(f) − f‖ < ε
2 whenever f is in BX∗ with ‖P2(u)∗(f)‖ >

1− δ2.
Put δ3 := min{δ1, δ2}, and let f be in BX∗ with |f(u) − 1| < δ3. Since
|f(u)−1| < δ1, Property (a) and the Hahn-Banach theorem provide us with
some g in D(X, u) satisfying

‖P2(u)∗(f − g)‖ = ‖f|P2(u)(X) − g|P2(u)(X)‖ <
ε

2
.

Since |f(u)− 1| < δ2, we have

‖P2(u)∗(f)‖ ≥ |(P2(u)∗(f))(u)| = |f(u)| > 1− δ2,

and hence, by Property (b),

‖P2(u)∗(f)− f‖ <
ε

2
.

It follows that ‖f − P2(u)∗(g)‖ < ε, and, since P2(u)∗(g) lies D(X, u), we
realize that d(f,D(X, u)) < ε. Since f is arbitrary in BX∗ with |f(u)− 1| <
δ3, we have in particular

(c) d(ϕ, D(X, u)) < ε whenever ϕ is in D(X, v) for some v in SX with
‖v − u‖ < δ3.

Finally, putting δ := min{ δ3
4 , 1

2}, Property (c) and the proof of (i) ⇒ (ii) in
[1, Theorem 5.1] show that

‖u + αx‖ − 1
α

− τ(u, x) < ε

whenever x lies in BX and 0 < α < δ.



6 J. Becerra and A. Rodŕıguez

Given a Banach space X and a subset U of SX , we say that the norm
of X is uniformly strongly subdifferentiable on U if

lim
α→0+

‖u + αx‖ − 1
α

= τ(u, x) uniformly for (u, x) ∈ U ×BX .

The following corollary follows straightforwardly from Proposition 2.3

Corollary 2.4. Let X be a JB∗-triple. Then the norm of X is uni-
formly strongly subdifferentiable on the set of all nonzero tripotents of X.

JBW ∗-triples are defined as those JB∗-triples having a (complete) pre-
dual. Let X be a JBW ∗-triple. Then the predual of X (denoted by X∗) is
unique, and the triple product of X becomes σ(X, X∗)-continuous in each of
its variables [2, Theorem 2.1]. On the other hand, for x in SX , D(X, x)∩X∗
is a (possibly empty) proper closed face of BX∗ , and therefore, by [12, The-
orem 4.4], there is a unique tripotent u (possibly equal to zero) such that
D(X, x)∩X∗ = D(X, u)∩X∗. Such a tripotent u is called the support of
x in X, and will be denoted by u(X, x).

Theorem 2.5. Let X be a JBW ∗-triple, and let x be in SX . Then the
norm of X is strongly subdifferentiable at x if and only if D(X, x) ∩X∗ is
σ(X∗, X)-dense in D(X, x).

Proof. That the strong subdifferentiability of the norm of X at x im-
plies the σ(X∗, X)-density of D(X, x) ∩X∗ in D(X, x) is known to be true
even if X is any Banach space with a predual X∗, and x belongs to SX (apply
[1, Theorem 3.4] together with the Hahn-Banach separation theorem). As-
sume that D(X, x)∩X∗ is σ(X∗, X)-dense in D(X, x). Then D(X, x)∩X∗ is
nonempty, so u := u(X, x) is a nonzero tripotent in X, and so, by Corollary
2.4, the norm of X is strongly subdifferentiable at u. Therefore D(X, u)∩X∗
is σ(X∗, X)-dense in D(X, u). Since

D(X, x) ∩X∗ = D(X, u) ∩X∗,

it follows from our assumption that D(X, x) = D(X, u). Now, applying
again that the norm of X is strongly subdifferentiable at u, the subdiffer-
entiability of the norm of X at x follows from the remarkable fact that the
strong subdifferentiability of the norm of a Banach space at a point of its
unit sphere depends only on the set of states of the point [14, Theorem 1.2
and Proposition 3.1].

The specialization of Theorem 2.5 for von Neumann algebras seems to
be previously unknown, and therefore is emphasized in the next corollary.

Corollary 2.6. Let X be a von Neumann algebra, and let x be in
SX . Then the norm of X is strongly subdifferentiable at x if and only if
D(X, x) ∩X∗ is σ(X∗, X)-dense in D(X, x).

Let X be a Banach space. We recall that the set-valued function
v → D(X, v) on SX is called the duality mapping of X. Now, let u be
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in SX , and let τ stand for either the weak or norm topology on X∗ (which
will be denoted by w or n, respectively). Following [16], we say that the
duality mapping of X is upper semicontinuous (n−τ) at u if for every
τ -neighborhood of zero (say B) in X∗ there exists a norm-neighborhood of
u (say C) in SX such that D(X, x) ⊆ D(X, u)+B whenever x belongs to C.
According to [17, Corollary 4.4], the strong subdifferentiability of the norm
of X at u is equivalent to the upper semicontinuity (n − n) of the duality
mapping of X at u, and hence implies the upper semicontinuity (n − w) of
the duality mapping of X at u. For the interest of the upper semicontinuity
(n−w) of the duality mapping in the general theory of Banach spaces, the
reader is referred to [16], [8], and [3].

Let X be a JB∗-triple, and let x be in X. Denote by Xx the closed
subtriple of X generated by x. It is well-known that there is a unique
couple (Sx, φx), where Sx is a locally compact subset of ]0,∞[ such that
Sx ∪ {0} is compact, and φx is a surjective triple isomorphism from Xx to
the C∗-algebra C0(Sx) (of all complex-valued continuous functions on Sx

vanishing at infinity) such that φx(x) is the inclusion mapping Sx ↪→ C (see
[22, 4.8], [23, 1.15], and [15]). We say that Sx is the triple spectrum of
x. Since surjective triple isomorphisms between JB∗-triples are isometries
(see again [23]), we have in fact Xx = C0(Sx) as JB∗-triples.

We recall that the bidual X∗∗ of every JB∗-triple X is a JBW ∗-triple
under a suitable triple product which extends the one of X [10].

Theorem 2.7. Let X be a JB∗-triple, and let x be in SX . Then the
following assertions are equivalent:

(1) The norm of X is strongly subdifferentiable at x.
(2) 1 is an isolated point of the triple spectrum of x.
(3) There exists a tripotent u in X satisfying {uux} = u, {uxu} = u,

and ‖x− u‖ < 1.
(4) u(X∗∗, x) belongs to X.
(5) The duality mapping of X is upper semicontinuous n− w at x.

Proof. (1) ⇒ (2).- Clearly 1 lies in Sx and is the unique element ω of Sx

such that x(ω) = 1. Therefore the unit point measure δω on Sx is the unique
extreme point of D(Xx, x), and hence, by the Krein-Milman theorem, Xx

is smooth at x. This and the hereditary behaviour of the assumption (1)
give that Xx is Fréchet-smooth at x. Now, it is folklore that 1 is an isolated
point of Sx (see for example [13, Lemma 2.2]).

(2) ⇒ (3).- Let u denote the characteristic function of the set {1} on Sx.
By the assumption (2), u belongs to Xx and is a tripotent in X satisfying
{uux} = u, {uxu} = u, and ‖x− u‖ < 1.

(3) ⇒ (4).- Let u be the tripotent in X given by the assumption (3),
and let P0(u) denote the operator on X∗∗ defined by

P0(u)(y) := y − 2{uuy}+ {u{uyu}u}
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for every y ∈ X∗∗. Then we have {uxu} = u and ‖P0(u)(x)‖ = ‖x−u‖ < 1.
Therefore, by [12, Lemma 3.4], we have u(X∗∗, x) = u ∈ X.

(4) ⇒ (1).- Note that, for y in BX , the equality

D(X∗∗, y) ∩X∗ = D(X, y)

holds. Therefore, putting u := u(X∗∗, x), the assumption (4) and the def-
inition of the support of x in X∗∗ give D(X, x) = D(X, u) (which implies
u 6= 0). Now, since the norm of X is strongly subdifferentiable at u (by
Corollary 2.4), the subdifferentiability of the norm of X at x follows from
[14, Theorem 1.2 and Proposition 3.1].

(1) ⇒ (5).- As commented before, this implication is true at the general
level of Banach spaces.

(5) ⇒ (1).- By [16, Theorem 3.1], the assumption (5) is equivalent to
the σ(X∗∗∗, X∗∗)-density of D(X, x) in D(X∗∗, x). Since

D(X∗∗, x) ∩X∗ = D(X, x),

Theorem 2.5 applies giving that the norm of X∗∗ (and hence that of X) is
strongly subdifferentiable at x.

Theorem 2.7 above becomes an appropriate version for JB∗-triples of
[9, Theorem 1], where the subdifferentiability of the norm of a C∗-algebra
at a point of its unit sphere is characterized in several ways. However, in [9]
the following immediate consequence of Theorem 2.7 is not noticed.

Corollary 2.8. Let X be a C∗-algebra, and let x be in SX . Then
the norm of X is strongly subdifferentiable at x if (and only if) the duality
mapping of X is upper semicontinuous n− w at x.

The equivalence (1) ⇐⇒ (2) in Theorem 2.7 has the following remarkable
consequence.

Corollary 2.9. Let X be a JB∗-triple, let Y be a closed subtriple of
X, and let y be in SY . Then the norm of X is strongly subdifferentiable at
y if (and only if) the norm of Y is strongly subdifferentiable at y.

The main result of [26] asserts that, if X is a von Neumann algebra,
and if x belongs to SX , then X is Fréchet-smooth at x if (and only if) X is
smooth at x. With the help of Corollary 2.9 above, we can easily generalize
such a result to the case that X is a JBW ∗-triple.

Corollary 2.10. Let X be a JBW ∗-triple, and let x be in SX . Then
X is Fréchet-smooth at x if (and only if) X is smooth at x.

Proof. Let Y denote the smallest σ(X, X∗)-closed subtriple of X con-
taining x. Then Y is linearly isomorphic to a von Neumann algebra [21, p.
122]. Assume that X is smooth at x. Then Y is also smooth at x, so that,
by [26, Theorem], Y is Fréchet-smooth at x. Therefore, by Corollary 2.9,
the norm of X is strongly subdifferentiable at x. Finally, applying again
that X is smooth at x, the Fréchet-smmothness of X at x follows.
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Following [15, p. 79], we say that a tripotent u of a JB∗-triple X is
a minimal tripotent of X if u 6= 0 and {u{uXu}u} = Cu. When X is
actually a JBW ∗-triple, it is well-known that minimal tripotents of X just
defined are nothing but those tripotents in X which are minimal relative to
the order on the set of all tripotents of X defined by u ≤ v if and only if
{v{vuv}v} = u. Thus, an easy consequence of [12, Theorem 4.4] is that a
JB∗-triple X is smooth at a point x of its unit sphere if and only if u(X∗∗, x)
is a minimal tripotent of X∗∗ [13, Theorem 3.1.(i)].

Corollary 2.11. Let X be a JB∗-triple, and let x be in SX . Then X
is Fréchet-smooth at x if and only if u(X∗∗, x) lies in X and is a minimal
tripotent of X.

Proof. It is enough to put together the equivalence (1) ⇐⇒ (4) in
Theorem 2.7, the characterization of the smoothness of X at x commented
above, and the fact that a tripotent u in X is a minimal tripotent of X (if
and) only if it is a minimal tripotent of X∗∗ (by the σ(X∗∗, X∗)-density of
X in X∗∗ and the separate σ(X∗∗, X∗)-continuity of the triple product of
X∗∗).

Now we are going to determine those JB∗-triples whose norms are
strongly subdifferentiable at every point of their unit spheres. It will turn
out that the class of such JB∗-triples was well-understood in the literature,
and hence abundant different characterizations of its members were known
(see Remark 2.13 below). We recall that a closed subspace Y of a Banach
space X is said to be an M-ideal of X if there is a linear projection π on X∗

satisfying π(X∗) = Y ◦ (the polar of Y in X∗) and ‖f‖ = ‖π(f)‖+‖f−π(f)‖
for every f ∈ X∗. We also recall that a Banach space is called M-embedded
whenever it is an M -ideal of its bidual. Ideals of a JB∗-triple X are defined
as those subspaces Y of X such that {Y XX}+ {XY X} ⊆ Y .

Theorem 2.12. Let X be a JB∗ triple. Then the following assertions
are equivalent:

(1) The norm of X is strongly subdifferentiable at every point of SX .
(2) For every x ∈ X, the triple spectrum of x is discrete.
(3) X is an ideal of X∗∗.
(4) X is M -embedded.
(5) The identity mapping on BX∗ is continuous σ(X∗, X)−σ(X∗, X∗∗)

at every point of SX∗.
(6) For every x ∈ SX , the equality D(X∗∗, x) = D(X, x) holds.
(7) The duality mapping of X is upper semicontinuous n−w at every

point of SX .

Proof. (1) ⇒ (2).- Assume that Assertion (2) does not holds, so that
there exists x ∈ SX such that Sx is not discrete. Take a non isolated point α
of Sx, and consider the function y on Sx defined by y(ω) := ω

ω+|ω−α| . Then
y is a positive norm-one element of C0(Sx), and α is the unique element ω
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of Sx such that y(ω) = 1. Since α is not an isolated point of Sx, it follows
from [13, Lemma 2.2] that C0(Sx) is smooth but not Fréchet smooth at y.
Therefore the norm of C0(Sx) is not strongly subdifferentiable at y. Since
C0(Sx) is linearly isometric to Xx ⊆ X, and strong subdifferentiability of
the norm behaves hereditarily, Assertion (1) fails.

(2) ⇒ (3).- By [7, Proposition 4.5.(ii), Theorem 3.4, and Lemma 3.3.(iii)].
(3) ⇒ (4).- By [2, Theorem 3.2].
(4) ⇒ (5).- By [18, Corollary III.2.15].
(5) ⇒ (6).- For every Banach space Z, let JZ : Z → Z∗∗ stand for the

canonical injection, and let ΠZ := JZ∗ ◦ (JZ)∗ : Z∗∗∗ → Z∗∗∗ be the Dixmier
projection on Z∗∗∗. Let x be in SX , and let φ be in D(X∗∗, x). Then ΠX(φ)
is a norm preserving linear extension of (JX)∗(φ) ∈ D(X, x) to X∗∗. But,
by the assumption (5) and [18, Lemma 2.14], such an extension is unique.
Therefore we have ΠX(φ) = φ, and hence φ lies in D(X∗∗, x)∩X∗ = D(X, x).

(6) ⇒ (7).- By [16, Theorem 3.1].
(7) ⇒ (1).- By Theorem 2.7.

Remark 2.13. (a).- As can be deduced from references [7] and [2] ap-
plied in the above proof, the equivalences (2) ⇐⇒ (3) ⇐⇒ (4) in Theorem
2.12 are previously known. Actually, as commented before, JB∗-triples ful-
filling some (hence all) of Conditions (1) to (7) of Theorem 2.12 can be
characterized in several other ways. In order to review such other charac-
terizations, let us recall some definitions. Let X be a JB∗-triple. X is said
to be weakly compact if, for every x in X, the operator y → {xyx} from
X to X is weakly compact. Subspaces Y of X such that {Y XY } ⊆ Y are
called inner ideals of X. The socle of X is defined as the sum of all inner
ideals of X. The concept of a modular annihilator JB∗-triple is quite
involved and, consequently, we limit ourselves to refer the interested reader
to [5, pp. 392 and 383] for the definition. Nevertheless, we point out that
such a concept is of a purely algebraic nature and works in a setting much
larger than that of JB∗-triples. Elementary JB∗-triples can be defined
as those JB∗-triples X with no nonzero proper closed ideals and such that
X is the closed linear hull of its minimal tripotents [7, Lemma 3.3.(iii)].
We remark that elementary JB∗-triples can be perfectly described (see ei-
ther [6, p. 330], [7, p. 250] or [5, p. 394]) and that, when X is in fact a
C∗-algebra, then X is elementary if and only if X is the C∗-algebra of all
compact operators on some complex Hilbert space. Now, it follows from [7]
and [5] that, for a JB∗-triple X, each of Conditions (1) to (7) in Theorem
2.12 is equivalent to any of the following:

(8) X is weakly compact.
(9) X has dense socle.

(10) X is modular annihilator.
(11) X is an inner ideal of X∗∗.
(12) X is the c0-sum of a suitable family of elementary JB∗-triples.
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(b).- As can be deduced from the proof of Theorem 2.12, the implications
(4) ⇒ (5) ⇒ (6) ⇒ (7) are valid for every Banach space X.
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Holland Math. Stud. 125, North-Holland, Amsterdam-New York, 1986.

[11] N. DUNFORD and J. T. SCHWARTZ, Linear operators, Part I, Interscience
Publishers, New York, 1958.
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