Strong subdifferentiability of the norm on
JB*-triples

Julio Becerra Guerrero and Angel Rodriguez Palacios

We prove that the norm of a JB*-triple X is strongly subdifferentiable
at a norm-one element z if and only if 1 is an isolated point of the triple
spectrum of x, if and only if the support of z in the bidual of X lies in
X. Moreover we show that the JB*-triples whose norms are strongly sub-
differentiable at every point of their unit spheres are precisely the weakly
compact JB*-triples. Characterizations of those norm-one elements of a
JB*- or JBW*-triple where the norm is Fréchet differentiable are also ob-
tained.

1. Introduction

The norm of a Banach space X is said to be strongly subdifferentiable

at an element z € X when the limit

et tyl o]

t—0t t
(which always exists) is uniform for y in the closed unit ball of X. Since this
condition is trivially satisfied for = 0, and holds for px (p > 0) whenever
it holds for x, we will only consider strong subdifferentiability of the norm
at norm-one elements of the space. The notion of strong subdifferentiability
of the norm of a Banach space was introduced by D. A. Gregory in [17],
who proved that such a notion is equivalent to that of upper semicontinuity
(n—n) of the duality mapping, previously considered by J. R. Giles, Gregory
himself, and B. Sims in [16]. Both notions become natural succedanea of
that of Fréchet differentiability of the norm when smoothness is not required.
Thus, the norm of a Banach space X is Fréchet differentiable at a norm-
one element x if and only if it is strongly subdifferentiable at x, and X is
smooth at z. Strong subdifferentiability of the norm was rediscovered in [1]
in relation to some questions on numerical ranges (see also [25]), and has
been fully investigated in the paper of C. Franchetti and R. Paya [14].
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The most direct forerunner of the present paper is the work of M. Con-
treras, R. Paya, and W. Werner [9], where the strong subdifferentiability of
the norm on C*-algebras is studied in detail. The authors of [9] precisely de-
termine those norm-one elements x, of a C*-algebra X, such that the norm
of X is strongly subdifferentiable at x, as well as those C*-algebras X such
that the norm of X is strongly subdifferentiable at every point of their unit
spheres. In the present paper we deal with the strong subdifferentiability
of the norm in the more general setting of JB*-triples. It turns out that,
sometimes, the new setting becomes more confortable than the original one,
allowing us not only to generalize the results of [9], but even to improve some
of them in its original context. Thus, for example, we prove in Theorem 2.7
that the norm of a JB*-triple X is strongly subdifferentiable at a point if
(and only if) the duality mapping of X is upper semicontinuous (n — w) at
such a point, a fact that has been not noticed in [9] in the particular case
that X is a C*-algebra. Actually, the result just quoted follows from the
one, proved in Theorem 2.5, that the norm of a JBW *-triple X is strongly
subdifferentiable at a norm-one element z if (and only if) D(X,z) N X, is
w*-dense in D(X,z). Here D(X,-) means the duality mapping of X, and
X, stands for the predual of X. The specialization of this last result to the
particular case that X is a von Neumann algebra seems to be previously
unknown.

Theorem 2.7 (which has been partially reviewed above) also contains
precise determinations of those norm-one elements z, of a J B*-triple X, such
that the norm of X is strongly subdifferentiable at x. Such a determination
can be made in terms of either the triple spectrum of z or the support
of z in the bidual of X. Our concluding main result (see Theorem 2.12
and Remark 2.13) shows that the JB*-triples whose norms are strongly
subdifferentiable at every point of their unit spheres are precisely the weakly
compact JB*-triples. We note that weakly compact JB*-triples are well-
understood thanks to the work of L. J. Bunce and C. H. Chu [7].

Among the consequences of Theorem 2.7, we emphasize the following:

(1) The norm of a JBW™*-triple X is Fréchet differentiable at a norm-
one element z if (and only if) X is smooth at = (Corollary 2.10).

(2) The norm of a JB*-triple X is Fréchet differentiable at a norm-one
element z if and only if the support of x in the bidual of X lies in
X and is a minimal tripotent of X (Corollary 2.11).

We note that Result (1) above was previously known in the particular case
that X is a von Neumann algebra [26], and that it proof relies on such a
previous fact.

Let us finally comment on a result in [9] which has been not previously
reviewed in this introduction. In fact, the paper [9] concludes with a purely
algebraic characterization of those C*-algebras whose norms are strongly
subdifferentiable at every point of a dense subset of their unit spheres. In-
deed, such C*-algebras are precisely the ones with the property that every
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nonzero left ideal contains a nonzero idempotent. Keeping in mind [19,
Theorem 6], this last property is equivalent to the one that every nonzero
left ideal contains a nonzero self-adjoint idempotent. This suggests that
J B*-triples whose norms are strongly subdifferentiable at every point of a
dense subset of their unit spheres could be characterized by the property
that every nonzero inner ideal contains a nonzero tripotent. We have tried
to prove such a characterization but, for the moment, we have not succeeded
in this goal.

2. The results

Let X be a Banach space. We denote by Sx, Bx, and X* the unit
sphere, the closed unit ball, and the (topological) dual, respectively, of X.
Let us fix v in Bx. We define the set D(X,u) of all states of X relative to
u by

D(X,u):={f € Bx~: f(u) =1}.
Note that D(X,u) is nonempty if and only if v actually belongs to Sx, a
fact that will be assumed along the remaining part of the present paragraph.
Thus D(X,u) is a non-empty o(X™*, X)-closed face of Bx«. For z in X, the
mapping a — ||Ju + az|| from R to R is convex, and hence, putting

a > 0},

-1
r(u, ) = ol =1
«

we have
u+ax|| —1
T(u,z) = lim w
a—0t «Q
It is well-known that, for x in X, the equality

T(u, z) = max{Re(f(z)) : f € D(X,u)}

holds (see for instance [11, Theorem V.9.5]). Following [17], we say that
the norm of X is strongly subdifferentiable at u if

lim lu+ ozl —1

= 7(u, ) uniformly for x € Bx.
a—07t (67

The reader is referred to [17], [1], and [14] for a comprehensive view of
the usefulness of the strong subdifferentiability of the norm in the theory of
Banach spaces. Now, recall that X is said to be smooth at u whenever
D(X,u) is reduced to a singleton, and Fréchet-smooth at u whenever
there exists lim,_q % uniformly for x € Bx. It follows that X is
Fréchet-smooth at u if and only if the norm of X is strongly subdifferentiable
at u and X s smooth at u.

We recall that a JB*-triple is a complex Banach space X with a contin-
uous triple product {---} : X x X x X — X which is linear and symmetric in
the outer variables, and conjugate-linear in the middle variable, and satisfies:

(1) For all x in X, the mapping y — {zzy} from X to X is a hermitian
operator on X and has nonnegative spectrum.



4 J. Becerra and A. Rodriguez

(2) The main identity

{ab{zyz}} = {{abr}yz} — {a{bay}z} + {wy{abz}}
holds for all a,b,z,y, z in X.
(3) || {zzz} ||=| = ||® for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear opera-
tor 1" on a complex Banach space X is said to be hermitian if the equality
| exp(irT) |= 1 holds for every r in R. Every C*-algebra becomes a JB*-
triple under the triple product {zyz} := %(zy*z + zy*z). The main interest
of JB*-triples relies on the fact that, up to biholomorphic equivalence, there
are no bounded symmetric domains in complex Banach spaces others than
the open unit balls of JB*-triples (see [22] and [23]).

An element u of a JB*-triple is said to be a tripotent if {uvuu} = w.
If X is a JB*-triple, and if u is a tripotent of X, then the operator P(u) :
X — X, defined by Py(u)(z) := {u{uzu}lu} for all z € X, is a contractive
projection on X. Our approach to the subdifferentiability of the norm in
the setting of JB*-triples starts with the following lemma taken from [15]
(see [15, Proposition 1.(a)]).

LEMMA 2.1. Let X be a JB*-triple, let u be a nonzero tripotentent in X,
and let f be in Sx+ such that | Py(uw)*(f)|| = 1. Then we have Py(u)*(f) = f.

To get an added value from Lemma 2.1 above, we invoke some notions
and results from the theory of (Banach) ultraproducts [20]. Let U be an
ultrafilter on a nonempty set I, and let { X, };cs be a family of Banach spaces.
We can consider the Banach space EBf?IXi, together with its closed subspace

Ny = {{wi}ier € ©i27X; + lim |l = 0}

The quotient space (@fg’[Xi) /Ny is called the ultraproduct of the family

{ X, }ier relative to the ultrafilter U, and is denoted by (X;)y. Let (z;) stand
for the element of (X;);s containing a given family {z;} € @fg’[Xi. It is easy
to check that ||(z;)| = limy ||z;]|. Moreover, the ultraproduct (X;); can
be seen as a subspace of ((X;)y)* by identifying each element (f;) € (X )u
with the (well-defined) functional on (X;)y given by (x;) — limy(fi(zi)).
On the other hand, as noticed in [10], if X; is a JB*-triple for every i € I,

then (X;)y is a JB*-triple in a natural way.

LEMMA 2.2. Given € > 0, there exists 6 > 0 such that, for every
JB*-triple X, every nonzero tripotent u in X, and every f in Bx+ with

[1P2(uw)* (NIl > 1 =0, we have || Po(u)*(f) = fl| <e.

ProoOF. Assume that the result is not true. Then there exists g > 0
such that, for every n € N, we can find a JB*-triple X,,;, a nonzero tripotent
Un € Xy, and an element f, € By: satisfying || Pa(un)*(fo)| > 1— 1 and
| P2(un)*(frn) — fnll > €o0. Take a nontrivial ultrafilter ¢/ in N, and consider
the JB*-triple X := (X,,)y. It follows that u := (u,) is a nonzero tripotent
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in X, that f := (f,) is an element of Sx-, and that, since Py(u)*(f) =
(Pa(un)*(fn)), we have ||Py(u)*(f)l| = 1 and |[Pa(u)*(f) — f|| = €. This
contradicts Lemma 2.1. =

PROPOSITION 2.3. Given € > 0, there exists 6 > 0 such that, for every
JB*-triple X, every nonzero tripotent u in X, and every x in Bx, we have
u+ax| —1
lutozf-1_ T(u,x) < e
@
whenever 0 < a < 4.

PROOF. Let ¢ > 0, let X be a JB*-triple, and let u be a nonzero
tripotent of X. It is well known that P5(u)(X), endowed with the prod-
uct x ¢y := {zuy}, becomes a norm-unital complete normed (possibly non
associative) algebra whose unit is precisely u. Therefore, by the Bishop-
Phelps-Bollobés theorem [4, Theorem 15.1] and the proof of [24, Proposition
4.5], there exists d; > 0 (depending only on ¢) such that

(a) d(h,D(Pg(u)(X),u)) < % whenever h is in B(Pg(u)(X))* with
|h(u) — 1] < 6.
On the other hand, by Lemma 2.2, there exists d2 > 0 (depending only on
¢) such that
(b) [[P2(u)*(f) — fIl < § whenever f is in Bx« with ||Pa(u)*(f)| >
1 — 0.
Put 63 := min{d;,d2}, and let f be in By~ with |f(u) — 1| < d3. Since
|f(u) —1| < 61, Property (a) and the Hahn-Banach theorem provide us with
some ¢ in D(X,u) satisfying

* 5
[ P2(u)*(f = 9l = 1 fipswy(x) — 92wy | < 7
Since |f(u) — 1| < d2, we have

P2 (u)* (NN = [(Pa(w)* (/) ()] = [f(w)] > 1 = b,
and hence, by Property (b),
. £
122 (u)*(f) = fIl < 5.
It follows that ||f — Pa(u)*(g)|| < e, and, since Pa(u)*(g) lies D(X,u), we
realize that d(f, D(X,u)) < e. Since f is arbitrary in By« with |f(u) — 1| <
03, we have in particular
(¢) d(yp, D(X,u)) < & whenever ¢ is in D(X,v) for some v in Sx with
|lv —ul| < 0.
Finally, putting 0 := min{%, 3}, Property (c) and the proof of (i) = (i) in
[1, Theorem 5.1] show that
Ju+azl| -1
a
whenever z liesin By and 0 < a <. =

T(u,x) < €



6 J. Becerra and A. Rodriguez

Given a Banach space X and a subset U of Sx, we say that the norm
of X is uniformly strongly subdifferentiable on U if
-1
lim I+ ozl =1 = 7(u,z) uniformly for (u,z) € U x Bx.
a—0t Q

The following corollary follows straightforwardly from Proposition 2.3

COROLLARY 2.4. Let X be a JB*-triple. Then the norm of X is uni-
formly strongly subdifferentiable on the set of all nonzero tripotents of X.

JBW*-triples are defined as those JB*-triples having a (complete) pre-
dual. Let X be a JBW*-triple. Then the predual of X (denoted by X,) is
unique, and the triple product of X becomes o (X, X, )-continuous in each of
its variables [2, Theorem 2.1]. On the other hand, for z in Sx, D(X,z)N X,
is a (possibly empty) proper closed face of Bx,, and therefore, by [12, The-
orem 4.4], there is a unique tripotent u (possibly equal to zero) such that
D(X,x)N X, = D(X,u) N X,. Such a tripotent u is called the support of
x in X, and will be denoted by u(X, ).

THEOREM 2.5. Let X be a JBW™*-triple, and let x be in Sx. Then the
norm of X is strongly subdifferentiable at x if and only if D(X,z) N X, is
o(X*, X)-dense in D(X,x).

Proor. That the strong subdifferentiability of the norm of X at z im-
plies the o(X*, X)-density of D(X,z) N X, in D(X, ) is known to be true
even if X is any Banach space with a predual X, and x belongs to Sx (apply
[1, Theorem 3.4] together with the Hahn-Banach separation theorem). As-
sume that D(X,z)NX, is 0(X™, X)-dense in D(X, z). Then D(X,z)NX, is
nonempty, so u := u(X, x) is a nonzero tripotent in X, and so, by Corollary
2.4, the norm of X is strongly subdifferentiable at u. Therefore D (X, u)N X,
is 0(X*, X)-dense in D(X,u). Since

D(X,2)N X, = D(X,u)NX,,

it follows from our assumption that D(X,z) = D(X,u). Now, applying
again that the norm of X is strongly subdifferentiable at u, the subdiffer-
entiability of the norm of X at x follows from the remarkable fact that the
strong subdifferentiability of the norm of a Banach space at a point of its
unit sphere depends only on the set of states of the point [14, Theorem 1.2
and Proposition 3.1]. =

The specialization of Theorem 2.5 for von Neumann algebras seems to
be previously unknown, and therefore is emphasized in the next corollary.

COROLLARY 2.6. Let X be a von Neumann algebra, and let x be in

Sx. Then the norm of X is strongly subdifferentiable at x if and only if
D(X,z)N X, is o(X*, X)-dense in D(X,x).

Let X be a Banach space. We recall that the set-valued function
v — D(X,v) on Sx is called the duality mapping of X. Now, let u be
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in Sx, and let 7 stand for either the weak or norm topology on X* (which
will be denoted by w or n, respectively). Following [16], we say that the
duality mapping of X is upper semicontinuous (n—7) at w if for every
T-neighborhood of zero (say B) in X* there exists a norm-neighborhood of
u (say C) in Sx such that D(X,z) C D(X,u)+ B whenever x belongs to C.
According to [17, Corollary 4.4], the strong subdifferentiability of the norm
of X at u is equivalent to the upper semicontinuity (n — n) of the duality
mapping of X at u, and hence implies the upper semicontinuity (n — w) of
the duality mapping of X at u. For the interest of the upper semicontinuity
(n — w) of the duality mapping in the general theory of Banach spaces, the
reader is referred to [16], [8], and [3].

Let X be a JB*-triple, and let  be in X. Denote by X, the closed
subtriple of X generated by x. It is well-known that there is a unique
couple (S;, @), where S, is a locally compact subset of ]0,00[ such that
S, U {0} is compact, and ¢, is a surjective triple isomorphism from X, to
the C*-algebra Cy(S;) (of all complex-valued continuous functions on S,
vanishing at infinity) such that ¢, () is the inclusion mapping Sy < C (see
[22, 4.8], [23, 1.15], and [15]). We say that S, is the triple spectrum of
x. Since surjective triple isomorphisms between JB*-triples are isometries
(see again [23]), we have in fact X, = Cy(S;) as JB*-triples.

We recall that the bidual X** of every JB*-triple X is a JBW™-triple
under a suitable triple product which extends the one of X [10].

THEOREM 2.7. Let X be a JB*-triple, and let x be in Sx. Then the
following assertions are equivalent:

(1) The norm of X is strongly subdifferentiable at x.

(2) 1 is an isolated point of the triple spectrum of x.

(3) There exists a tripotent u in X satisfying {vuzr} = u, {uzu} = u,
and ||z —u|| < 1.

(4) u(X*, z) belongs to X.

(5) The duality mapping of X is upper semicontinuous n —w at x.

PROOF. (1) = (2).- Clearly 1 lies in S; and is the unique element w of S,
such that z(w) = 1. Therefore the unit point measure J,, on S, is the unique
extreme point of D(X,, ), and hence, by the Krein-Milman theorem, X,
is smooth at z. This and the hereditary behaviour of the assumption (1)
give that X, is Fréchet-smooth at x. Now, it is folklore that 1 is an isolated
point of Sy (see for example [13, Lemma 2.2]).

(2) = (3).- Let u denote the characteristic function of the set {1} on S;.
By the assumption (2), u belongs to X, and is a tripotent in X satisfying
{uuzr} = u, {uru} = u, and ||z — u| < 1.

(3) = (4).- Let u be the tripotent in X given by the assumption (3),
and let Py(u) denote the operator on X** defined by

Po(u)(y) =y — 2{uuy} + {u{uyu}u}
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for every y € X**. Then we have {uzu} = v and || Py(u)(z)| = ||z —u|| < 1.
Therefore, by [12, Lemma 3.4], we have u(X**,z) =u € X.
(4) = (1).- Note that, for y in By, the equality

D(X™,y)Nn X" = D(X,y)

holds. Therefore, putting u := u(X™**, x), the assumption (4) and the def-
inition of the support of x in X** give D(X,z) = D(X,u) (which implies
u # 0). Now, since the norm of X is strongly subdifferentiable at u (by
Corollary 2.4), the subdifferentiability of the norm of X at x follows from
[14, Theorem 1.2 and Proposition 3.1].

(1) = (5).- As commented before, this implication is true at the general
level of Banach spaces.

(5) = (1).- By [16, Theorem 3.1], the assumption (5) is equivalent to
the o(X™***, X**)-density of D(X,z) in D(X**, z). Since

D(X*,2) N X* = D(X, ),

Theorem 2.5 applies giving that the norm of X** (and hence that of X) is
strongly subdifferentiable at x. =

Theorem 2.7 above becomes an appropriate version for JB*-triples of
[9, Theorem 1], where the subdifferentiability of the norm of a C*-algebra
at a point of its unit sphere is characterized in several ways. However, in [9]
the following immediate consequence of Theorem 2.7 is not noticed.

COROLLARY 2.8. Let X be a C*-algebra, and let © be in Sx. Then
the norm of X is strongly subdifferentiable at x if (and only if) the duality
mapping of X is upper semicontinuous n —w at x.

The equivalence (1) <= (2) in Theorem 2.7 has the following remarkable
consequence.

COROLLARY 2.9. Let X be a JB*-triple, let Y be a closed subtriple of
X, and let y be in Sy. Then the norm of X is strongly subdifferentiable at
y if (and only if) the norm of Y is strongly subdifferentiable at y.

The main result of [26] asserts that, if X is a von Neumann algebra,
and if = belongs to Sx, then X is Fréchet-smooth at z if (and only if) X is
smooth at . With the help of Corollary 2.9 above, we can easily generalize
such a result to the case that X is a JBW™-triple.

COROLLARY 2.10. Let X be a JBW*-triple, and let x be in Sx. Then
X is Fréchet-smooth at x if (and only if ) X is smooth at x.

PROOF. Let Y denote the smallest o(X, X,)-closed subtriple of X con-
taining x. Then Y is linearly isomorphic to a von Neumann algebra [21, p.
122]. Assume that X is smooth at . Then Y is also smooth at z, so that,
by [26, Theorem], Y is Fréchet-smooth at x. Therefore, by Corollary 2.9,
the norm of X is strongly subdifferentiable at x. Finally, applying again
that X is smooth at z, the Fréchet-smmothness of X at x follows. =
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Following [15, p. 79|, we say that a tripotent u of a JB*-triple X is
a minimal tripotent of X if u # 0 and {u{uXu}u} = Cu. When X is
actually a JBW™*-triple, it is well-known that minimal tripotents of X just
defined are nothing but those tripotents in X which are minimal relative to
the order on the set of all tripotents of X defined by u < v if and only if
{v{vuv}v} = u. Thus, an easy consequence of [12, Theorem 4.4] is that a
JB*-triple X is smooth at a point x of its unit sphere if and only if u(X™**, x)
is a minimal tripotent of X** [13, Theorem 3.1.(i)].

COROLLARY 2.11. Let X be a JB*-triple, and let x be in Sx. Then X
is Fréchet-smooth at x if and only if u(X**,x) lies in X and is a minimal
tripotent of X.

PROOF. It is enough to put together the equivalence (1) <= (4) in
Theorem 2.7, the characterization of the smoothness of X at x commented
above, and the fact that a tripotent u in X is a minimal tripotent of X (if
and) only if it is a minimal tripotent of X** (by the o(X™**, X*)-density of
X in X** and the separate o(X*™*, X*)-continuity of the triple product of
X*). =

Now we are going to determine those JB*-triples whose norms are
strongly subdifferentiable at every point of their unit spheres. It will turn
out that the class of such JB*-triples was well-understood in the literature,
and hence abundant different characterizations of its members were known
(see Remark 2.13 below). We recall that a closed subspace Y of a Banach
space X is said to be an M-ideal of X if there is a linear projection w on X*
satisfying m(X*) = Y° (the polar of Y in X*) and || f|| = [|=(/)|+]|f—= (/)|
for every f € X*. We also recall that a Banach space is called M-embedded
whenever it is an M-ideal of its bidual. Ideals of a JB*-triple X are defined
as those subspaces Y of X such that {Y XX} +{XYX} CY.

THEOREM 2.12. Let X be a JB* triple. Then the following assertions
are equivalent:

(1) The norm of X is strongly subdifferentiable at every point of Sx.

(2) For every x € X, the triple spectrum of x is discrete.

(3) X is an ideal of X**.

(4) X is M-embedded.

(5) The identity mapping on Bx+ is continuous o(X*, X)—o(X*, X*)
at every point of Sx~.

(6) For every x € Sx, the equality D(X*™*,x) = D(X,z) holds.

(7) The duality mapping of X is upper semicontinuous n —w at every
point of Sx.

PROOF. (1) = (2).- Assume that Assertion (2) does not holds, so that
there exists x € Sx such that S, is not discrete. Take a non isolated point «
of Sz, and consider the function y on S, defined by y(w) := % Then
y is a positive norm-one element of Cy(S,), and « is the unique element w
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of S, such that y(w) = 1. Since « is not an isolated point of Sy, it follows
from [13, Lemma 2.2] that Cy(S;) is smooth but not Fréchet smooth at y.
Therefore the norm of Cy(S,) is not strongly subdifferentiable at y. Since
Co(S,) is linearly isometric to X, C X, and strong subdifferentiability of
the norm behaves hereditarily, Assertion (1) fails.

(2) = (3).- By [7, Proposition 4.5.(ii), Theorem 3.4, and Lemma 3.3.(iii)].

(3) = (4).- By [2, Theorem 3.2].

(4) = (5).- By [18, Corollary II1.2.15].

(5) = (6).- For every Banach space Z, let Jz : Z — Z** stand for the
canonical injection, and let I1; := Jz« o (Jz)* : Z*** — Z*** be the Dixmier
projection on Z***. Let x be in Sx, and let ¢ be in D(X**,z). Then IIx(¢)
is a norm preserving linear extension of (Jx)*(¢) € D(X,x) to X**. But,
by the assumption (5) and [18, Lemma 2.14], such an extension is unique.
Therefore we have Il x (¢) = ¢, and hence ¢ lies in D(X™*, 2)NX"* = D(X, z).

(6) = (7).- By [16, Theorem 3.1].

(7) = (1).- By Theorem 2.7. =

REMARK 2.13. (a).- As can be deduced from references [7] and [2] ap-
plied in the above proof, the equivalences (2) <= (3) <= (4) in Theorem
2.12 are previously known. Actually, as commented before, JB*-triples ful-
filling some (hence all) of Conditions (1) to (7) of Theorem 2.12 can be
characterized in several other ways. In order to review such other charac-
terizations, let us recall some definitions. Let X be a JB*-triple. X is said
to be weakly compact if, for every x in X, the operator y — {zxyz} from
X to X is weakly compact. Subspaces Y of X such that {Y XY} CY are
called inner ideals of X. The socle of X is defined as the sum of all inner
ideals of X. The concept of a modular annihilator JB*-triple is quite
involved and, consequently, we limit ourselves to refer the interested reader
to [5, pp. 392 and 383] for the definition. Nevertheless, we point out that
such a concept is of a purely algebraic nature and works in a setting much
larger than that of JB*-triples. Elementary JB*-triples can be defined
as those JB*-triples X with no nonzero proper closed ideals and such that
X is the closed linear hull of its minimal tripotents [7, Lemma 3.3.(iii)].
We remark that elementary JB*-triples can be perfectly described (see ei-
ther [6, p. 330], [7, p. 250] or [5, p. 394]) and that, when X is in fact a
C*-algebra, then X is elementary if and only if X is the C*-algebra of all
compact operators on some complex Hilbert space. Now, it follows from [7]
and [5] that, for a JB*-triple X, each of Conditions (1) to (7) in Theorem
2.12 is equivalent to any of the following:

(8) X is weakly compact.

(9) X has dense socle.

(10) X s modular annihilator.
(11) X is an inner ideal of X**.
12)

( X is the co-sum of a suitable family of elementary JB*-triples.
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- As can be deduced from the proof of Theorem 2.12, the implications

(4) = (5) = (6) = (7) are valid for every Banach space X.
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